

OMEGAnetSM On-Line Service
http://www.omega.com

Internet e-mail
info@omega.com

Servicing North America:
USA: One Omega Drive, Box 4047

Stamford, CT 06907-0047
Tel: (203) 359-1660
e-mail: info@omega.com

FAX: (203) 359-7700

Canada: 976 Berger
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
e-mail: canada@omega.com

FAX: (514) 856-6886

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378 / 1-800-622-BESTSM

Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM

TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA
Mexico and
Latin America: Tel: (95) 800-TC-OMEGASM

En Espanol: (95) 203-359-7803
FAX: (95) 203-359-7807
e-mail: espanol@omega.com

Servicing Europe:
Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405
Toll Free in Benelux: 06 0993344
e-mail: nl@omega.com

FAX: (31) 20 6434643

Czech Republic: ul. Rude armady 1868
733 01 Karvina-Hranice
Tel: 420 (69) 6311899
e-mail:czech@omega.com

FAX: 420 (69) 6311114

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
e-mail: france@omega.com

FAX: (33) 130-699-120

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
e-mail: germany@omega.com

FAX: 49 (07056) 8540

United Kingdom: 25 Swannington Road,
Broughton Astley, Leicestershire,
LE9 6TU, England
Tel: 44 (1455) 285520
FAX: 44 (1455) 283912

P.O. Box 7, Omega Drive,
Irlam, Manchester,
M44 5EX, England
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622

Toll Free in England: 0800-488-488
e-mail: uk@omega.com

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of its products to the European New Approach
Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts
no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

Programmer’s Manual (Program-901 rev 1) i

How To Use This Programmer’s Manual
Note: If you prefer to use DaqView, DaqViewXL, DASYLab, SnapMaster, or other out-of-the-box
data acquisition software, you do not need to read this manual.

This manual explains how to program data acquisition systems using various APIs and programming
languages. Besides the information in this manual, you must also read the user’s manuals for your
hardware. It may be helpful to read the DaqView chapter of the user’s manual to appreciate how a
user-friendly data acquisition system appears to the user. Also, you may need to consult documentation
for your computer system and programming environment.

Everyone should read chapter 1 and then only the chapter(s) relevant to your programming
environment.

After the table of contents, this manual is divided into a 6 chapters and an appendix as follows:

1. Introduction - The manual begins with an overview of issues related to programming a data
acquisition system and what options are available to make this task as easy as possible. The
various APIs and supported languages are introduced so you can determine which best fits your
needs.

2. Enhanced API Programming Models describes the fundamental building blocks for data
acquisition software. These programming blocks can then be arranged and filled with your
parameters to make your system do as you please. Program excerpts illustrate the basic concepts
and can often (with modifications) be used in your code.

3. Daq* Command Reference (Enhanced API) describes the commands and parameters of the
“enhanced” API including useful reference tables.

4. Standard API Programming Models describes the fundamental building blocks for data
acquisition software. These programming blocks can then be arranged and filled with your
parameters to make your system do as you please. Program excerpts illustrate the basic concepts
and can often (with modifications) be used in your code.

5. Daq* Command Reference (Standard API) describes the commands and parameters of the
“standard” API including useful reference tables.

6. Visual Basic VBX Support explains the use of icon-based VBX programming tools.

Appendix. Porting Applications explains compatibility issues between APIs for Windows 3.1 and
Windows 95/NT.

ii Programmer’s Manual (Program-901 rev 1)

Table of Contents
1 Introduction

Overview -- 1-1
Driver Options -- 1-2

Standard API -- 1-2
Enhanced API --- 1-2

Language Support -- 1-2
16-Bit Standard API Languages -- 1-2
32-Bit Standard API Languages -- 1-3
Enhanced API Languages --- 1-3

Setup -- 1-4
Configuration --- 1-4

2 Enhanced API Programming Models
Overview--- 2-1
Data Acquisition Environment-- 2-1

Application Programming Interface (API) -- 2-1
Enhanced vs Standard API -- 2-1
Hardware Capabilities and Constraints -- 2-1
Signal Environment -- 2-2

Basic Models --- 2-2
Initialization and Error Handling --- 2-3
Foreground Acquisition with One-Step Commands --- 2-5
Counted Acquisitions Using Linear Buffers -- 2-6
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers -- 2-8
Analog Output-- 2-11
Generating DAC FIFO Waveforms (DaqBoard Only) --- 2-12
Variable Rate, Variable Duty-Cycle Square-Wave Output -- 2-13
Digital I/O on P2--- 2-15
Temperature Measurements Using Single TC Type on a Single DBK19 Card --------------------- 2-17
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards---------------- 2-25
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card------------------------ 2-29
Using DBK Card Calibration Files-- 2-31
Zero Compensation-- 2-34
Linear Conversion -- 2-36

Summary Guide of Selected Enhanced API Functions--- 2-38

3 Daq* Command Reference (Enhanced API)
Overview--- 3-1
Commands in Alphabetical Order -- 3-3
API Reference Tables --- 3-73

A/D Channel Descriptions-- 3-74
Daq Device Property Definitions -- 3-74
Digital I/O Port Connection -- 3-75
Event-Handling Definitions -- 3-76
Hardware Information Definitions -- 3-76
DBK Card Definitions -- 3-76
ADC Gain Definitions -- 3-77
ADC Trigger Source Definitions -- 3-78
ADC Miscellaneous Definitions--- 3-78
DAC Definitions --- 3-79
Data Conversion Definitions --- 3-79
WBK Card Definitions-- 3-80
General I/O Definitions --- 3-81
9513 Counter/Timer Definitions--- 3-82
daqTest Command Definitions--- 3-82
Calibration Input Signal Sources -- 3-82
API Error Codes --- 3-83

4 Standard API Programming Models
Overview--- 4-1
Data Acquisition Environment-- 4-1

Programmer’s Manual (Program-901 rev 1) iii

Application Programming Interface (API) -- 4-1
Standard vs Enhanced API -- 4-1
Hardware Capabilities and Constraints -- 4-2
Signal Environment -- 4-2

Basic Models --- 4-3
Initialization and Error Handling --- 4-4
Foreground Acquisition with User-Level Commands --- 4-5
Foreground Acquisition with Low-Level Commands --- 4-7
Foreground Acquisition, High-Speed Digital Input-- 4-8
Background Acquisition, Multi-Channel, Multi-Scan--- 4-9
Background Acquisition, Direct-To-Disk In Cycle Mode --- 4-11
Analog Output-- 4-13
Generating DAC FIFO Waveforms with User-Level Commands (DaqBoard Only) --------------- 4-14
Generating DAC FIFO Waveforms with Hardware-Level Commands (DaqBoard) --------------- 4-16
Background Counter Acquisition Using Interrupts --- 4-18
Variable Rate, Variable Duty-Cycle Square-Wave Output -- 4-20
Single Square-Wave Output-- 4-22
Digital I/O on P2--- 4-23
Temperature Measurements Using Single TC Type on a Single DBK19 Card --------------------- 4-24
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards---------------- 4-32
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card------------------------ 4-35
Using DBK Card Calibration Files-- 4-37
Zero Compensation-- 4-40
Linear Conversion -- 4-42

Summary Guide of Selected API Functions --- 4-44

5 Daq* Command Reference (Standard API)
Overview--- 5-1
Commands in Alphabetical Order -- 5-2
A/D Channel Descriptions-- 5-65
Thermocouple Types -- 5-65
A/D Trigger Source Definitions --- 5-65
A/D Gain Definitions-- 5-66
Digital I/O Port Connection -- 5-67
API Error Codes --- 5-68

6 Visual Basic VBX Support
Overview--- 6-1
DBK VBX --- 6-1

Event Routines - DBK --- 6-2
DBK Properties -- 6-2

ADC VBX --- 6-5
Event Routines - ADC --- 6-5
ADC Properties -- 6-6

CTR VBX--- 6-13
Event Routines - CTR--- 6-15
CTR Properties --- 6-16

DAC VBX -- 6-27
Event Routines - DAC -- 6-27
DAC Properties --- 6-27

DIO VBX --- 6-28
Event Routines - DIO --- 6-28
DIO Properties -- 6-28

Programming Examples--- 6-31
Example Summary--- 6-31

Appendix: Porting Applications
Overview---A-1
Porting Daq* Applications Written for Windows 3.1 ---A-2

Windows 3.1 Binary Compatibility (16-bit) --A-2
Unsupported Windows 3.1 API Functions--A-2

Porting Visual Basic Programs ---A-3
Porting C Programs ---A-4

iv Programmer’s Manual (Program-901 rev 1)

- Notes

Introduction 1

Programmer’s Manual 1-1

Overview
New operating systems and new hardware have led to a new Application Programming Interface (API)
for Daq* and related products (the enhanced API). For users building on previously written programs,
the standard API will continue to be supported.

• The User’s Manual describes hardware installation and setup, theory of operation,
troubleshooting, and ready-to-run software. If you plan to use the DaqView software shipped
with the system (or other ready-to-run software such as DASYLab or SnapMaster), the user’s
manual is all you need.

• The Programmer’s Manual describes the API for programmers who are creating custom
software for their particular application. Note: to create effective programs, programmers must
also be familiar with the hardware and operation as described in the user’s manual.

This Programmer’s Manual covers several APIs used with various products. Often, a product is
shipped with several APIs to accommodate various hardware environments and programming
preferences. Thus, not all of this manual will apply to your system. After reading this introduction,
you can then read only the relevant chapters. Note: the readme files on the driver disks will keep you
up-to-date as the APIs continue to evolve.

This manual currently covers several APIs and programming environments for the Daq* product line
including all models of DaqBook, DaqBoard, Daq PCMCIA, and DBK Option Cards and Modules.
Note: As of this writing, the Daq PCMCIA is not supported under Windows95/NT drivers (the
enhanced API).

This manual serves both novice and experienced programmers.
• As a tutorial - The Programming Models chapters (enhanced and standard) explain how to

combine commands to do useful work in a typical data acquisition environment. Program
excerpts illustrate the concepts and can be modified as needed to use in your programs.

• As a reference - Much of this manual is a detailed description of the API commands. These
details and the related tables of parameter values and definitions are important to ensure proper
syntax and that your programs run as intended.

Note: This manual is not a tutorial on computer programming in general. You may need to consult
other texts for such information.

Introduction Chapter 1

1-2 Programmer’s Manual

Driver Options
This section is intended to help you decide which API and programming language to use in developing
your application. The install disks include several “drivers” to accommodate various programming
environments.

Standard API
The standard API was originally written for the Daq* Windows 3.1 driver. However, it can be used
under Windows 95 in 16- or 32-bit mode or under Windows NT in 32-bit mode. The standard API is
the only API option available for Windows 3.1 or DOS applications. Use the Standard API:

• When developing a new or existing DOS application
• When developing a new or existing Windows 3.1 application
• When a quick port of an existing 16-bit mode (Windows 3.1) application to 32-bit mode

(Windows95/NT) is required

Enhanced API
The Enhanced API has several features that are not present in the standard API:

• Multi-device - can concurrently handle up to 4 devices of the Daq* family
• Larger buffer - can handle up to 2 billion samples at a time
• Enhanced acquisition and trigger modes
• Direct-to-disk capabilities
• Wait-on-event features
• Uses multi-tasking advantages of Windows 95/NT

Because of these new features and other improvements, it is recommended to use the Enhanced API,
when feasible. Use the Enhanced API:

• When developing new or existing Windows 95 applications
• When developing new or existing Windows NT applications
• When porting an existing Standard API application to 32-bit mode to take advantage of the

Enhanced API features

Language Support
The following table shows language support for the standard and enhanced API drivers.

Standard API (16-bit) Supported Languages Enhanced API (or 32-bit Standard) Supported Languages
C/C++
 Microsoft Visual C++
 Borland C++ (v4.0 and greater)

C/C++
 Microsoft Visual C++
 Borland C++ (v4.0 and greater)

BASIC
 Microsoft Visual Basic (v4.0 and greater)
 QuickBASIC

BASIC
 Microsoft Visual Basic (v4.0 and greater)

Pascal
 Turbo Pascal

Delphi
 Borland Delphi (v2.0)

16-bit Standard API Languages

C (for Windows)
There is one library and one header file located in the DAQBOOK\WIN\C directory. The header file,
DAQBOOK.H, must be included at the top of a C program using the #include command. This will
allow the compiler to know what Daq* functions and constants are available.

The library, DAQBOOK.LIB, must be included in the applications makefile or project file so that the
linker will find the Daq* functions. See the documentation for your specific C compiler for a
description on using header files and libraries.

To use the example program located in the DAQBOOK\DOS\C directory, create a makefile or project
file which consists of the DAQEX.C source file, DAQEX.RC resource file, DAQEX.DEF definition
file, DAQEX.ICO icon file, and the DAQBOOK.LIB library. Note: The file DAQBOOK.DLL must
be present in the WINDOWS directory. (If necessary, the file DAQBOOK.DLL can be copied from
the DAQBOOK\WIN directory.)

Chapter 1 Introduction

Programmer’s Manual 1-3

QuickBASIC
Basic interface, library, and quick library files are located in the DAQBOOK\DOS\QB directory.

• The Basic interface file DAQBOOK.BI must be included at the top of a QuickBASIC program
using the ’$INCLUDE command (’$INCLUDE: ’daqbook.bi’). This will allow
QuickBASIC to know what Daq* functions and constants are available.

• The library DAQBOOK.LIB must be included during the link process when creating a program
from the DOS command line. The /NOE option of the linker may be necessary when linking the
Daq* library.

• Alternatively, the quick library DAQBOOK.QLB can be used to access the Daq* from within the
QuickBASIC environment. Use the /L option of QuickBASIC to load the appropriate Quick
Library. See the QuickBASIC documentation for the various command line options.

To run an example program located in the DAQBOOK\DOS\QB directory, start QuickBASIC using
the /L option, such as QB /LDAQBOOK.QLB. Then load and run the desired program. The example
program could also be compiled using QuickBASIC’s BC.EXE compiler to create an .OBJ file. This
.OBJ could then be linked to the DAQBOOK.LIB file using QuickBASIC’s LINK.EXE linker.

If you need to use more than one quick library with your application program, you will need to create a
combined library. The first step is to extract the object modules from DAQBOOK.LIB using the LIB
program provided with QuickBASIC:

C:\QB45 LIB daqbook *lowqb *highqb *highcqb *stubstb *tcqb

Next, you need to link the object modules along with your other libraries into the combined Quick
Library using the LINK program provided with QuickBASIC. The following example creates a Quick
Library called COMBINED.QLB from the Daq* object modules and USEROBJ.OBJ:

C:\QB45LINK
Object Modules [.OBJ]: lowqb+highbqb+hgihcqb+stubsqb+tcqb+userobj
Run File [LOWQB.EXE]: combined.qbl /q
List File [NUL.MAP]: /noe
Libraries [.LIB]: bqlb45

Turbo Pascal
To use the example programs located in the DAQBOOK\DOS\TP7 directory, make sure that your
program specifies DAQBOOK.TPU unit in the uses clause. Also be sure that the DAQBOOK.TPU
unit file is in the Turbo Pascal search path.

32-bit Standard API Languages
C/C++ For native Microsoft Visual C++, support is located in <installationpath>\C\32Std. For
Borland C++ (v4.0 and greater) via dynamic linking, support is located in
<installationpath>\C\32Std\Dynamic.

Visual Basic For Microsoft Visual Basic (v4.0 and greater), support is located in
<installationpath>\VB\32Std.

Delphi For Borland Delphi (v2.0), support is located in <installation path>\Delphi\32Std.

Enhanced API Languages

C/C++ For native Microsoft Visual C++, find enhanced API support in
<installationpath>\C\32Enh. For Borland C++ (v4.0 and greater) via dynamic linking, support is
located in <installationpath>\C\32Enh\Dynamic.

Visual Basic For Microsoft Visual Basic (v4.0 and greater), support is located in
<installationpath>\VB\32Enh.

Delphi For Borland Delphi (v2.0), support is located in <installationpath>\Delphi\32Enh.

Introduction Chapter 1

1-4 Programmer’s Manual

Setup
Driver installation uses one of two disk sets:

• If installing on a DOS or Windows 3.1 system, use the DaqBook/DaqBoard Software disk set
(#232-0601).

• If installing on a Windows 95 or Windows NT system, use the DaqBook/DaqBoard Software for
Windows95/NT disk set (#443-0601).

In either case, the setup (Setup.Exe) routine is located on Disk 1 of the respective disk set. When run,
the setup routine will automatically detect on which operating system the installation is being
performed and will install the appropriate driver. For more details on the setup process, see sections
that discuss installation for the specific Daq* device (in the User’s Manual: chapter 2 for DaqBook,
chapter 3 for DaqBoard, chapter 5 for specific DBK cards and modules).

Configuration
For details on configuring specific Daq* devices, see related sections that discuss that specific Daq*
device (in the User’s Manual: chapter 2 for DaqBook, chapter 3 for DaqBoard, chapter 5 for specific
DBK cards and modules).

Enhanced API Programming Models 2

Programmer’s Manual 2-1

Overview
By using the Application Programming Interface (API) with Daq* systems, you can create custom
software to satisfy your data acquisition requirements. Chapter 3 explains the enhanced API functions
in detail. This chapter shows how to combine API functions to perform typical tasks. When you
understand how the API works with the hardware, you are ready to program for optimum data
acquisition. To help you get this perspective, this chapter is divided into 3 parts:

• Data Acquisition Environment outlines related concepts and defines Daq* capabilities the
programmer must work with (the API, hardware features, and signal management).

• Programming Models explains the sequence and type of operations necessary for data
acquisition. These models provide the software building blocks to develop more complex and
specialized programs. The description for each model has a flowchart and program excerpt to
show how the API functions work.

• Summary Guide of Selected API Functions is an easy-to-read table that describes when to use
the basic API functions.

Data Acquisition Environment
In order to write effective data acquisition software, programmers must understand:

• Software tools (the API documented in this manual and the programming language—you may
need to consult documentation for your chosen language)

• Hardware capabilities and constraints
• General concepts of data acquisition and signal management

Application Programming Interface (API)
The API includes all the software functions needed for building a data acquisition system with the
hardware described in this manual. Chapter 3 (Daq* Command Reference—Enhanced API) supplies
the details about how each function is used (parameters, hardware applicability, etc). In addition, you
may need to consult your language and computer documentation.

Enhanced vs Standard API
Major differences between the enhanced and standard APIs were described in the introductory chapter.
Language support varies as follows:

• The enhanced API (32-bit only) accommodates C, Visual Basic, and Delphi.
• The standard API accommodates C (16- or 32-bit), QuickBASIC (16-bit only), Visual Basic

(16- or 32-bit), and Turbo Pascal 7 (16-bit only).
Note: Coding for the enhanced and standard API cannot be used together; enhanced and standard
models are slightly different (this chapter is for the enhanced API models; chapter 4 is for the standard
API models).

Hardware Capabilities and Constraints
To program the system effectively, you must understand your Daq* and DBK hardware capabilities.
Obviously you cannot program the hardware to perform beyond its design and specifications, but you
also want to take full advantage of the system’s power and features. In the User’s Manual, you may
need to refer to sections that describe your hardware’s capability. In addition, you may need to consult
your computer documentation. In some cases, you may need to verify the hardware setup, use of
channels, and signal conditioning options (some hardware devices have jumpers and DIP switches that
must match the programming, especially as the system evolves).

Enhanced API Programming Models Chapter 2

2-2 Programmer’s Manual

Signal Environment
Important data acquisition concepts for programmers are listed here and explained in the chapter Signal
Management and Troubleshooting Tips in the User’s Manual. You must apply these concepts as
needed in your situation. Some of these concepts include:

• Channel Identification. Refer to Signal Management… and the related reference table in
chapter 3.

• Scan Rates and Sequencing. With multiple scans, the time between scans becomes a
parameter. This time can be a constant or can be dependent upon a trigger. Refer to Signal
Management….

• Counter/Timer Operation. Refer to Signal Management… and daq9513… functions in
chapter 3.

• Triggering Options. Triggering starts the A/D conversion. The trigger can be an external
analog or TTL trigger, or a program controlled software trigger. Refer to Signal Management…
and the trigger functions in chapter 3.

• Foreground/Background. Foreground transfer routines require the entire transfer to occur
before returning control to the application program. Background routines start the A/D
acquisition and return control to the application program before the transfer occurs. Data is
transferred while the application program is running. Data will be transferred to the user
memory buffer during program execution in 1 sample or 256 sample blocks, depending on the
configuration. The programmer must determine what tasks can proceed in the background while
other tasks perform in the foreground and how often the status of the background operations
should be checked.

Parameters in the various A/D routines include: number of channels, number of scans, start of
conversion triggering, timing between scans, and mode of data transfer. Up to 512 A/D channels can
be sampled in a single scan. These channels can be consecutive or non-consecutive with the same or
different gains. The scan sequence makes no distinction between local and expansion channels.

Basic Models
This section outlines basic programming steps commonly used for data acquisition. Consider the
models as building blocks that can be put together in different ways or modified as needed. As a
general tutorial, these examples use Visual Basic since most programmers know BASIC and can
translate to other languages as needed. The enhanced API programming models discussed in this
chapter include:

Model Type Model Name Page

Configuration Initialization and Error Handling 2-3

Acquisition Foreground Acquisition with One-Step Commands
Counted Acquisition Using Linear Buffers
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers

2-5
2-6
2-8

Analog Output Analog Output
Generating DAC FIFO Waveforms (DaqBoard Only)

2-11
2-12

Use of P3’s Counter/Timer Variable Rate, Variable Duty-Cycle Square-Wave Output 2-13

Use of 8255 Chip Digital I/O on P2 2-15

Temperature Measurements Temperature Measurements Using Single TC Type on Single DBK19 Card
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card

2-17
2-25
2-29

Calibration Using DBK Card Calibration Files 2-31

Zero Compensation Zero Compensation 2-34

Conversion Linear Conversion 2-36

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-3

Initialization and Error Handling
This section demonstrates how to initialize the Daq*
and use various methods of error handling. Most of the
example programs use similar coding as detailed here.
Functions used include:

• • VBdaqOpen&(daqName$)

• • VBdaqSetErrorHandler&(errHandler&)

• • VBdaqClose&(handle&)

All Visual Basic programs should include the DaqX.bas
file into their project. The DaqX.bas file provides the
necessary definitions and function prototyping for the
DAQX driver DLL.

handle& = VBdaqOpen&(“DaqBook0”)
ret& = VBdaqClose&(handle&)

The Daq* device is opened and initialized with the daqOpen function. daqOpen takes one
parameter—the name of the device to be opened. The device name information can be accessed or
changed via the Daq* Configuration utility located in the operating system’s Control Panel. The
daqOpen call, if successful, will return a handle to the opened device. This handle may then be used
by other functions to configure or perform other operations on the device. When operations with the
device are complete, the device may then be closed using the daqClose function. If the device could
not be found or opened, daqOpen will return -1.

The DAQX library has a default error handler defined upon loading. However; if it is desirable to
change the error handler or to disable error handling, then the daqSetErrorHandler function may
be used to setup an error handler for the driver. In the following example the error handler is set to 0
(no handler defined) which disables error handling.

ret& = VBdaqSetErrorHandler&(0&)

If there is a Daq* error, the program will continue. The function’s return value (an error number or 0 if
no error) can help you debug a program.

If (VBdaqOpen&(“DaqBook0”) < 0) Then
 “Cannot open DaqBook0”

Daq* functions return daqErrno&.

Print “daqErrno& : ”; HEX$(daqErrno&)
End If

The next statement defines an error handling routine that frees us from checking the return value of
every Daq* function call. Although not necessary, this sample program transfers program control to a
user-defined routine when an error is detected. Without a Daq* error handler, Visual Basic will receive
and handle the error, post it on the screen and terminate the program. Visual Basic provides an integer
variable (ERR) that contains the most recent error code. This variable can be used to detect the error
source and take the appropriate action. The function daqSetErrorHandler tells Visual Basic to
assign ERR to a specific value when a Daq*error is encountered. The following line tells Visual Basic
to set ERR to 100 when a Daq*error is encountered. (Other languages work similarly; refer to specific
language documentation as needed.)

handle& = VBdaqOpen&(“DaqBook0”)
ret& = VBdaqSetErrorHandler&(handle&, 100)

 On Error GoTo ErrorHandler

The On Error GoTo command in Visual Basic allows a user-defined error handler to be provided,
rather than the standard error handler that Visual Basic uses automatically. The program uses On
Error GoTo to transfer program control to the label ErrorHandler if an error is encountered.

Daq* errors will send the program into the error handling routine. This is the error handler. Program
control is sent here on error.

Enhanced API Programming Models Chapter 2

2-4 Programmer’s Manual

ErrorHandler:

 errorString$ = "ERROR in ADC1"
 errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then errorString$ = errorString$ & Chr(10) & "DaqBook
Error : " + Hex$(daqErrno&)

 MsgBox errorString$, , "Error!"

End Sub

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-5

Foreground Acquisition with One-Step Commands
This section shows the use of several one-step analog
input routines. These commands are easier to use than
low-level commands but less flexible in scan
configuration. These commands provide a single
function call to configure and acquire analog input data.
This example demonstrates the use of the 4 Daq*’s one-
step ADC functions. Functions used include:

• • VBdaqAdcRd&(handle&,chan&, sample%,
gain&)

• • VBdaqAdcRdN&(handle&,chan&, Buf%(),
count&, trigger%, level%, freq!,
gain&,flags&)

• • VBdaqAdcRdScan&(handle&,startChan&,
endChan&, Buf%(), gain&, flags&)

• • VBdaqAdcRdScanN&(handle&,startChan&,
endChan&, Buf%(), count&,
triggerSource&, level%, freq!,
gain&, flags&)

This program will initialize the Daq* hardware, then
take readings from the analog input channels in the base
unit (not the expansion cards). For transporting data in
and out of the Daq* driver, arrays are dimensioned.

Dim sample%(1), buf%(80), handle&,
ret&, flags&, gain&

The following code assumes that the Daq* device has been successfully opened and the handle&
value is a valid handle to the device. All the following one-step functions define the channel scan
groups to be analog unipolar input channels. Specifying this configuration uses the DafAnalog and
the DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in
which each bit specifies the characteristics of the channel(s) specified. In this case, the DafAnalog
and the DafUnipolar values are added together to form the appropriate bit mask for the specified
flags parameter.

The next line requests 1 reading from 1 channel with a gain of ×1. The variable DgainX1& is actually
a defined constant from DaqX.bas, included at the beginning of this program.

ret& = VBdaqAdcRd&(handle& 0, sample%(0), DgainX1&,
DafAnalog&+DafUnipolar&)

Print Format$“& ####”; “Result of AdcRd:”; sample%(0)

The next line requests 10 readings from channel 0 at a gain of ×1, using immediate triggering at 1 kHz.

ret& = VBdaqAdcRdN&(handle&,0, buf%(), 10, DatsImmediate&, 0, 1000!,
DgainX1&, DafAnalog&+DafUnipolar&)

Print “Results of AdcRdN: ”;
For x& = 0 To 9
 Print Format$ “#### ”; buf%(x&);

Next x&

The program will then collect one sample of channels 0 through 7 using the VBdaqAdcRdScan
function.

ret& = VBdaqAdcRdScan&(handle&,0, 7, buf%(), DgainX1&,
DafAnalog&+DafUnipolar&)

Print “Results of AdcRdscan:”
For x& = 0 To 7
Print Format$“& # & ####”; “Channel:”; buf%(x); “Data:”; buf%(x)

Next x&: Print

Enhanced API Programming Models Chapter 2

2-6 Programmer’s Manual

Counted Acquisitions Using Linear Buffers
This section sets up an acquisition that
collects post-trigger A/D scans. This
particular example demonstrates the setting
up and collection of a fixed-length A/D
acquisition in a linear buffer.

First, the acquisition is configured by setting
up the channel scan group configuration, the
acquisition frequency, the acquisition trigger
and the acquisition mode. When configured,
the acquisition is then armed by calling the
daqAdcArm function.

At this point, the Daq* device trigger is
armed and A/D acquisition will begin upon
trigger detection. If the trigger source has
been configured to be DatsImmediate&,
A/D data collection will begin immediately.

This example will retrieve 10 samples from
channels 0 through 7, triggered immediately
with a 1000 Hz sampling frequency and unity
gain. Functions used include:

• • VBdaqAdcSetMux&(handle&,
startChan&, endChan&, gain&,
flags&)

• • VBdaqAdcSetFreq&(handle&,freq!)

• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)

• • VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in
the base unit (not the expansion cards). The functions used in this program are of a lower level than
those used in the previous section and provide more flexibility.

Dim buf%(80), handle&, ret&, flags&

The following function defines the channel scan group. The function specifies a channel scan group
from channel 0 through 7 with all channels being analog unipolar input channels with a gain of ×1.
Specifying this configuration uses DgainX1 in the gain parameter and the DafAnalog and the
DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in which
each bit specifies the characteristics of the specified channel(s). In this case, the DafAnalog and the
DafUnipolar values are added together to form the appropriate bit mask for the specified flags
parameter.

ret& = VBdaqAdcSetMux&(handle&,0, 7, DgainX1&, DafAnalog&+DafUnipolar&)

Next, set the internal sample rate to 1 kHz.

ret& = VBdaqAdcSetFreq&(handle&,1000!)

The acquisition mode needs to be configured to be fixed length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamNShot&, which will configure
the acquisition as a fixed-length acquisition that will terminate automatically upon the satisfaction of
the post-trigger count of 10.

ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, 10)

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-7

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsImmediate& is a constant defined in
DaqX.bas. Since the trigger source is configured as immediate, the other trigger parameters are not
needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsImmediate&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since this is to be a fixed length
transfer to a linear buffer, the buffer cycle mode should be turned off with DatmCycleOff&. For
efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to 10
scans. Note: the user-defined buffer must have been allocated with sufficient storage to hold the entire
transfer prior to invoking the following line.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), 10,
DatmUpDateBlock&+DatmCycleOff&)

With all acquisition parameters being configured, the acquisition can now be armed. Once armed, the
acquisition will begin immediately upon detection of the trigger event. As in the case of the immediate
trigger, the acquisition will begin immediately upon execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, the data is immediately ready to be collected. Had the
trigger source been anything other than immediate, the data would only be ready after the trigger had
been satisfied. The following line initiates an A/D transfer from the Daq* device to the defined user
buffer.

ret& = VBdaqAdcTransferStart&(handle&)

Wait for the transfer to complete in its entirety, then proceed with normal application processing.
This can be accomplished with the daqWaitForEvent command. The daqWaitForEvent
allows the application processing to become blocked until the specified event has occurred.
DteAdcDone, indicates that the event to wait for is the completion of the transfer.

ret& = VBdaqWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; all data from the acquisition is available for further processing.

Print “Results of Transfer”
For i& = 0 To 10
 Print "Scan "; Format$(Str$(i& + 1), "00"); " -->";
 For k& = k& To k& + 7
 Print Format$(IntToUint&(buf%(k&)), "00000"); " ";
 Next k&
 Print
Next i&

Enhanced API Programming Models Chapter 2

2-8 Programmer’s Manual

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers
This program demonstrates the use of
circular buffers in cycle mode to collect
analog input data directly to disk. In cycle
mode, this data transfer can continue
indefinitely. When the transfer reaches the
end of the physical data array, it will reset
its array pointer back to the beginning of
the array and continue writing data to it.
Thus, the allocated buffer can be used
repeatedly like a FIFO buffer.

Unlike the Standard API, the Enhanced
API has built-in direct-to-disk
functionality. Therefore, very little needs
to be done by the application to configure
direct-to-disk operations.

First, the acquisition is configured by
setting up the channel scan group
configuration, the acquisition frequency,
the acquisition trigger and the acquisition
mode. Once configured, the transfer to
disk is set up and the acquisition is then
armed by calling the daqAdcArm
function.

At this point, the Daq* device trigger is
armed and A/D acquisition to disk will
begin immediately upon trigger detection.

This example will retrieve an indefinite
amount of scans for channels 0 through 7,
triggered via software with a 3000 Hz
sampling frequency and unity gain.
Functions used include:

• • VBdaqAdcSetScan&(handle&,
startChan&, endChan&,
gain&, flags&)

• • VBdaqAdcSetFreq&(handle&,fr
eq!)

• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)

• • VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqAdcTransferGetStat&(handle&,status&,retCount&)

• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

• • VBdaqAdcSetDiskFile&(handle&,filename$,openMode&,preWrite&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in
the base unit (not the expansion cards) and store them to disk automatically. The following lines
demonstrate channel scan group configuration using the daqAdcSetScan command. Note: flags
may be channel-specific.

Dim handle&, ret&, channels&(8), gains&(8) flags&(8)
Dim buf%(80000), active&, count&
Dim bufsize& = 10000 ‘ In scans

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-9

' Define arrays of channels and gains : 0-7 , unity gain
For x& = 0 To 7
 channels&(x&) = x&
 gains&(x&) = DgainX1&

 flags&(x&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
Next x&

' Load scan sequence FIFO
ret& = VBdaqAdcSetScan&(handle&,channels&(), gains&(), flags&(), 8)

Next, set the internal sample rate to 3 kHz.

ret& = VBdaqAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamInfinitePost&, which will
configure the acquisition as having indefinite length and, as such, will be terminated by the application.
In this mode, the pre- and post-trigger count values are ignored.

ret& = VBdaqAdcSetAcq&(handle&,DaamInfinitePost&, 0, 0)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsSoftware& is a constant defined in
DaqX.bas. Since the trigger source is configured as immediate, the other trigger parameters are not
needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold
incoming A/D data while it is being prepared for disk I/O. Since this is to be an indefinite-length
transfer to a circular buffer, the buffer cycle mode should be turned on with DatmCycleOn&. For
efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to
10,000 scans. The buffer size indicates only the size of the circular buffer, not the total number of
scans to be taken.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), bufsize&,
DatmUpDateBlock&+DatmCycleOn&)

Now the destination disk file is configured and opened. For this example, the disk file is a new file to
be created by the driver. After the following line has been executed, the specified file will be opened
and ready to accept data.

ret& = VBdaqAdcSetDiskFile&(handle&,”c:dasqdata.bin”, DaomCreateFile&, 0)

With all acquisition parameters being configured and the acquisition transfer to disk configured, the
acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of
the trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon
execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger
event. Since the trigger source is software, the trigger event will not take place until the application
issues the software trigger event. To prepare for the trigger event, the following line initiates an A/D
transfer from the Daq* device to the defined user buffer and, subsequently, to the specified disk file.
No data is transferred at this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The
following line will signal the software trigger event to the driver; then A/D input data will be
transferred to the specified disk file as it is being collected.

ret& = VBdaqAdcSoftTrig&(handle&)

Enhanced API Programming Models Chapter 2

2-10 Programmer’s Manual

Both the acquisition and the transfer are now currently active. The transfer to disk will continue
indefinitely until terminated by the application. The application can monitor the transfer process with
the following lines of code:

acqTermination& = 0
Do
 ‘ Wait here for new data to arrive
 ret& = VBdaqWaitForEvent(handle&,DteAdcData&)

 ‘ New data has been transferred - Check status
 ret& = VBdaqAdcTransferGetStat&(handle&,active&,retCount&)

 ‘ Code may be placed here which will process the buffered data or
 ‘ perform other application activities.
 ‘
 ‘ At some point the application needs to determine the event on which
 ‘ the direct-to-disk acquisition is to be halted and set the
 ‘ acqTermination flag.

Loop While acqTermination& = 0

At this point the application is ready to terminate the acquisition to disk. The following line will
terminate the acquisition to disk and will close the disk file.

ret& = VBdaqAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to
get the total number of scans actually transferred to disk.

ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)

The specified disk file is now available. The retCount& parameter will indicate the total number
of scans transferred to disk.

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-11

Analog Output
The program DACEX1.BAS shows how to output analog
voltages on analog output channels 0 and 1. These
commands only have to be issued one time unless a related
parameter is explicity changed. The output voltages will
be sustained. This example demonstrates the use of the
two digital-to-analog converters (values used assume
bipolar mode). Functions used include:

• • VBdaqDacSetOutputMode&(handle&,
DddtLocal&, 0, DdomVoltage&)

• • VBdaqDacWt&(handle&, deviceType&,
chan&, dataVal%)

• • VBdaqDacWtMany&(handle,
deviceTypes&(),chans&(), dataVals%())

Assuming the voltage reference is connected to the
internal default of 5 V, the next function will set channel 0
to an output voltage of 5 V. The values are set for a
digital-to-analog converter with 16 bit resolution; 65535
represents full-scale. Channel 1 is equal to 0.

ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqDacWt&(handle&, DddtLocal, 0, 65535)

The daqDacWtMany writes to both analog outputs simultaneously. The following lines sets channel
0 to 5 V and channel 1 to 2.5 V. At full-scale, a digital value of 65535 corresponds to 5 V; a digital
value of 49152 corresponds to ½ of 5 V.

Dim deviceTypes&(1)
Dim chans&(1)
Dim dataVals%(1)
The VBdaqSetOutputMode puts the channel in a voltage mode.
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltage&)
deviceTypes&(0) = DddtLocal&
deviceTypes&(1) = DddtLocal&
chans&(0) = 0
chans&(1) = 1
dataVals&(0) = 65535
dataVals&(1) = 49152
ret& = VBdaqDacWtMany&(handle&, deviceTypes&(), chans&(), dataVals%(),2)

The following sets the outputs to 0 V.

Dim deviceTypes&(1)
Dim chans&(1)
Dim dataVals%(1)
deviceTypes&(0) = DddtLocal&
deviceTypes&(1) = DddtLocal&
chans&(0) = 0
chans&(1) = 1
dataVals&(0) = 32768
dataVals&(1) = 32768
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqSetOutputMode&(handle&, DddtLocal&, 1, DdomVoltage&)
ret& = VBdaqDacWtMany&(handle&, deviceTypes&(), chans&(), dataVals%(),2)

Enhanced API Programming Models Chapter 2

2-12 Programmer’s Manual

Generating DAC FIFO Waveforms (DaqBoard
Only)

This program demonstrates the use of the DAC
FIFO to generate waveforms. The DAC is
configured for output on both channels, and the
user waveform is constructed. Output begins
after the waveform is assigned to a channel. At
this point, the program continues while the
waveforms are generated.

The following example shows how to generate a
pre-defined waveform using these functions:

• • VBdaqDacWaveSetTrig&(handle&,
deviceType&, chan&,
triggerSource&, rising%)

• • VBdaqDacWaveSetClockSource&(handle&, deviceType&, chan&, clockSource&)

• • VBdaqDacWaveSetFreq&(handle&, deviceType&, chan&, freq!)

• • VBdaqDacWaveSetMode&(handle&, deviceType&, chan&, mode&, updateCount&)

• • VBdaqDacWaveSetBuffer&(handle&, deviceType&, chan&, buf%(), scanCount&,
transferMask&)

• • VBdaqDacWaveSetPredefWave&(handle&, deviceType&, chan&, waveType&,
amplitude&, offset&, dutyCycle&, phaseShift&)

• • VBdaqDacWaveArm&(ByVal handle&, ByVal deviceType&)

When using the pre-defined waveform generation, program the waveform parameters common to both
channels. The double star (**) indicates the value must be the same on both channels of a DaqBoard.

For chan = 0 To 1 Step 1
' set the output mode to static waveform

ret& = VBdaqDacSetOutputMode&(handle&, DddtLocal&, chan&,
DdomStaticWave&)

' The trigger source must be set to immediate for static waveform.**
err& = VBdaqDacWaveSetTrig&(handle&, DddtLocal&, chan&, DdtsImmediate&,
1)

' set the internal dac clock
ret& = VBdaqDacWaveSetClockSource&(handle&, DddtLocal&, chan&,
DdcsDacClock&)

' the frequency of the internal clock. **
ret& = VBdaqDacWaveSetFreq&(handle&, DddtLocal&, chan&, 10!)

' must be infinite for static mode
ret& = VBdaqDacWaveSetMode&(handle&, DddtLocal&, chan&, DdwmInfinite&,
0)

Next chan

' buffer cylce on, retransmit mode. **
' update count is the buffer length. **
ret& = VBdaqDacWaveSetBuffer&(handle&, DddtLocal&, chan&, buf0%(),
updateCount&, DdtmCycleOn&)

' set the buffer for channel 1
ret& = VBdaqDacWaveSetBuffer&(handle&, DddtLocal&, chan&, buf1%(),
updateCount&, DdtmCycleOn&)

' program the waveform parameters specific to dac channel 0
ret& = VBdaqDacWaveSetPredefWave&(handle&, DddtLocal&, 0, DdwtTriangle&,
32768, 32768, 90, 0)

' program the waveform parameters specific to dac channel 1
ret& = VBdaqDacWaveSetPredefWave&(handle&, DddtLocal&, 1, DdwtSquare&,
32768, 32768, 40, 0)

' buffer must be configured before the arm command is called. All
channels

' will be armed.
ret& = VBdaqDacWaveArm(handle&, DddtLocal&)

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-13

 Variable Rate, Variable Duty-Cycle Square-Wave Output
This section demonstrates the use of the
counter/timer section of a DaqBook/100/200 or
DaqBoard/100A/200A with the P3 port. After
configuring the counter and setting the load and
hold registers, the counter is armed. At this
point, program execution continues while the
counter outputs the signal. This example
generates a variable rate, variable duty-cycle
square wave. Functions used include:

• • Vbdaq9513SetMasterMode&(handle&
,deviceType&,whichDevice&,foutD
iv&, cntSource&, comp1&,
comp2&, tod&)

• • Vbdaq9513SetCtrMode&(handle&,de
viceType&,whichDevice&,
ctrNum&,gayeCtrl&, cntEdge&,
cntSource&, specGate&, reload&,
cntRepeat&, cntType&, cntDir&,
outputCtl&)

• • Vbdaq9513SetHold&(handle&,
deviceType&,whichDevice&,
ctrNum&, ctrVal%)

• • Vbdaq9513SetLoad&(handle&,devic
eType&,whichDevice&, ctrNum&,
ctrVal%)

• • Vbdaq9513MultCtrl&(handle&,devi
ceType&,whichDevice&, ctrCmd&,
ctr1&, ctr2&, ctr3&, ctr4&,
ctr5&)

Initialize the 9513 master mode register fout divider: 10, fout source: DcsF2 (100 kHz), compare1: no,
compare 2: no, time of day disabled. This will place a 10 kHz pulse on the oscillator output. The
daq9513SetMasterMode function will initialize the counter/timer section and configure several of
its parameters. This is a system-wide function which affects all 5 counter timers. Note: for a complete
understanding of counter/timer operation, read the data book on the 9513 chip supplied by AMD.
Aside from initializing the counter/timer section, this application does not use most of the capabilities
of the daq9513SetMasterMode function. The first two arguments in this function select a clock
source for the fout signal found on connector P3, then select a divider for that signal. F2 in this
application is a fixed, internal frequency source of 100 kHz. Our example divides this fixed frequency
by 10 yielding a signal on fout of 10 kHz.

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 10, DcsF2&,
0, 0, DtodDisabled&)

The daq9513SetCtrMode function configures an individual counter in the 9513. The first
argument specifies the counter to be configured; the second argument specifies the internal operation of
the gate control. Our application does not use the gate, so it is disabled. The fixed 100 kHz internal
clock (F1) is used as the source. By setting the reload parameter to 1, the counter will use the ’load’
register and the ’hold’ register to generate the pulse train. When the counter is armed, the ’load’
register value is loaded then decremented on every edge of the F1 clock. The output signal will be high
during this phase. When the terminal count is reached, the ’hold’ register is loaded then decremented
on every edge of the F1 clock. The output signal is low during this phase. If the reload argument is set
to 0, only the ’load’ register is used, always yielding a 50% duty-cycle pulse train. The cntRepeat
argument specifies whether the pulse train should execute once or repeat continuously. The counter
interprets the load and load register as either binary or BCD, depending on the value of the cntType
argument. The cntDir specifies whether the internal counter should count up or down to reach the
terminal count. A value of 5 counted down has the same effect as a value of 65,530 counted up.

ret& = VBdaq9513SetCtrMode&(handle&, DiodtLocal9513&, 0, 1, DgcNoGating&,
1, DcsF1&, 0, 1, 1, 0, 0, DocTCToggled&)

Enhanced API Programming Models Chapter 2

2-14 Programmer’s Manual

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and
(with 100 total counts to count down) a frequency of 10 kHz.

 ' Load the load register: 75 low counts & hold register with 25
counts

ret& = VBdaq9513SetLoad&(handle&, DiodtLocal9513, 0, 1, 75)
ret& = VBdaq9513SetHold&(handle&, DiodtLocal9513, 0, 1, 25)

The daq9513MultCtrl function will arm counter 1.

ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, 0, DmccLoadArm&, 1,
0, 0, 0, 0)

Continue the pulse train until user terminates it.

Print "A 10Khz 25% duty cycle square wave is on the counter 1 output.":
Print

MsgBox "Click to halt counter 1 output.", , "Counter 1"
 ' Halt all output
ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, 0, DmccDisarm&, 1, 0,
0, 0, 0)

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 0, DcsF2&, 0,
0, DtodDisabled&)

Print "Outputs disabled."

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-15

Digital I/O on P2
This program demonstrates the functions controlling
digital I/O on connector P2 of the DaqBook/100/200
and DaqBoard/100A/200A. First, the 3 digital ports
on the 8255 are configured as input, output, or both in
the case of port C; then, appropriate I/O commands
are issued. Functions used include:

• • VBdaqIOReadBit&(handle&, devType&,
devPort&, whichDevice&,
whichExpPort&, bitNum&, bitValue&)

• • VBdaqIORead&(handle&, devType&,
devPort&, whichDevice&,
whichExpPort&, value&)

• • VBdaqIOWriteBit&(handle&, devType&,
devPort&, whichDevice&,
whichExpPort&, bitNum&, bitValue&)

• • VBdaqIOWrite&(handle&, devType&,
devPort&, whichDevice&,
whichExpPort&, value&)

• • VBdaqIOGet8255Conf&(handle&,
portA&, portB&, portCHigh&,
portCLow&, config&)

 Dim config&, byteVal&, bitVal&, x%
 Dim buf(10) As Byte, active&, retCount&
 handle& = VBdaqOpen&(“DaqBook0”)
 ret& = VBdaqSetErrorHandler&(handle&, 100)
 On Error GoTo ErrorHandlerDIG1
 ret& = VBdaqIOGet8255Conf&(handle&, 0, 1, 0, 1, config&)

The function daqIOGet8255Conf returns the appropriate configuration value to use in
daqIOWrite. As shown above, the handle of the opened Daq* device is the first parameter passed.
The second, third, fourth, and fifth parameters respectively indicate: the 8255 port A value, the port B
value, the high-nibble value of port C, and the low-nibble value of port C. The values for the
parameters passed in the call shown above will return the configuration value (port A = OUTPUT, port
B = INPUT, port C / high nibble = output, port C / low nibble = INPUT) in the config& parameter,
which matches the current configuration of the 8255.

The daqIOWrite function writes the obtained configuration value to the selected port.

ret& = VBdaqIOWrite&(handle&, DiodtLocal8255&, Diodp8255IR&, 0, 0,_
config&)

Write hex 55 to port A on the Daq*’s base unit.

ret& = VBdaqIOWrite&(handle&, DiodtLocal8255&, Diodp8255A&, 0, 0,_
&H55)

Read port B and put the value into the variable byteVal%.

 ret& = VBdaqIORead&(handle&, DiodtLocal8255&, Diodp8255B&, 0, 0,_
byteVal&)

Print "The value on digital port B : &H"; Hex$(byteVal&): Print

The following lines write to the high nibble of port C.

ret& = VBdaqIOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, 0,_
0, 0, 1)

ret& = VBdaqIOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, 0,_
0, 1, 0)

ret& = VBdaqIOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, 0,_
0, 2, 1)

Enhanced API Programming Models Chapter 2

2-16 Programmer’s Manual

ret& = VBdaqIOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, 0,_
0, 3, 0)

Print "The high nibble of digital port C set to : 0101 (&H5)" Print

The next lines read the low nibble of port C on the base unit.

 For x% = 0 To 3
ret& = VBdaqIOReadBit&(handle&, DiodtLocal8255&,_
Diodp8255CLow&, 0, 0, x%, bitVal&)
Print "The value on bit "; x%; " of digital port C : &H";_
Hex$(bitVal&)

 Next x%

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-17

Temperature Measurements Using Single TC Type on a Single DBK19 Card
The 4 examples follow the same command
sequence except for their arguments or
program code for data output:

• Example 1 demonstrates repeated
measurements of TC inputs.

• Example 2 demonstrates block
averaging of the same TC inputs as
example one. This example performs
each reading 5 times and averages them
together.

• Example 3 uses the same data as
example 2; but rather than averaging
the 5 scans, it outputs each of them to
the screen.

• Example 4 gathers the same data as the
previous examples but applies a moving
average to that data.

DBK19 Example 1: Type J
Thermocouples
In this example, we wish to repeatedly
measure the temperatures sensed by 2 type J
thermocouples attached to channels 18 and 19
through a DBK19 card. The DBK19 CJC
signal is always the first signal on the card.
The shorted channel (used for zero
compensation) is always the second signal on
the card. In this case, they are on channels 16
and 17. First we list the configuration (see
table).

Card Channel Channel Type
DBK19 16

17
18
19

CJC
Shorted (zero)
Type J
Type J

Local 0
1-15

Used for DBK19
Free for other uses

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; the scan must first
include the CJC zero, thermocouple zero and
CJC, and then the temperature channels (see
table).

Scan
Position Channel Type Channel

0 CJC Zero 17
1 Type J Zero 17
2 CJC 16
3 Type J 18
4 Type J 19

The thermocouples need not be scanned in any particular order. We might have specified channel 18
before channel 17, but keeping things in order will make the calibration easier.

Enhanced API Programming Models Chapter 2

2-18 Programmer’s Manual

For each scan position, we must specify the
PGA gain code. Assuming the Daq* is
configured for bipolar operation (to allow
measurement of temperatures below the
temperature at the DBK19 card), we choose
the gain codes from the table and add them to
the scan description.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement 0 1 2 3 4
1 CJC Zero Type J Zero CJC Type J Type J
2 CJC Zero Type J Zero CJC Type J Type J
3 CJC Zero Type J Zero CJC Type J Type J
...
10 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

Now we can configure the Daq* with this information:

Public Sub MeasureTC()
Const ScanLength& = 5 'Total channels per scan
Const ScanCount& = 10 'Number of scans to be acquired
Const TCcount& = 2 'Number of thermocouples per scan
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount * ScanCount), ret&, daqAlias$
Dim daqHandle&, i&

'Open the device.
daqHandle& = VBdaqOpen&("daqbook0")

' Read calibration file
ret& = VBdaqReadCalFile&(daqHandle&, "daqbook.cal")

' Set arrays of channels, gains, and flags
' Grounded channel with CJC gain
chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolar&

' Grounded channel with TC gain
chan&(1) = 17: gain&(1) = Dbk19BiTypeJ&: flag&(1) = DafBipolar&

' CJC channel
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolar&

'TC channel
chan&(3) = 18: gain&(3) = Dbk19BiTypeJ&: flag&(3) = DafBipolar&

'TC channel
chan&(4) = 19: gain&(4) = Dbk19BiTypeJ&: flag&(4) = DafBipolar&

' Load scan sequence FIFO.

Scan
Position

Channel
Type Channel Gain Code

0 CJC Zero 17 Dbk19BiCJC
1 Type J Zero 17 Dbk19BiTypeJ
2 CJC 16 Dbk19BiCJC
3 Type J 18 Dbk19BiTypeJ
4 Type J 19 Dbk19BiTypeJ

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-19

ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

' Configure the TC convert functions for zero compensation.
ret& = VBdaqZeroDbk19&(1)

' Configure temperature conversion without averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeJ&, 1, 1)

' Configure the trigger for an immediate trigger.
ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)

' Set the acquisition mode.
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)

' Set the Adc clock source.
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)

' Set the scan frequency to 100 Hz.
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)

' Configure user-allocated buffer for ADC data collection.
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateBlock&)

' Setup and start the data transfer.
ret& = VBdaqAdcTransferStart&(daqHandle&)

' Arm the acquisition. Also triggers if immediate trigger set.
ret& = VBdaqAdcArm&(daqHandle&)

' Wait until the transfer is complete.
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)

' Calibrate CJC: 1 chan. starting at position 2 for 10 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

' Calibrate TCs: 2 chans. starting at position 3 for 10 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 18, 1, 1, buf%(), ScanCount)

' Convert 'scans' scans of counts to two temperatures.
ret& = VBdaqCvtTCConvert&(buf%(), ScanCount, temp%(), TCcount *
ScanCount)

' Print the temperatures for 10 scans on the current form.
For i = 0 To 9
 Print "Channel 18: "; 0.1 * temp%(i * TCcount); " Channel 19: ";
0.1 * temp%(i * TCcount + 1)

Next i

'Close the device.
ret& = VBdaqClose&(daqHandle&)
End Sub

Enhanced API Programming Models Chapter 2

2-20 Programmer’s Manual

DBK19 Example 2: Block-Averaged TC readings
In this example, we want to acquire the same information as in example 1; however, we wish to use the
Daq*’s speed to reduce noise by taking each reading 5 times and averaging them together.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

Assuming we are using the same thermocouples connected in the same way, the scan configuration is
like example 1:

Public Sub BlockAvgTc()
' Block averages scans of Type J thermocouple readings
Const ScanLength& = 5 'Total channels per scan
Const ScanCount& = 5 'Number of scans acquired per acquisition.
Const TCcount& = 2 'Number of thermocouples per scan

Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount), ret&, daqAlias$
Dim daqHandle&, i&

'Open the device.
daqHandle& = VBdaqOpen&("daqbook0")

' Read calibration file
ret& = VBdaqReadCalFile&(daqHandle&, "daqbook.cal")

' Set arrays of channels, gains, and flags
' Grounded channel with CJC gain
chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolar&

' Grounded channel with TC gain
chan&(1) = 17: gain&(1) = Dbk19BiTypeJ&: flag&(1) = DafBipolar&

' CJC channel
chan&(2) = 16: gain&(2) = Dbk19BiCJC: flag&(2) = DafBipolar&

'TC channel
chan&(3) = 18: gain&(3) = Dbk19BiTypeJ&: flag&(3) = DafBipolar&

'TC channel
chan&(4) = 19: gain&(4) = Dbk19BiTypeJ&: flag&(4) = DafBipolar&

' Load scan sequence FIFO.

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-21

ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

' Configure the TC convert functions for zero compensation.
ret& = VBdaqZeroDbk19&(1)

' Configure temperature conversion with block averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeJ&, 1, 0)

' Configure the trigger for an immediate trigger.
ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)

' Set the acquisition mode.
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)

' Set the Adc clock source.
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)

' Set the scan frequency to 100 Hz.
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)

' Configure user-allocated buffer for ADC data collection.
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

' Setup and start the data transfer.
ret& = VBdaqAdcTransferStart&(daqHandle&)

' Arm the acquisition. Also triggers if immediate trigger set.
ret& = VBdaqAdcArm(daqHandle&)

'Acquire 10 groups of 5 scans. Average each group and convert to temp.
For i = 1 To 10

' Wait until the transfer is complete.
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)

' Calibrate CJC: 1 chan. starting at position 2 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

' Calibrate TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 18, 1, 1, buf%(), ScanCount)

' Convert 'scans' scans of counts to two temperatures
ret& = VBdaqCvtTCConvert&(buf%(), ScanCount, temp%(), TCcount)

'Display the averaged temperatures
Print "Channel 18: "; 0.1 * temp%(0); " Channel 19: "; 0.1 * temp%(1)

' Start transfer & rearm for the next group of 5 scans
ret& = VBdaqAdcTransferStart(daqHandle&)
ret& = VBdaqAdcArm(daqHandle&)

Next i

' Close the device
ret& = VBdaqClose&(daqHandle&)

End Sub

Enhanced API Programming Models Chapter 2

2-22 Programmer’s Manual

DBK19 Example 3: Multiple Sequential Measurement
In this example, we wish to collect the same data as in example 2; but instead of averaging the groups
of 10 consecutive scans, we want to convert each scan’s measurements into individual temperature
values.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement Scan 0 1
1 1 Temp °C Temp °C
1 2 Temp °C Temp °C
1 3 Temp °C Temp °C
1 4 Temp °C Temp °C
1 5 Temp °C Temp °C
2 1 Temp °C Temp °C
2 2 Temp °C Temp °C
...
10 5 Temp °C Temp °C

The scan setup is the same as in examples 1 and 2. We again configure for the conversion to
temperatures, this time (as in example 1) specifying no averaging (for brevity, some comments have
been removed from the code):

Public Sub SequentialTC()
Const ScanLength& = 5 'Total channels per scan
Const ScanCount& = 5 'Number of scans to be acquired
Const TCcount& = 2 'Number of thermocouples per scan

Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount * ScanCount), ret&, daqAlias$
Dim daqHandle&, i&, j&

‘ Open the DaqBook
daqHandle& = VBdaqOpen&("daqbook0")

ret& = VBdaqReadCalFile&(daqHandle&, "daqbook.cal")

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolar&
chan&(1) = 17: gain&(1) = Dbk19BiTypeJ&: flag&(1) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolar&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJ&: flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJ&: flag&(4) = DafBipolar&
ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

ret& = VBdaqZeroDbk19&(1)

' Configure temperature conversion without averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeJ&, 1, 1)

ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-23

ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm&(daqHandle&)

'Acquire 10 groups of 5 scans and convert to temperature.
For i = 1 To 10
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone)

ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 18, 1, 1, buf%(), ScanCount)

ret& = VBdaqCvtTCConvert&(buf%(), ScanCount, temp%(), TCcount *
ScanCount)

'Display the temperatures
For j = 0 To 4
 Print "Channel 18: "; 0.1 * temp%(TCcount * j); " Channel 19: ";
0.1 * temp%(TCcount * j + 1)

Next j

'Rearm the device for the next group of 10 scans
ret& = VBdaqAdcArm&(daqHandle&)
ret& = VBdaqAdcTransferStart&(daqHandle&)
Next i

' Close the device
ret& = VBdaqClose&(daqHandle&)
End Sub

DBK19 Example 4: Moving Averaged Measurements
In this example, we wish to collect the same data as in example 3; but to reduce noise, we will use a
moving average to average consecutive triplets of scans.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

Enhanced API Programming Models Chapter 2

2-24 Programmer’s Manual

The scan setup is the same as in the previous examples. Some comments have been omitted here for
brevity. We again configure for the conversion to temperatures, this time (as in example 1) specifying
moving averaging of 3 scans.

Public Sub MovingAvgTC()
' Applies a three-sample moving average to
' blocks of Type J thermocouple readings
Const ScanLength& = 5 'Total channels per scan
Const ScanCount& = 5 'Number of scans to be acquired
Const TCcount& = 2 'Number of thermocouples per scan
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount * ScanCount), ret&, daqAlias$
Dim daqHandle&, i&, j&

daqHandle& = VBdaqOpen&("daqbook0")
ret& = VBdaqReadCalFile&(daqHandle&, "daqbook.cal")

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolar&
chan&(1) = 17: gain&(1) = Dbk19BiTypeJ&: flag&(1) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolar&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJ&: flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJ&: flag&(4) = DafBipolar&
ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

ret& = VBdaqZeroDbk19&(1)

' Configure TC conversion with 3-sample moving average.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeJ&, 1, 3)

ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm&(daqHandle&)

'Acquire 10 groups of 5 scans and convert to temperature
For i = 1 To 10
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)

ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 18, 1, 1, buf%(), ScanCount)

ret& = VBdaqCvtTCConvert&(buf%(), ScanCount, temp%(), TCcount *
ScanCount)

'Display the temperatures
For j = 0 To 4
 Print "Channel 18: "; 0.1 * temp%(TCcount * j); " Channel 19: ";
0.1 * temp%(TCcount * j + 1)

Next j

'Rearm the device for the next group of 10 scans
ret& = VBdaqAdcArm&(daqHandle&)
ret& = VBdaqAdcTransferStart(daqHandle&)
Next i

' Close the device
ret& = VBdaqClose&(daqHandle&)
End Sub

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-25

Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards
This program demonstrates temperature
acquisitions using multiple TC types and
multiple DBK19 cards. The two commands
daqTCSetup and daqTCConvert have
been combined into the one
daqTCSetupConvert command. The
sequence of the last 3 blocks on the flow chart
must be used multiple times, once for each
card (also, if there are multiple TC types on a
card, once for each TC type on that card).

In this example, we wish to repeatedly
measure the temperatures sensed by 2 Type J
and 2 Type K thermocouples attached through
1 DBK19 card and 2 more Type J
thermocouples attached through another
DBK19. The DBK19 CJC signal is always
the first signal on the card, and the shorted
channel (used for zero compensation) is
always the second channel on the card. First
we list the configuration:

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; and so, the scan must
first include the CJC and then immediately the
temperature channels (see table).

The thermocouples are separated in the scan by type. The readings from each type are consecutive and
immediately preceded by their CJC Zero, thermocouple zero, and CJC readings for calculation
reference. It is not appropriate to consolidate the 4 Type J thermocouples because they are connected
through 2 different DBK19s. Each DBK19 has its own CJC and offset errors as a reference for
thermocouples attached to that DBK19.

Card Channel Channel Type
DBK19 16

17
18
19
20
21

CJC
Shorted (zero)
Type J
Type J
Type K
Type K

DBK19 32
33
34
35

CJC
Shorted (zero)
Type J
Type J

Local 0-1
2-15

Used for DBK19
Free for other uses

Enhanced API Programming Models Chapter 2

2-26 Programmer’s Manual

For each scan position, we must specify the
PGA gain. Assuming the Daq* is
configured for bipolar operation (to allow
measurement of temperatures below the
temperature at the DBK19 cards), we
choose the gain codes from the table and
add them to the scan description.

The following tables show the raw data input and the resulting temperature data output for this sample program.Raw Data Input
Readings

Measure-
ment

Scan 0 1 2 3 4 5 6 7 8 9 10 (1-3) 14

1 1 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 2 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 3 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 4 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 5 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

2 1 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

2 2 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

...
10 5 CJC

Zero
Type J

Zero
CJC Type

J
Type

J
CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

Results After daqTCConvert
Results

Measurement 0 1 2 3 4 5
1 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C
2 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C
...
10 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C

Now we can configure the DaqBook/DaqBoard with this information:

Public Sub MultDbk19()
Const ScanLength& = 15 'Total channels per scan
Const ScanCount& = 5 'Number of scans to be acquired
Const TCcount1& = 2 'Number of Type J TCs on first Dbk19
Const TCcount2& = 2 'Number of Type K TCs on first Dbk19
Const TCcount3& = 2 'Number of Type J TCs on second Dbk19
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp1%(TCcount1), temp2%(TCcount2)
Dim temp3%(TCcount3)

Dim daqHandle&, i&, j&, ret&

daqHandle& = VBdaqOpen&("daqbook0")

Scan
Position Channel Type Channel Gain Code

0
1
2
3
4

CJC Zero
Type J Zero
CJC
Type J
Type J

17
17
16
18
19

Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiTypeJ

5
6
7
8
9

CJC Zero
Type K
ZeroCJC
Type K
Type K

17
17
16
20
21

Dbk19BiCJC
Dbk19BiTypeK
Dbk19BiCJC
Dbk19BiTypeK
Dbk19BiTypeK

10
11
12
13
14

CJC Zero
Type J Zero
CJC
Type J
Type J

33
33
32
34
35

Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiTypeJ

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-27

ret& = VBdaqReadCalFile&(daqHandle&, "daqbook.cal")

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolar&
chan&(1) = 17: gain&(1) = Dbk19BiTypeJ&: flag&(1) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolar&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJ&: flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJ&: flag&(4) = DafBipolar&

chan&(5) = 17: gain&(5) = Dbk19BiCJC&: flag&(5) = DafBipolar&
chan&(6) = 17: gain&(6) = Dbk19BiTypeK&: flag&(6) = DafBipolar&
chan&(7) = 16: gain&(7) = Dbk19BiCJC&: flag&(7) = DafBipolar&
chan&(8) = 20: gain&(8) = Dbk19BiTypeK&: flag&(8) = DafBipolar&
chan&(9) = 21: gain&(9) = Dbk19BiTypeK&: flag&(9) = DafBipolar&

chan&(10) = 33: gain&(10) = Dbk19BiCJC&: flag&(10) = DafBipolar&
chan&(11) = 33: gain&(11) = Dbk19BiTypeJ&: flag&(11) = DafBipolar&
chan&(12) = 32: gain&(12) = Dbk19BiCJC&: flag&(12) = DafBipolar&
chan&(13) = 34: gain&(13) = Dbk19BiTypeJ&: flag&(13) = DafBipolar&
chan&(14) = 35: gain&(14) = Dbk19BiTypeJ&: flag&(14) = DafBipolar&

ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

ret& = VBdaqZeroDbk19&(1)

ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm(daqHandle&)
ret& = VBdaqWaitForEvent(daqHandle&, DteAdcDone&)

For i = 1 To 10

' Calibrate CJC: 1 chan. starting at position 2 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

' Calibrate type J TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 18, 1, 1, buf%(), ScanCount)

' Calibrate CJC: 1 chan. starting at position 7 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 7, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

' Calibrate type K TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 8, 2,
DcalTypeDefault&, Dbk19BiTypeK&, 20, 1, 1, buf%(), ScanCount)

' Calibrate CJC: 1 chan. starting at position 12 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 12, 1, DcalTypeCJC&,
Dbk19BiCJC&, 32, 1, 1, buf%(), ScanCount)

' Calibrate type J TCs: 2 chans. starting at position 13 for 5 scans.
ret& = VBdaqCalSetupConvert&(daqHandle&, ScanLength, 13, 2,
DcalTypeDefault&, Dbk19BiTypeJ&, 34, 1, 1, buf%(), ScanCount)

' Convert the first type J TC readings to temperatures
ret& = VBdaqCvtTCSetupConvert&(ScanLength, 2, TCcount1, Dbk19TCTypeJ&, 1,
0, buf%(), ScanCount, temp1%(), TCcount1)

Print "Channel 18: "; 0.1 * temp1(0); " Channel 19: "; 0.1 * temp1(1)

' Convert the first type K TC readings to temperatures

Enhanced API Programming Models Chapter 2

2-28 Programmer’s Manual

ret& = VBdaqCvtTCSetupConvert&(ScanLength, 7, TCcount2, Dbk19TCTypeK&, 1,
0, buf%(), ScanCount, temp2%(), TCcount2)

Print "Channel 20: "; 0.1 * temp2(0); " Channel 21: "; 0.1 * temp2(1)

' Convert the first type J TC readings to temperatures
ret& = VBdaqCvtTCSetupConvert&(ScanLength, 12, TCcount3, Dbk19TCTypeJ&,
1, 0, buf%(), ScanCount, temp3%(), TCcount3)

Print "Channel 34: "; 0.1 * temp3(0); " Channel 35: "; 0.1 * temp3(1)

ret& = VBdaqAdcArm(daqHandle&)
ret& = VBdaqWaitForEvent(daqHandle&, DteAdcDone&)
Next i

End Sub

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-29

Temperature Measurements Using Multiple
RTDs on a Single DBK9 Card

This program demonstrates temperature
acquisitions using multiple RTD types and a
single DBK9 card. After this program
configures and arms the DBK card, it begins
acquiring data. At this point, program
execution is suspended until all the data is
gathered. The program demonstrates the
conversion of data as both a two-step process
and a single-step process. Note the
conversion routines need to be called for each
type of RTD in the scan. The temperature at
the RTD is derived from 4 voltage values.

In this example, we wish to acquire some
temperature readings from 3 RTDs. There
are two 100-ohm RTDs attached to channels
16 and 17 of the DBK9 and one 1000-ohm
RTD attached to channel 18. The
configuration looks like this:

Card Channel Channel Type
DBK9 16

17
18

100 ohm RTD
100 ohm RTD
1000 ohm RTD

Local 0
1-15

Used for DBK9
Free for other uses

First we must specify the scan sequence of
channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the RTD
channels. The scan must include the 4
voltage readings in the correct order for each
channel (see table).

Note that the RTDs need not be scanned in any
particular order, but the 4 readings for each
RTD must be placed in the scan sequentially.
We might have specified channel 17 before
channel 16. It is best to group all the RTD
reading groups of the same value together
because this makes using the temperature
conversion functions easier.

Now we can configure the Daq* with this
information. First we will define some
constants that will make the program easier to
modify.

Public Sub MeasureRTD()
Const RdsPerRTD = 4
Const nRTDs = 3
Const FirstRTDChanNo = 16
Const Nscans = 10
Const vaOffset = 0
Const vbOffset = 1

Scan Position Channel
Number

*Channel Gain

0 16 Dbk9VoltageA
1 16 Dbk9VoltageB
2 16 Dbk9VoltageD
3 16 Dbk9VoltageD
4 17 Dbk9VoltageA
5 17 Dbk9VoltageB
6 17 Dbk9VoltageD
7 17 Dbk9VoltageD
8 18 Dbk9VoltageA
9 18 Dbk9VoltageB

10 18 Dbk9VoltageD
11 18 Dbk9VoltageD

* These are not actual gains. They are used to select
voltages A-D for each RTD channel.

Enhanced API Programming Models Chapter 2

2-30 Programmer’s Manual

Const vcOffset = 2
Const vdOffset = 3
Const ReadingsPerScan = nRTDs * RdsPerRTD
Const bufSize = Nscans * ReadingsPerScan

Dim chan&(ReadingsPerScan), gain&(ReadingsPerScan),
flag&(ReadingsPerScan)

Dim buf%(bufSize), temp1%(Nscans% * 2), temp2%(Nscans), i%, j%, ret&
Dim daqHandle&, tmpTemperature!

daqHandle& = VBdaqOpen("daqbook0")

' Set arrays of channels, gains, and flags.
For i = 0 To nRTDs - 1
 For j = 0 To RdsPerRTD
 chan(i * RdsPerRTD + j) = i + FirstRTDChanNo
 Next j
gain(i * RdsPerRTD + vaOffset) = Dbk9VoltageA&
gain(i * RdsPerRTD + vbOffset) = Dbk9VoltageB&
gain(i * RdsPerRTD + vcOffset) = Dbk9VoltageC&
gain(i * RdsPerRTD + vdOffset) = Dbk9VoltageD&

flag(i * RdsPerRTD + vaOffset) = DafBipolar&
flag(i * RdsPerRTD + vbOffset) = DafBipolar&
flag(i * RdsPerRTD + vcOffset) = DafBipolar&
flag(i * RdsPerRTD + vdOffset) = DafBipolar&
Next i

ret& = VBdaqAdcSetScan(daqHandle&, chan(), gain(), flag(),
ReadingsPerScan)

ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot, 0, Nscans)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), Nscans,
DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm(daqHandle&)
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)

' Setup conversion for first 2 RTD's starting at position 0.
ret& = VBdaqCvtRtdSetup&(ReadingsPerScan, 0, 2, Dbk9RtdType100&, 1)

' Convert the data for the first 2 RTD's
ret& = VBdaqCvtRtdConvert&(buf%(), Nscans, temp1%(), Nscans * 2)

' Setup and convert the data for the 1000 ohm RTD in one step
ret& = VBdaqCvtRtdSetupConvert&(ReadingsPerScan, 8, 1, Dbk9RtdType1K&, 1,
buf%(), Nscans, temp2%(), Nscans)

' Display the temperatures for the RTD's
For i = 0 To Nscans - 1
 Print "Scan: "; i; ": ";
 ' Display the 100 Ohm RTD temperatures
 For j = 0 To 1
 tmpTemperature! = temp1%(i * 2 + j) / 10
 Print tmpTemperature; " ";
 Next j
 'Display the 1000 Ohm RTD temperature
 tmpTemperature! = temp2%(i) / 10
 Print tmpTemperature
Next i
ret& = VBdaqClose&(daqHandle&)
End Sub

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-31

Using DBK Card Calibration Files
Software calibration functions are designed to adjust
Daq* readings to compensate for gain and offset
errors. Calibration constants are calculated at the
factory by measuring the gain and offset errors of a
card at each programmable gain setting. These
constants are stored in a calibration text file which
can be read by a program at runtime. This allows
new boards to be configured for calibration by
updating this calibration file rather than recompiling
the program. Calibration constants and instructions
are shipped with the related DBK boards. Programs
like DaqView support this calibration and use the
same constants.

The calibration operation removes static gain and
offset errors that are inherent in the hardware. The
calibration constants are measured at the factory and
do not change during the execution of a program.
These constants are different for each card and
programmable-gain setting; they may even be
different for each channel, depending on the design
of the expansion card. Note: the DBK19 is shipped
with calibration constants. Other cards use on-board
potentiometers to perform hardware calibration.

The calibration process has 3 steps:
• Initialization consists of reading the

calibration file.
• Setup describes the characteristics of the data

to be calibrated.
• Conversion does the actual calibration of the

data.

Function prototypes, return error codes, and parameter definitions are located in the DAQX.H header
file for C (or similar files for other languages).

Cards that support the calibration functions are shipped with a diskette containing a calibration
constants file. The name of the file will be the serial number of the card shipped with it. This file
holds the calibration constants for each programmable-gain setting of that card. These constants should
be copied to a calibration text file (DAQBOOK.CAL) located in the same directory as the program
performing the calibration.

To set up the calibration file, perform the following steps:
1. Locate the diskette containing the calibration constants file.
2. Configure the card according to the hardware configuration section of the DBK

chapter.
3. Edit the calibration file, DAQBOOK.CAL, using a text editor.
4. Add the card number information within brackets, as listed in the calibration

file.
5. Add the calibration constants immediately after the card number. (These should

be entered in the order given in the calibration file.)
6. Repeat steps 4 and 5 for each card.
7. Verify that no two cards are configured with the same card/channel number.

The table shows an example of a calibration file for configuring the main Daq* unit
and two DBK19 cards connected to Daq* expansion channels 3 and 5.

[MAIN]
32760,32769
32801,32750
32740,32777
32810,32768

[EXP3]
32780,32779
32800,32756
32768,32780
32750,32742

[EXP5]
32752,32764
32783,32757
32749,32767
32777,32730

Enhanced API Programming Models Chapter 2

2-32 Programmer’s Manual

The initialization function for reading-in the calibration constants from the calibration text file is
daqReadCalFile. The C language version of daqReadCalFile is similar to other languages and works as
follows:

The filename with optional path information of the calibration file. If calfile is NULL or empty (“”),
the default calibration file DAQBOOK.CAL will be read. This function is usually called once at the
beginning of a program and will read all the calibration constants from the specified file. If calibration
constants for a specific channel number and gain setting are not contained in the file, ideal calibration
constants will be used (essentially not calibrating that channel). If an error occurs while trying to open
the calibration file, ideal calibration constants will be used for all channels and a non-zero error code
will be returned by the daqReadCalFile function.

Once the calibration constants have been read from the cal file, they
can be used by the daqCalSetup and daqCalConvert
functions. The daqCalSetup function will configure the order and
type of data to be calibrated. This function requires data to be from
consecutive channels configured for the same gain, polarity, and
channel type. The calibration can be configured to use only the gain calibration constant and not the
offset constant. This allows the offset to be removed at runtime using the zero compensation functions
described later in this section.

In this example, several Daq* channels will be
read and calibrated. This example assumes the
calibration file has been created according to
the initializing calibration constants section of
this chapter. Expansion cards can perform the
same type of calibration if the calibration
constants are available for the card and a specified channel number. First list the configuration:

Now specify the scan (the sequence of channel numbers and gains that are to be gathered as one burst
of readings). In this example, all the channels at each gain will be read together (in consecutive order)
to make the calibration easier.

Now configure the Daq* with this information, and read 5 scans of data:

Dim chans&(4), gains&(4), buf%(20)

handle& = VBdaqOpen&(“DaqBook0”)

' Set array of channels and gains
chans&(0) = 0
gains&(0) = DgainX1&
chans&(1) = 1
gains&(1) = DgainX2&
chans&(2) = 2
gains&(2) = DgainX2&
chans&(3) = 3
gains&(3) = DgainX2&

' Load scan sequence FIFO :
ret& = VBdaqAdcSetScan&(handle&, chans&(), gains&(), 4)

' Set Clock
ret& = VBdaqAdcFreq&(handle&, 10)

' Define and arm trigger :
ret& = VBdaqAdcSetTrig&(handle&, DtsSoftware&, 0, 0, 0, 0)

' Trigger
ret& = VBdaqAdcSoftTrig&(handle&)

' Read the data
‘ 5 indicates the number of scans

Channel Channel Type
0 Voltage1 @ X1 gain
1 Voltage2 @ X2 gain
2 Voltage3 @ X2 gain
3 Voltage4 @ X2 gain

Scan
Position Channel Type Channel

Gain
Code

0 Voltage1 @ X1 gain 0 DgainX1
1 Voltage2 @ X2 gain 1 DgainX2
2 Voltage3 @ X2 gain 2 DgainX2
3 Voltage4 @ X2 gain 3 DgainX2

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-33

‘ single mode for scans less than 500
ret& = VBdaqAdcTransferSetBuffer&(handle&, buf%(), 5, DatmCycleOff& +
DatmSingleMode&)

ret& = VBdaqAdcTransferStart&(handle&)

‘specifies to wait for the transfer to be complete
ret& = VBdaqWaitForEvent&(handle&, DteAdcDone&)

ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)

' Print the first scan of unconverted data
PRINT "Before Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

'Perform zero compensation on readings sampled at x1 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 0, 1, 0, DgainX1&, 0, 1, 0,
buf%(), 5)

'Perform zero compensation on readings sampled at x2 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 1, 3, 0, DgainX2&, 1, 1, 0,
buf%(), 5)

' Print the first scan of converted data
PRINT "After Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

Enhanced API Programming Models Chapter 2

2-34 Programmer’s Manual

Zero Compensation
Zero compensation removes offset errors
while a program is running. This is useful in
systems where the offset of a channel may
change due to temperature changes, long-term
drift, or hardware calibration changes.
Reading a shorted channel on the same card at
the same gain as the desired channel removes
the offset at run-time.

Note: Zero compensation is not available for
all expansion cards. The DBK19 has channel
1 permanently shorted for zero compensation;
other cards require a channel to be shorted
manually.

The zero-compensation functions require a
shorted channel and a number of other
channels to be sampled from the same card at
the same gain as the shorted channel. These
functions will work with cards (such as the
DBK12, DBK13, and DBK19) that have one
analog path from the input to the A/D
converter. Other cards do not support the
zero compensation functions because they
have offset errors unique to each channel.
The DBK19 is designed with channel 1
already shorted for performing zero
compensation.

The daqZeroSetup function configures the
location of the shorted channel and the
channels to be zeroed within a scan, the size
of the scan, and the number of readings to zero compensate. (This function does not do the
conversion.) A non-zero return value indicates an invalid parameter error.

In this example, several Daq* channels will be read using various
gains and zero-compensated to remove any offset errors. This
example assumes that channel 0 of the Daq* has been manually
shorted. Expansion cards could perform the same type of zero
compensation as this example by shorting a channel on the expansion
card and specifying card channel numbers. First list the
configuration:

Now specify the scan, the sequence of
channel numbers, and gains that are to be
gathered as one burst of readings. In this
example, we will first read the shorted
channel at each gain that we plan on using,
in this case ×1 and ×2. All the channels at
each gain will be read together to make the
actual zero compensation easier.

Public Sub ZeroComp()
' Performs zero compensation on ADCs readings
Const ScanLength& = 6 'Total channels per scan
Const ScanCount& = 5 'Number of scans to acquire
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim ret&, daqHandle&

Channel Channel Type
0 Shorted Channel
1 Voltage1 @ X1 gain
2 Voltage2 @ X2 gain
3 Voltage3 @ X2 gain
4 Voltage4 @ X2 gain

Scan
Position Channel Type Channel

Gain
Code

0 Shorted Channel @ X1 0 DgainX1
1 Shorted Channel @ X2 0 DgainX2
2 Voltage1 @ X1 gain 1 DgainX1
3 Voltage2 @ X2 gain 2 DgainX2
4 Voltage3 @ X2 gain 3 DgainX2
5 Voltage4 @ X2 gain 4 DgainX2

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-35

daqHandle& = VBdaqOpen&("daqbook0")

' Channel zero must be shorted to ground
' Use DafClearLSNibble flag to clear 4 least significant
' bits when using 12-bit A/D converters
chan&(0) = 0: gain&(0) = DgainX1&: flag&(0) = DafBipolar& +
DafClearLSNibble&

chan&(1) = 0: gain&(1) = DgainX2&: flag&(1) = DafBipolar& +
DafClearLSNibble&

chan&(2) = 1: gain&(2) = DgainX1&: flag&(2) = DafBipolar& +
DafClearLSNibble&

chan&(3) = 2: gain&(3) = DgainX2&: flag&(3) = DafBipolar& +
DafClearLSNibble&

chan&(4) = 3: gain&(4) = DgainX2&: flag&(4) = DafBipolar& +
DafClearLSNibble&

chan&(5) = 4: gain&(5) = DgainX2&: flag&(5) = DafBipolar& +
DafClearLSNibble&

ret& = VBdaqAdcSetScan&(daqHandle&, chan&(), gain&(), flag&(),
ScanLength)

ret& = VBdaqAdcSetTrig&(daqHandle&, DatsImmediate&, 1, 0, 0, 0)
ret& = VBdaqAdcSetAcq&(daqHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdaqAdcSetClockSource&(daqHandle&, DacsAdcClock&)
ret& = VBdaqAdcSetFreq&(daqHandle&, 100!)
ret& = VBdaqAdcTransferSetBuffer&(daqHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdaqAdcTransferStart&(daqHandle&)
ret& = VBdaqAdcArm&(daqHandle&)
ret& = VBdaqWaitForEvent&(daqHandle&, DteAdcDone&)

' Print the first scan of unconverted data
Print "Channel zero shorted to ground"
Print "Channel 0 at X1 gain: "; IntToUint(buf%(0))
Print "Channel 0 at X2 gain: "; IntToUint(buf%(1))
Print
Print "Before zero compensation"
Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))
Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))
Print "Channel 3 at X2 gain: "; IntToUint(buf%(4))
Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))
Print
' Perform zero compensation on readings sampled at x1 gain.
' 1 reading at position 2. Zero reading at position 0.
ret& = VBdaqZeroSetupConvert&(ScanLength, 0, 2, 1, buf%(), ScanCount)

' Perform zero compensation on readings sampled at x2 gain.
' 3 readings at position 3. Zero reading at position 1.
ret& = VBdaqZeroSetupConvert&(ScanLength, 1, 3, 3, buf%(), ScanCount)

' Print the first scan of converted data
Print "After zero compensation"
Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))
Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))
Print "Channel 3 at X2 gain: "; IntToUint(buf%(4))
Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))
Print
' Close the device
ret& = VBdaqClose&(daqHandle&)
End Sub

Function IntToUint(intval As Integer) As Long
' Converts 16-bit signed integer to unsigned long integer
If 0 <= intval Then
 IntToUint = intval
Else
 IntToUint = 65535 + CLng(intval) + 1
End If
End Function

Enhanced API Programming Models Chapter 2

2-36 Programmer’s Manual

Linear Conversion
Several DBKs use conversions from
A/D readings to corresponding values
that are a linear (straight-line)
relationship. (Non-linear relationships
for RTDs and thermocouples require
special conversion functions—refer to
the Thermocouple and RTD
Linearization section later in this
chapter.) The linear conversion
functions are built into the API.

Six parameters are used to specify a
linear relationship: the A/D input range
(minimum and maximum values), and
the transducer input signal level and
output voltage at two points in the range.

Three functions are used to perform
linear conversions:
daqCvtLinearSetup,
daqCvtLinearConvert, and
daqCvtLinearSetupConvert. These
functions are defined in the following
pages. After their definitions, parameter
examples and a program example show
how they work.

DBK7 programmed for 50 to 60 Hz:

The DBK7 output range is from -5 V to +5 V, and the Daq* must
be configured for bipolar operation at a gain of ×1 for the DBK7
channels. Thus, the input range -5 V to +5 V corresponds to the
ADmin and ADmax settings. When a DBK7 programmed for a 50
to 60 Hz range measures a 50 Hz input signal, it outputs -5 V. With a 60 Hz input signal, it outputs +5
V. Thus, signal1 is 50, voltage1 is -5, signal2 is 60, and voltage2 is 5.

Pressure-transducer:

Assume that a pressure transducer outputs 1 to 4 mV to represent
0 to 1000 psi, and that a DBK13 with a gain of ×1000 is used
with a Daq* in bipolar mode to measure the signal. In bipolar
mode, at a gain of 1000, the analog signal input range is -5 to 5
mV and the output range from the DBK13 is -5 to 5 Volts. Thus, ADmin is -5.000, and ADmax is
5.000. A pressure of 0 psi generates an output of 1 mV, and 1000 psi generates 4 mV. Thus signal1 is
0, voltage1 is 1.000, signal2 is 1000 and voltage2 is 4.000.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-
to-voltage card and a DBK13 voltage input card with a pressure transducer to actual frequencies (Hz)
and pressures (psi).

Public Sub LinearConvert()
Dim buffer1%(80), buffer2%(80), flags&(3), hz!(20), psi!(10)
Dim ret&, handle&, chan&, x%

' Initialize DaqBook
handle& = VBdaqOpen&("DaqBook0")

'Set Channel 16 to be a DBK7. This will configure and auto-
'calibrate all channels on the DBK7 which includes channels
'16,17,18, and 19. This step not required for a DBK13
ret& = VBdaqAdcExpSetBank(handle&, 16, DbankDbk7&)

Measurement Signal Voltage
1 50 Hz -5 V
2 60 Hz +5 V

Measurement Signal Voltage
1 0 psi 1 mV
2 1000 psi 4 mV

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-37

'Set channel option common to all DBK7 channels.
'This step not required by a DBK13.
For chan& = 16 To 19
 ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7Slope&, 1)
 ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7DebounceTime&,
DcovDbk7DebounceNone&)

 ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7MinFreq&, 50!)
 ret& = VBdaqAdcExpSetChanOption(handle&, chan&, DcotDbk7MaxFreq&, 60!)
Next chan&

'Channel configuration:
'DaqBook Channels 16, 17: DBK7 channels 0,1
'DaqBook Channel 32: DBK13 channel 0
'Configure the pacer clock, arm the trigger, and acquire 10
'scans. The gain setting of Dbk7X1 (X1 gain) will be applied
'to all channels. The acquisition frequency is set to 100 Hz.
'All channels are unsigned - bipolar.
ret& = VBdaqAdcRdScanN&(handle&, 16, 17, buffer1%(), 10, DatsAdcClock&,
0, 0, 100!, Dbk7X1&, DafUnsigned& + DafBipolar&)

'Now do the same for the DBK13 channel, using gain Dbk13X1000
ret& = VBdaqAdcRdN(handle, 32, buffer2%(), 10, DatsAdcClock&, 0, 0, 100!,
Dbk13X1000&, DafUnsigned& + DafUnipolar&)

'Convert channels 16 and 17 to Hertz where -5 volts corresponds
'to 50 Hz and 5 volts corresponds to 60 Hz.
ret& = VBdaqCvtLinearSetupConvert(2, 0, 2, 50!, -5!, 60!, 5!, 1,
buffer1%(), 10, hz!(), 20)

'Convert channel 32 to PSI where 1mV corresponds to 0 PSI and
'4 mV corresponds to 1000 PSI. DBK13 channel 0 has 1000x gain,
'so 1mV at Dbk13 input gives 1V output at DaqBook input.
ret& = VBdaqCvtLinearSetupConvert(1, 0, 1, 0!, 1!, 1000!, 4!, 1,
buffer2%(), 10, psi!(), 10)

'Print results
Print "Results:"
For x = 0 To 9
 Print Format(hz!(x * 2), "#0.00 Hz "); Format(hz!(x * 2 + 1), "#0.00
Hz "); Format(psi(x), "0000.0 psi")

Next x

ret& = VBdaqClose(handle&)
End Sub

Enhanced API Programming Models Chapter 2

2-38 Programmer’s Manual

 Summary Guide of Selected Enhanced API Functions
The following table organizes the enhanced API functions by type and includes notes on when to use
them.

Simple One-Step Routines
For single gain, consecutive channel, foreground transfers, use the following functions:
Foreground Operation Single Scan Multiple Scans
Single Channel daqAdcRd daqAdcRdN
Consecutive Multiple Channels daqAdcRdScan daqAdcRdScanN

Complex A/D Scan Group Configuration Routines
For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan

functions.
daqAdcSetScan Set scan sequence using arrays of channel and gain values.
daqAdcSetMux Set a contiguous scan sequence using single gain, polarity and channel flag values

Trigger Options
After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.
• In one-shot mode, a trigger is required to start each A/D scan.
• A single trigger starts the scans, and the pacer clock determines the rate between scans.
Note: If the trigger source is analog, a trigger level is also required.
daqAdcSetTrig Configure the trigger event using source, level, rising and channel values.
daqAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the

analog trigger source and value which can be used with daqAdcSetTrig.
If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing
If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the

following functions:
daqAdcSetRate Set/Get the specified frequency or period for the specified mode.
daqAdcSetFreq Set the pacer clock to the given frequency.

A/D Acquisition
A/D acquisition settings are not active until the acquisition is armed.

daqAdcArm Arm an A/D acquisition using the current configuration. If the trigger source was set to be immediate,
the acquisition will be triggered immediately.

daqAdcDisarm Disarm the current acquisition if one is active. This command will disarm the current acquisition and
terminate any current A/D transfers.

daqAdcSetAcq Define the mode of the acquisition and set the pre-trigger and post-trigger acquisition counts, if
applicable.

daqAdcAcqGetStat Return the current state of the acquisition as well as the total number of scans transferred thus far as
well as the trigger scan position, if applicable.

A/D Data Transfer
After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:
daqAdcTransferSetBuffer Configure a buffer for A/D transfer. Allows configuration of the buffer for block and single

reading update modes as well as linear and circular buffer definitions.
daqAdcTransferStart Start a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
daqAdcTransferStop Stop a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
To find out whether a background A/D transfer is complete or to stop transfers, use the following function:
daqAdcTransferGetStat Return current A/D transfer status as well as a count representing the total number of transferred

scans or the number of scans available.

D/A Conversions
The 2 D/A outputs are multiplying DACs. The voltage output is a fraction of the voltage reference. This fraction is the digital value

sent to the DAC divided by 4096. Using the internal -5 V reference, any voltage between 0 and 4.9988 V can be set. Two
routines are used to set the D/A outputs:

daqDacWt Set a single DAC.
daqDacWtBoth Set both DACs.
DAC1 is also set by any A/D routine which uses analog triggering. This DAC is used to set the comparison level.

Digital Functions
Several routines read and write the digital inputs and outputs. The first routine to call is the configure routine:
daqIOSetConf Using the 4 port input/output direction selections, return a configuration byte.
daqIOConf Set the input/output configuration of a local or expansion port group.
After the digital group is configured, the ports can be read or written a byte at a time. (Port C low/high and P1 digital I/O are

accessed a nibble at a time.) A single bit of a digital channel can be read or written using the following routines:

Chapter 2 Enhanced API Programming Models

Programmer’s Manual 2-39

daqIORdBit Return indicated bit from selected channel.
daqIOWrBit Send indicated bit to selected channel.

Counter Functions
Three counter/timer elements are in a DaqBook/112; and 9 counter/timer elements are in a DaqBook/100/200. Two counters are

the ADC pacer clock. The FOUT counter element is a simple square-wave generator. Counter 0 is capable of more complex
waveform and counter operations. Counters 1 through 5 are full-fledged counter/timer elements with many operating modes.

Counter 1 - Counter 5 Functions - For the DaqBook/100/200 Only
Counters 1 through 5 are binary/BCD, up/down 16-bit counters that can be internally cascaded. Each counter is capable of 24

modes including: hardware and software triggered strobes, rate generator, retriggerable and non-retriggerable one-shots,
software and hardware-triggered delayed one-shots, variable duty-cycle rate generator, rate generator with sync, frequency-shift
keying, and hardware save. Most modes can be gated. Counters 1 and 2 can be set up as a time-of-day counter, with 100 Hz
resolution. Counters 1 and 2 are also capable of alarm outputs. In the alarm mode, whenever the counter value equals the
alarm value, the counter output is set. This can be used with the time-of-day mode to cause an alarm at a particular time of day.
To use counters 1 through 5 or the FOUT square-wave generator, the master mode register must be set:

daq9513SetMasterMode Set FOUT source and scaler. Also set the counters 1 and 2 alarm mode and time-of-day mode.
daq9513SetAlarm Set the alarm comparison value for counter 1 or 2.

9513 Counter-Timer Functions
The low-level counter functions allow custom-programming of the 9513 counters. After setting the Master Mode, counters 1

through 5 can be programmed using the following commands:
daq9513SetCtrMode Set counter to given mode.
daq9513SetLoad Set counter load register.
aq9513SetHold Set counter hold register.
To read back a given counter, use one or both of:
daq9513MultCtrl Issue a command to the indicated counters. To read the current contents of a counter, issue the

DmccSave command, and read the hold register.
daq9513GetHold Read a given hold register.

Enhanced API Programming Models Chapter 2

2-40 Programmer’s Manual

- Notes

Daq* Command Reference (Enhanced API) 3

Programmer’s Manual 3-1

Overview
The first part of this chapter describes the Daq* driver commands for Windows95 and WindowsNT in
32-bit Enhanced mode (this is the Enhanced API and is not to be confused with the Standard API).
The first table lists the commands by their function types as defined in the driver header files. Then,
the prototype commands are described in alphabetical order as indexed below.

Beginning on page 73, several reference tables define parameters for: A/D channel descriptions, event-
handling definitions, hardware definitions, A/D gain and miscellaneous definitions, general I/O
definitions, digital I/O port connection, the API error codes, etc.

Function Description Page

Device Initialization Prototypes
daqOpen Open a session with the Daq* 3-66
daqClose End communication with the Daq* 3-38
daqOnline Check online status of the Daq* 3-65
daqGetDeviceCount Return the number of currently configured devices 3-60
daqGetDeviceList Return the list of currently configured devices 3-61
daqGetDeviceProperties Return the properties of specified device 3-61

Error Handler Function Prototypes
daqSetDefaultErrorHandler Set the default error handler 3-67
daqSetErrorHandler Specify a user defined routine to call when an error occurs in any command 3-67
daqProcessError Process a driver defined error condition 3-66
daqGetLastError Return the last logged error condition 3-62
daqDefaultErrorHandler Call the default error handler 3-59
daqFormatError Return text string for specified error 3-60

Event Handling Function Prototypes
daqSetTimeout Set the time-out value for the Daq* operation 3-68
daqWaitForEvent Wait for specified Daq* device event 3-70
daqWaitForEvents Wait for multiple specified Daq* device events 3-70

Utility Function Prototypes
daqGetDriverVersion Return the software version 3-62
daqGetHardwareInfo Return the hardware version 3-62

Expansion Configuration Prototypes
daqAdcExpSetBank Set bank specific configurations 3-16
daqAdcExpSetChanOption Set channel specific configurations 3-16
daqAdcExpSetModuleOption Set module specific configurations 3-17
daqSetOption Set options for a device’s channel/signal path configuration 3-68

Custom ADC Acquisition Prototypes - Scan Sequence
daqAdcSetMux Configure a scan specifying start and end channels 3-25
daqAdcSetScan Configure up to 256 channels making up an A/D or HS digital input scan 3-26
daqAdcGetScan Read the current scan configuration 3-18

Custom ADC Acquisition Prototypes - Trigger
daqAdcCalcTrig Calculate the trigger level and trigger source for an analog trigger 3-15
daqAdcSetTrig Configure an A/D trigger 3-27
daqAdcSetTrigEnhanced Configure an A/D trigger with multiple trigger-event conditions 3-28
daqAdcSoftTrig Save a software trigger command to the DaqBook/DaqBoard 3-29

Custom ADC Acquisition Prototypes - Scan Rate and Source
dacAdcSetRate Configure the ADC scan rate with the mode parameter 3-25
daqAdcSetFreq Configure the pacer clock frequency in Hz 3-24
daqAdcGetFreq Read the current pacer clock frequency 3-17
daqAdcSetClockSource Configure the clock source 3-23

Custom ADC Acquisition Prototypes - Scan Count, Rate and Source
daqAdcSetAcq Set acquisition configuration information 3-22

Custom ADC Acquisition Prototypes - Direct-to-Disk
daqAdcSetDiskFile Specify the disk file for direct-to-disk transfers 3-24

Custom ADC Acquisition Prototypes - Acquisition Control
daqAdcArm Arm an acquisition 3-13
daqAdcDisarm Disarm an acquisition 3-15

Daq* Command Reference (Enhanced API) Chapter 3

3-2 Programmer’s Manual

Function Description Page

Custom ADC Acquisition Prototypes - Data Transfer without Buffer Allocation
daqAdcTransferBufData Transfer scans from driver-allocated buffer to user-specified buffer 3-30
daqAdcTransferSetBuffer Setup a destination buffer for an ADC transfer 3-32
daqAdcTransferStart Start an ADC transfer 3-33
daqAdcTransferGetStat Retrieve status of an ADC transfer 3-31
daqAdcTransferStop Stop an ADC transfer 3-33

Custom ADC Acquisition Prototypes - Buffer Manipulation
daqAdcBufferRotate Reorganize a circular buffer so that oldest data is oriented towards the front 3-14

One-Step ADC Acquisition Prototypes
daqAdcRd Configure an A/D acquisition and read one sample from a channel 3-18
daqAdcRdScan Configure an A/D acquisition and read one scan 3-20
daqAdcRdN Configure an A/D acquisition and read multiple scans from a channel 3-19
daqAdcRdScanN Configure an A/D acquisition and read multiple scans 3-21

Data Format and Conversion Prototypes
daqAdcSetDataFormat Set the raw and post-acquisition data formats 3-23
daqCvtRawDataFormat Convert raw data to a specified format 3-41
daqCvtSetAdcRange Set the ADC Voltage Range for the conversion routines 3-44

DAC Global Configuration Prototype
daqDacSetOutputMode Set the output mode for DAC FIFO 3-49

DAC Voltage Output Mode Prototypes
daqDacWt Output a D/A value 3-58
daqDacWtMany Output D/A values to several DACs 3-59

DAC Waveform Prototypes - Trigger, Update Rate and Count
daqDacWaveSetTrig Configure the trigger to initiate waveform output 3-57
daqDacWaveSoftTrig Trigger the DAC waveform output via software 3-58
daqDacWaveSetClockSource Set the clock source for DAC waveform output frequency 3-54
daqDacWaveSetFreq Set the DAC waveform output frequency 3-55
daqDacWaveGetFreq Get the current DAC waveform output frequency 3-52
daqDacWaveSetMode Set the DAC waveform output mode 3-55

DAC Waveform Prototypes - Buffer Management
daqDacWaveSetDiskFile Set DAC waveform output source to disk file 3-54
daqDacWaveSetPredefWave Specify a predefined DAC waveform for output 3-56
daqDacWaveSetUserWave Specify a user-defined DAC waveform for output 3-57
daqDacWaveSetBuffer Setup a buffer for DAC waveform output 3-53

DAC Waveform Prototypes - Waveform Control
daqDacWaveArm Arm triggering for DAC waveform output 3-51
daqDacWaveDisarm Disarm triggering for DAC waveform output 3-52

DAC Transfer Prototypes - Dynamic Waveform Data Transfer
daqDacTransferStart Start a DAC waveform output 3-50
daqDacTransferGetStat Get status of a current DAC waveform output 3-50
daqDacTransferStop Stop the current DAC waveform output 3-51

Linear Conversion Prototypes
daqCvtLinearSetup Save data required for daqCvtLinearConvert 3-39
daqCvtLinearConvert Convert ADC readings into floating point numbers 3-39
daqCvtLinearSetupConvert Combine setup and conversion into one function 3-40

Software Calibration Prototypes
daqCalSetup Configure the order and type of data to be calibrated 3-37
daqCalConvert Perform the actual calibration of one or more scans 3-37
daqCalSetupConvert Perform both the setup and convert steps with one call 3-38
daqReadCalFile Read all the calibration constants from the specified file 3-67
daqCalSelectCalTable Select calibration-table source for the device 3-35
daqCalSelectInputSignal Select input signal source for user calibration 3-36
daqCalGetConstants Get calibration constants from selected calibration table 3-34
daqCalSetConstants Set user-accessible calibration constants 3-36
daqCalSaveConstants Save current calibration table 3-35

Zero Offset Prototypes
daqZeroSetup Configure data for zero compensation 3-72
daqZeroConvert Perform zero compensation on one or more scans 3-71
daqZeroSetupConvert Perform both the setup and convert steps with one call 3-72
daqZeroDbk19 Configure the thermocouple linearization functions to automatically perform zero

compensation
3-71

RTD Conversion Prototypes
daqCvtRtdConvert Convert raw A/D readings from RTDs to temperature readings 3-42

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-3

Function Description Page
daqCvtRtdSetup Set up parameters for subsequent RTD temperature conversions 3-43
daqCvtRtdSetupConvert Set up and convert raw A/D readings from RTDs into temperature readings 3-44

Thermocouple Conversion Prototypes
daqCvtTCConvert Convert raw A/D readings from thermocouples to temperature readings 3-45
daqCvtTCSetup Set up parameters for subsequent thermocouple temperature conversions 3-47
daqCvtTCSetupConvert Set up and convert raw A/D readings from thermocouples into temperature readings 3-48

General I/O Prototypes - Read/Write
daqIOReadBit Read a DIO bit (channel) 3-64
daqIORead Read a DIO byte (8 channels) 3-63
daqIOWriteBit Write a DIO bit (channel) 3-65
daqIOWrite Write a DIO byte (8 channels) 3-64
daqIOGet8255Conf Get the current configuration of the DIO 3-63

9513 Counter/Timer Prototypes
daq9513SetMasterMode Initialize various counter/timer values 3-11
daq9513SetAlarm Set the specified alarm register 3-6
daq9513SetCtrMode Set the 9513’s mode register for the specified counter 3-7
daq9513MultCtrl Simultaneously configure multiple counters 3-4
daq9513GetHold Read the hold register of the specified counter 3-3
daq9513SetHold Output a value to the counter hold register 3-10
daq9513SetLoad Output a value to the counter load register 3-10
daq9513RdFreq Read up to 9 frequency inputs 3-5

Test Prototypes
daqTest Perform a specified test on a Daq* device 3-69

Commands in Alphabetical Order
The following pages give the details for each API command. Listed in alphabetical order, each section
starts with a table that summarizes the main features of the command (C, Visual BASIC, and Delphi
language prototypes and their related parameters). An explanation follows with related information and
in some cases a programming example. Typographic note: Commands, parameters, values, and code
all use a bold, mono-spaced Courier font to distinguish characters that can be ambiguous in other
fonts.

daq9513GetHold
DLL Function daq9513GetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
C daq9513GetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdaq9513GetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal

ctrNum&, ctrVal%)
Delphi daq9513GetHold(handle:DaqHandleT; deviceType:DaqIODeviceType; whichDevice:DWORD;

ctrNum:DWORD; var crtVal:WORD)
Parameters
handle Handle to the device to get the 9513 hold register
deviceType Specifies the 9513 device type
whichDevice Specifies which 9513
ctrNum The counter number

Valid values: 1 - 5
ctrVal The value read from the hold register of the selected counter is placed in this variable

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daq9513SetCtrMode

Program References None
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513GetHold reads the hold register of the specified counter. This register is used in event-
counting applications to store accumulated counter values. Without interrupting the process, the
hold register can be read while the count process is running.

Daq* Command Reference (Enhanced API) Chapter 3

3-4 Programmer’s Manual

daq9513MultCtrl
DLL Function daq9513MultCtrl(DaqHandleT handle, DaqIODeviceType deviceType, DWORD

whichDevice, Daq9513MultCtrCommand ctrCmd, BOOL ctr1, BOOL ctr2, BOOL ctr3,
BOOL ctr4, BOOL ctr5);

C daq9513MultCtrl(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, Daq9513MultCtrCommand ctrCmd, BOOL ctr1, BOOL ctr2, BOOL ctr3,
BOOL ctr4, BOOL ctr5);

Visual BASIC VBdaq9513MultCtrl&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal
ctrCmd&, ByVal ctr1&, ByVal ctr2&, ByVal ctr3&, ByVal ctr4&, ByVal ctr5&)

Delphi daq9513MultCtrl(handle:DaqHandleT; deviceType:DaqIODeviceType;
whichDevice:DWORD; ctrCmd:Daq9513MultCtrCommand; ctr1:longbool; ctr2:longbool;
ctr3:longbool; ctr4:longbool; ctr5:longbool)

Parameters
handle Handle to the device for which to set multiple counter commands
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrCmd The counter command (see below)
ctr1 A flag that if non-zero enables the counter command to be executed on counter 1, or if 0 do nothing to

counter 1
ctr2 A flag that if non-zero enables the counter command to be executed on counter 2, or if 0 do nothing to

counter 2
ctr3 A flag that if non-zero enables the counter command to be executed on counter 3, or if 0 do nothing to

counter 3
ctr4 A flag that if non-zero enables the counter command to be executed on counter 4, or if 0 do nothing to

counter 4
ctr5 A flag that if non-zero enables the counter command to be executed on counter 5, or if 0 do nothing to

counter 5
Multiple Counter Commands
Description Value
DmccArm 0
DmccLoad 1
DmccLoadArm 2
DmccDisarmSave 3
DmccSave 4
DmccDisarm 5
Returns DerrInvCtrCmd - Invalid counter command

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCtrSetCtrMode, daqCtrSetMasterMode

Program References DAQEX.FRM (VB) CTREX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513MultCtrl performs a command including: loading, latching, saving, enabling, and
disabling on multiple counters simultaneously. The commands work as follows:

• The load command can transfer the initial counter value from the load or hold register.
• The arm command will enable the counter to begin counting.
• The disarm command will disable the counter.
• The save command will transfer the current counter value to the hold register, where it can be

read without disturbing the counters.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-5

daq9513RdFreq
DLL Function daq9513RdFreq(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD interval, Daq9513CountSource cntSource, PDWORD count);
C daq9513RdFreq(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD interval, Daq9513CountSource cntSource, PDWORD count);
Visual BASIC VBdaq9513RdFreq&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal

interval&, ByVal cntSource&, count&)
Delphi daq9513RdFreq(handle:DaqHandleT; deviceType:DaqIODeviceType; whichDevice:DWORD;

interval:DWORD; cntSource:Daq9513CountSource; var count:DWORD)
Parameters
handle Handle to the device in which to get 9513 frequency
deviceType Specifies 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
interval The gate interval in milliseconds

Valid values: 1 - 32767
cntSource The count source (see below)
count A variable to hold the number of counts accumulated in the gating interval

Valid values: 0 - 65535
Count Source Definitions
Definition Value Description
DcsSrc1 1 Counter 1 input (pin 36 of P3)
DcsSrc2 2 Counter 2 input (pin 19 of P3)
DcsSrc3 3 Counter 3 input (pin 17 of P3)
DcsSrc4 4 Counter 4 input (pin 15 of P3)
DcsSrc5 5 Counter 5 input (pin 13 of P3)
DcsGate1 6 Counter 1 gate (pin 37 of P3)
DcsGate2 7 Counter 2 gate (pin 18 of P3)
DcsGate3 8 Counter 3 gate (pin 16 of P3)
DcsGate4 9 Counter 4 gate (pin 14 of P3)
Returns DerrInvInterval - Invalid interval

DerrInvCntSource - Invalid source
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also
Program References None
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513RdFreq is used to read the frequency of one of 9 external inputs. The 9 available inputs
include the 5 counter inputs (P3 pins 36, 19, 17, 15, or 13) and the gates of counters 1 to 4 (P3 pins
37, 18, 16, and 14). This function counts the number of pulses on the specified input within a
specified time interval, thereby providing the frequency of the signal. This frequency can be
obtained by dividing the number of pulses by the interval (frequency in kHz = count/interval).

Note: The counter 4 output (P3 pin 32) must be externally connected to the counter 5 gate (P3 pin
12). This function will reconfigure counters 4 and 5.

Daq* Command Reference (Enhanced API) Chapter 3

3-6 Programmer’s Manual

daq9513SetAlarm
DLL Function daq9513SetAlarm(DaqHandleT handle, DaqIODeviceType deviceType, DWORD

whichDevice, DWORD alarmNum, DWORD alarmVal);
C daq9513SetAlarm(DaqHandleT handle, DaqIODeviceType deviceType, DWORD

whichDevice, DWORD alarmNum, DWORD alarmVal);
Visual BASIC VBdaq9513SetAlarm&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal

alarmNum&, ByVal alarmVal&)
Delphi daq9513SetAlarm(handle:DaqHandleT; deviceType:DaqIODeviceType;

whichDevice:DWORD; alarmNum:DWORD; alarmVal:DWORD)
Parameters
handle Handle to the device which to set the 9513 alarm
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513.
AlarmNum The alarm register number

Valid values: 1 - 2
alarmVal The value to write to the selected alarm register

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter number

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCtrSetMasterMode

Program References None
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513SetAlarm sets the specified alarm register. This alarm register can be used with the
comparators described in daq9513SetMasterMode. The alarm register is only used if the
corresponding comparator has been enabled using the daq9513SetMasterMode function.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-7

daq9513SetCtrMode
DLL Function daq9513SetCtrMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD

whichDevice, DWORD ctrNum, Daq9513GatingControl gateCtrl, BOOL cntEdge,
Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat,
BOOL cntType, BOOL cntDir, Daq9513OutputControl outputCtrl);

C daq9513SetCtrMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, Daq9513GatingControl gateCtrl, BOOL cntEdge,
Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat,
BOOL cntType, BOOL cntDir, Daq9513OutputControl outputCtrl);

Visual BASIC VBdaq9513SetCtrMode&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&,
ByVal ctrNum&, ByVal gateCtrl&, ByVal cntEdge&, ByVal cntSource&, ByVal
specGate&, ByVal reload&, ByVal cntRepeat&, ByVal cntType&, ByVal cntDir&,
ByVal outputCtrl&)

Delphi daq9513SetCtrMode(handle:DaqHandleT; deviceType:DaqIODeviceType;
whichDevice:DWORD; ctrNum:DWORD; gateCtrl:Daq9513GatingControl;
cntEdge:longbool; cntSource:Daq9513CountSource; specGate:longbool;
reload:longbool; cntRepeat:longbool; cntType:longbool; cntDir:longbool;
outputCtrl:Daq9513OutputControl)

Parameters
handle Handle to the device to set the 9513 counter mode
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrNum The counter number; Valid values: 1 - 5
gateCtrl The gating control mode (see below)
cntEdge A flag that if non-zero will select a positive count edge, or if 0 will select a negative count edge
cntSource The count source (see below)
specGate A flag that if non-zero will enable the special gate, or if 0 will disable it
reload A flag that if non-zero will select reload from load or hold, or if 0 will select reload from load
cntRepeat A flag that if non-zero will select count repetitively, or if 0 will select count once
cntType A flag that if non-zero will select a BCD count, or if 0 will select a binary count
cntDir A flag that if non-zero will select count up, or if 0 will select count down
outputCtrl The output control mode (see below)
Gating Control Definitions:
Definition Value Description
DgcNoGating 0 Gating Disabled
DgcHighTCNM1 1 Active level high of TC toggled output of previous (N-1) counter
DgcHighLevelGateNP1 2 Active level high of gate of next (N+1) counter
DgcHighLevelGateNM1 3 Active level high of gate of next (N-1) counter
DgcHighLevelGateN 4 Active level high of gate of selected (N) counter
DgcLowLevelGateN 5 Active level low of gate of selected (N) counter
DgcHighEdgeGateN 6 Active rising edge of gate of selected (N) counter
DgcLowEdgeGateN 7 Active falling edge of gate of selected (N) counter
Count Source Definitions
DcsTCNM1 0 TC toggled output of previous (N-1) counter (not valid with daq9513SetMasterMode or daq9513RdFreq)
DcsSrc1 1 Counter 1 input (pin 36 of P3)
DcsSrc2 2 Counter 2 input (pin 19 of P3)
DcsSrc3 3 Counter 3 input (pin 17 of P3)
DcsSrc4 4 Counter 4 input (pin 15 of P3)
DcsSrc5 5 Counter 5 input (pin 13 of P3)
DcsGate1 6 Counter 1 gate (pin 37 of P3)
DcsGate2 7 Counter 2 gate (pin 18 of P3)
DcsGate3 8 Counter 3 gate (pin 16 of P3)
DcsGate4 9 Counter 4 gate (pin 14 of P3)
DcsGate5 10 Counter 5 gate (pin 12 of P3) (not valid with daq9513RdFreq)
DcsF1 11 Onboard 1 MHz clock (not valid with daq9513RdFreq)
DcsF2 12 Onboard 100 kHz clock (not valid with daq9513RdFreq)
DcsF3 13 Onboard 10 kHz clock (not valid with daq9513RdFreq)
DcsF4 14 Onboard 1 kHz clock (not valid with daq9513RdFreq)
DcsF5 15 Onboard 100 Hz clock (not valid with daq9513RdFreq)
Output Control Definitions:
DocInactiveLow 0 Inactive - Always low
DocHighTermCntPulse 1 High impulse on terminal count
DocTCToggled 2 Toggled on terminal count
DocInactiveHighImp 3 Inactive - High impedance
DocLowTermCntPulse 4 Low pulse on terminal count
Returns DerrInvCtrNum - Invalid channel

DerrInvGateCtrl - Invalid gate

Daq* Command Reference (Enhanced API) Chapter 3

3-8 Programmer’s Manual

DerrInvCntSource - Invalid source
DerrInvOutputCntrl - Invalid output
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCtrSetLoad, daqCtrSetHold, daqCtrGetHold, daqCtrMultCtrl

Program References DAQEX.FRM (VB), CTREX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513SetCtrMode is used to set the 9513’s mode register for a specified counter. Setting this
register defines how the specific counter works for a variety of square waves, pulse generation, and
event counting. To set the initial counter values, this function is often followed by
daq9513SetLoad or daq9513SetHold. Finally, the daq9513MultCtrl function is called
to load and arm multiple counters. daq9513MultCtrl can also be used to count events.

The gate control parameter controls how the counter will use its gate input (P3 pins 37, 18, 16, 14
and 12) or another counter’s gate input.

• If the gate is disabled using the DgcNoGating definition, it will be ignored and the counter
will run as long as it is armed.

• If a level gate control is selected (using the DgcHighLevelGateNPI,
DgcHighLevelGateNMI, or DgcHighLevelGateN definitions), the counter will
operate only while armed and the selected high or low level is applied to the gate.

• If an edge-sensitive gate control is selected using the DgcHighEdgeGate or
DgcHighEdgeGateN definitions, the counter will operate after a rising or falling edge is
detected on the gate input.

Most gate control modes select gate N (gate of the selected counter) or gate inputs of the previous
(N-1) and next (N+1) counters. Thus, counter 3 could use the gate input of counter 2 by selecting N-
1; counter 4 by selecting N+1; or its own gate input by selecting N. Counter 1 and counter 5 are
considered adjacent when selecting gate input N+1 or N-1. The final gate control mode allows the
TC-toggled output (see output control description) of the previous counter (N-1) to be the gate. The
selected counter will operate only when the previous counter’s TC-toggled output is high.

The Count Edge (cntEdge) flag selects whether the counter will count when it receives a rising or
falling edge on its count source (see the count source description).

The Count Source (cntSource) selects the source used as input to the specified counter. The
Count Edge selects whether the rising or falling edge of this source is counted. The Count Source
can be any one of the counter inputs, Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the
counter gates, Gate1 to Gate5 (P3 pins 37, 18, 17, 16 or 14), an internal frequency, F1 to F5, or
the TC-toggled output (see the output control description) of the previous counter (N-1). The
internal frequencies are divide-by-10 divisions of the onboard oscillator which is by default 1 MHz,
but can be jumpered to 10 MHz. The sources F1 through F5 correspond to the frequencies 1 MHz,
100 kHz, 10 kHz, 1 kHz and 100 Hz. The TC-toggled output of the previous counter can be used as
a source—allowing counters to be cascaded without external connections.

The Count Direction (cntDir) selects whether the counter will count up or down. The counter is
normally configured for down counting when generating a pulse or square wave. The load register
would be set to a positive value which will decrement to zero, defining the duration or width of the
waveform. In event counting, the counter would initially be set to zero and configured to count up
(in this case, the hold register would contain the number of events received).

The Count Type (cntType) selects binary or BCD counting. Binary format accepts a 16-bit
number ranging from 0 to 65,535. BCD (binary-coded decimal) accepts four 8-bit numbers
representing 0 to 10, back in 16-bits, ranging from 0 to 9999.

The Output Control (outputCtrl) parameter controls the state of the counter output (P3 pins 35,
34, 33, 32, 31). There are 2 inactive and 3 active output modes. If the output is inactive, it can
either be driven low or it can be high impedance. The active modes are all associated with the
terminal count (TC) which is the moment in time when the counter reaches 0. This can happen by
counting up past 65535 in binary count mode or 9999 in BCD count mode, or counting down past 1.
 The output can be driven: high during the TC and low otherwise, low during the TC and high
otherwise, or toggle the output every time a TC occurs. The TC-toggled mode is used to generate
variable duty-cycle square waves.

The Count Repeat (cntRepeat), Reload (reload) and Special Gate (specGate) parameters

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-9

have complex relationships that define the operation of the counter. The Count Repeat flag
enables/disables re-arming the counter after TC occurs. Applications such as software re-triggerable
1-shots would disable the repeat flag so the 1-shot occurs only after the counter arm command is
sent. Other applications (such as rate generators, square waves and hardware re-triggerable 1-shots)
would enable the count repeat so that the counter will run until disarmed.

The Reload flag programs the counter to use the count value in the load and/or hold registers for
counting. If the reload flag is disabled, the counter will use the contents of the load register only for
counting. Enabling the reload flag will allow the counter to use the contents of either or both
registers depending on the special gate flag. If the reload flag is enabled and the special gate is
disabled, the counter will alternate between registers. This allows a variable duty-cycle output
waveform depending on the relative values of the hold and load registers. If the reload flag is
enabled and the special gate is enabled, the operation will depend on the gate control parameter. In
this situation, an active gate control will allow hardware re-triggering on the active-going edge. An
inactive gate control will configure the counter to use the hold register for counting if the counter’s
gate is high or to use the load register if the gate is low. Refer to the Am9513A/AM9513 Technical
Manual for further reference.
The next table summarizes the operating modes of the counter/timer.

Counter Mode Operating Summary
Counter Mode A B C D E F G H I J K L M N O P Q R S T U V W X

Special Gate (CM7) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Reload Source (CM6) 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
Repetition (CM5) 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
Gate Control (CM15-

CM-13); N=no gating;
L=level; E=edge

N L E N L E N L E N L E N L E N L E N L E N L E

Count to TC once, then
disarm

X X X X X

Count to TC twice, then
disarm

X X X X

Count to TC repeatedly
without disarming

X X X X X X X X X X

Gate input does not gate
counter input

X X X X X X

Count only during active
gate level

X X X X X X

Start count on active
gate edge and stop
count on next TC

X X X X X

Start count on active
gate edge and stop
count on second TC

X X

No hardware re-
triggering

X X X X X X X X X X X X X X X

Reload counter from
Load Register on TC

X X X X X X X X X X X

Reload counter on each
TC, alternating reload
source between Load
and Hold Registers

X X X X X X

Transfer Load Register
into counter on each
TC that gate is LOW,
transfer Hold Register
into counter on each
TC that gate is HIGH

X X

On active gate edge
transfer counter into
Hold Register and
then reload counter
from Load Register

X X X X

On active gate edge
transfer counter into
Hold Register, but
counting continues

X

Daq* Command Reference (Enhanced API) Chapter 3

3-10 Programmer’s Manual

daq9513SetHold
DLL Function daq9513SetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
C daq9513SetHold(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdaq9513SetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal

ctrNum&, ByVal ctrVal%)
Delphi daq9513SetHold(handle:DaqHandleT; deviceType:DaqIODeviceType; whichDevice:DWORD;

ctrNum:DWORD; crtVal:WORD)
Parameters
handle Handle to the device in which to set 9513 hold register
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrNum The counter number

Valid values: 1 - 5
ctrVal The value to write to the hold register of the selected counter

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daq9513SetMasterMode, daq9513SetCtrMode

Program References DAQEX.FRM (VB), CTREX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513SetHold outputs a value to the hold register of the specified counter. The hold register
can be used to set the counter’s initial value using the daq9513MultCtrl function. The
daq9513SetMasterMode and daq9513SetCtrMode functions describe various uses of the
hold register.

daq9513SetLoad
DLL Function daq9513SetLoad(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
C daq9513SetLoad(DaqHandleT handle, DaqIODeviceType deviceType, DWORD whichDevice,

DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdaq9513SetLoad&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal

ctrNum&, ByVal ctrVal%)
Delphi daq9513SetLoad(handle:DaqHandleT; deviceType:DaqIODeviceType; whichDevice:DWORD;

ctrNum:DWORD; crtVal:WORD)
Parameters
handle Handle to the device in which to set the 9513 load
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrNum The counter number

Valid values: 1 - 5
ctrVal The value to write to the load register of the selected counter

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daq9513SetMasterMode, daq9513SetCtrMode

Program References DAQEX.FRM (VB), CTREX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513SetLoad outputs a value to the load register of the specified counter. The load register
can be used to set the counter’s initial value using the daq9513MultCtrl.
daq9513SetMasterMode and daq9513SetCtrMode describe various uses of the load
register.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-11

daq9513SetMasterMode
DLL Function daq9513SetMasterMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD

whichDevice, DWORD foutDiv, Daq9513CountSource cntSource, BOOL comp1, BOOL
comp2, Daq9513TimeOfDay tod);

C daq9513SetMasterMode(DaqHandleT handle, DaqIODeviceType deviceType, DWORD
whichDevice, DWORD foutDiv, Daq9513CountSource cntSource, BOOL comp1, BOOL
comp2, Daq9513TimeOfDay tod);

Visual BASIC VBdaq9513SetMasterMode&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&,
ByVal foutDiv&, ByVal cntSource&, ByVal comp1&, ByVal comp2&, ByVal tod&)

Delphi daq9513SetMasterMode(handle:DaqHandleT; deviceType:DaqIODeviceType;
whichDevice:DWORD; foutDiv:DWORD; cntSource:Daq9513CountSource;
comp1:longbool; comp2:longbool; tod:Daq9513TimeOfDay)

Parameters
handle Handle to the device in which to set the 9513 master mode
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
foutDiv The fout divider. A divider of 0 selects divide by 16

Valid values: 1 -16
cntSource The fout source
comp1 A flag that if non-zero will enable the compare 1 operation, or if 0 will disable it
comp2 A flag that if non-zero will enable the compare 2 operation, or if 0 will disable it
tod The time of day mode
Count Source Definitions:
Definition Value Description
DcsTcnM1 00h Not valid with daq8513SetMasterMode or daq9513RdFreq
DcsSrc1 01h Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrc5 05h Counter 5 input (pin 13 of P3)
DcsGate1 06h Counter 1 gate (pin 37 of P3)
DcsGate2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
DcsGate5 0Ah Counter 5 gate (pin 12 of P3) (not valid with daq9513RdFreq)
DcsF1 0Bh Onboard 1 MHz clock (not valid with daq9513RdFreq)
DcsF2 0Ch Onboard 100 kHz clock (not valid with daq9513RdFreq)
DcsF3 0Dh Onboard 10 kHz clock (not valid with daq9513RdFreq)
DcsF4 0Eh Onboard 1 kHz clock (not valid with daq9513RdFreq)
DcsF5 0Fh Onboard 100 Hz clock (not valid with daq9513RdFreq)
Time-Of-Day Definitions:
Description Value
DtodDisabled 00h
DtodDivideBy5 01h
DtodDivideBy6 02h
DtodDivideBy10 03h

Returns DerrInvCntSource - Invalid source
DerrInvTod - Invalid time of day mode
DerrInvDir - Invalid divisor
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daq9513SetLoad, daq9513MultCtr, daq9513GetHold, daq9513SetCntMode

Program References DAQEX.FRM (VB), CTREX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daq9513SetMasterMode is used to set the counter’s master mode register. This register is used
to configure the fout pin (P3 pin 30), the comparators of counter 1 and 2, and the time-of-day
operation of the 9513 chip. The master mode parameters default to zero after daqOpen.

The fout source selects what signal will be output on the fout pin. The fout source can be any one of
the counter inputs, Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13); any one of the counter gates,
Gate1 to Gate5 (P3 pins 37, 18, 17, 16 or 14); or an internal frequency, F1 to F5 (1 MHz, 100
kHz, 10 kHz, 1 kHz and 100 Hz). The fout divider will divide the selected source by 1 to 16 before
outputting the signal on fout.

The 2 comparator flags control the comparators associated with counter 1 and 2. If a comparator is

Daq* Command Reference (Enhanced API) Chapter 3

3-12 Programmer’s Manual

enabled, the value in the corresponding alarm register, set with the daqCtrSetAlarm function,
will be compared with the value in the counter. The output of the corresponding counter will go
true when the value in the counter reaches the value in the alarm register and remain true until
the counter value changes. The polarity of the output depends on the output control, set with the
daqCtrSetCtrMode function, configuration of counter 1 or 2. When output control is high,
terminal count pulsed, or terminal count toggled, then the output will be high while the comparator is
true. When the output control is low and terminal count pulsed, the output will be low while the
comparator is true.

Time-of-Day Configuration

The time-of-day parameter is used to enable or disable the time-of-day operation. The time-of-day
operation is a special mode which causes counters 1 and 2 to turn over at counts that generate 24-
hour time-of-day accumulations. The resolution of the time-of-day operation is 0.1 seconds. A 100
Hz, 60 Hz or 50 Hz signal must be applied to the input of counter 1 (P3 pin 36), while in the divide-
by-10, divide-by-6 and divide-by-5 time-of-day modes respectively. This will produce the 10 Hz
clock source needed to drive the time-of-day clock. The hold registers of counters 1 and 2 will hold
the 24-hour time.

The following steps must be performed to use the time-of-day operation:
1. Set the master mode register as described above.
2. For general-purpose time keeping, configure counter 1 using daqCtrSetCtrMode with the

no gating, count on rising edge, special gating disabled, reload from hold only, count
repetitively, BCD counting and count up. The count source can be any of the available
sources. The output control does not affect time-of-day operation.

3. Set the mode of counter 2 with the same settings as counter 1, except the count source should
be TC toggled of the previous (N-1) counter. This allows internal concatenation of counter 1
to counter 2.

4. Set the load registers of counter 1 and 2 to zero, using the daqCtrSetLoad function.
5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2,

using the format shown in the figure above (again using daqCtrSetLoad).
6. Repeat step 4.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-13

daqAdcArm
DLL Function daqAdcArm(DaqHandleT handle);

C daqAdcArm(DaqHandleT handle);

Visual BASIC VBdaqAdcArm&(ByVal handle&)

Delphi daqAdcArm(handle:DaqHandleT)

Parameters
handle Handle to the device to which configured ADC acquisition is to be armed
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcDisarm

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcArm allows you to arm an ADC acquisition by enabling the currently defined ADC
configuration for acquisition. ADC acquisition will occur when the trigger event (as specified by
daqAdcSetTrig)is satisfied. All ADC acquisition configuration information must be specified
prior to the daqAdcArm command. For a previously configured acquisition, the daqAdcArm
command will use the specified parameters. If no previous configuration was given, or it is
desirable to change any or all acquisition parameters, then those commands relating to the desired
ADC acquisition configuration must be issued prior to calling daqAdcArm.

Daq* Command Reference (Enhanced API) Chapter 3

3-14 Programmer’s Manual

daqAdcBufferRotate
DLL Function daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
C daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
Visual BASIC VBdaqAdcBufferRotate&(ByVal handle&, buf%(), ByVal scanCount&, ByVal chanCount&,

ByVal retCount&)
Delphi daqAdcBufferRotate(handle:DaqHandleT; buf:PWORD; scanCount:DWORD;

chanCount:DWORD; retCount:DWORD)
Parameters
handle Handle to the device for which the ADC transfer buffer is to be rotated
buf Pointer to the buffer to rotate
scanCount Total number of scans in the buffer
chanCount Number of channels in each scan
retCount Last value returned in the retCount parameter of the daqAdcTransferGetStat function
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer

Program References None
Used With All devices

daqAdcBufferRotate allows you to linearize a circular buffer acquired via a transfer in cycle
mode. This command will organize the circular buffer chronologically. In other words, it will order
the data from oldest-first to newest-last in the buffer. When scans are acquired using
daqAdcBufferTransfer with a non-zero cycle parameter, the buffer is used as a circular
buffer; once it is full, it is re-used, starting at the beginning of the buffer. Thus, when the
acquisition is complete, the buffer may have been overwritten many times and the last acquired scan
may be any place within the buffer.

For example, during the acquisition of 1000 scans in a buffer that only has room for 60 scans, the
buffer is filled with scans 1 through 60. Then scan 61 overwrites scan 1; scan 62 overwrites scan 2;
and so on until scan 120 overwrites scan 60. At this point, the end of the buffer has been reached
again and so scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of
overwriting and re-using the buffer continues until all 1000 scans have been acquired. At this point,
the buffer has the following contents:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 961 962 963 ... 999 1000 941 942 ... 958 959 960

In this case, because the total number of scans is not an even multiple of the buffer size, the oldest scan
is not at the beginning of the buffer and the last scan is not at the end of the buffer.
daqAdcBufferRotate can rearrange the scans into their natural, chronological order:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 941 942 943 ... 979 980 981 982 ... 998 999 1000

If the total number of acquired scans is no greater than the buffer size, then the scans have not
overwritten earlier scans and the buffer is already in chronological order. In this case,
daqAdcBufferRotate does not modify the buffer.

Note: daqAdcBufferRotate only works on unpacked samples.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-15

daqAdcCalcTrig
DLL Function daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
C daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
Visual BASIC VBdaqAdcCalcTrig&(ByVal handle&, ByVal bipolar&, ByVal gainVal!, ByVal

voltageLevel!, triggerLevel%)
Delphi daqAdcCalcTrig(handle:DaqHandleT; bipolar:longbool; gainVal:single;

voltageLevel:single; var triggerLevel:DWORD)
Parameters
handle Handle to the device for which the trigger level is to be calculated
bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar
gainVal A gain value of the trigger channel
voltageLevel Voltage level to trigger at.
triggerLevel Returned count to program the trigger using the daqAdcSetTrig function
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetTrig

Program References None
Used With All devices

daqAdcCalcTrig calculates the trigger level and source for an analog trigger. The result of
daqAdcCalcTrig is the triggerLevel parameter. The triggerLevel parameter can then
be passed to the daqAdcSetTrig function to configure the analog trigger.

The triggerLevel parameter is calculated from: the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. The trigger channel is automatically the first channel in the current A/D
scan group for DaqBooks and DaqBoards.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the
trigger channel. This parameter is jumper-selectable when using a DaqBook/100/112 and
DaqBoard/100A/112A and software-programmable when using the DaqBook/200/200A.

The gainVal parameter sent to the daqAdcCalcTrig should be the actual gain of the trigger
channel, not the gain definition used by the rest of the Daq* A/D functions. For example, if the
trigger channel uses the gain definition DgainX8, the gain parameter of daqAdcCalcTrig
should be 8.

The voltageLevel defines the analog voltage at which the Daq* will trigger. The setpoint must
be within the valid input range of the trigger channel. For example, the setpoint range for a bipolar
channel with unity gain would be 0 to 10 V (for ×8 gain, the range would be 0 to 1.25 V) for a
DaqBook or a DaqBoard. Note: When using the Daq PCMCIA, the bipolar parameter is ignored.

daqAdcDisarm
DLL Function daqAdcDisarm(DaqHandleT handle);

C daqAdcDisarm(DaqHandleT handle);

Visual BASIC VBdaqAdcDisarm&(ByVal handle&)

Delphi daqAdcDisarm(handle:DaqHandleT)

Parameters
handle handle to the device to disable ADC acquisitions
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcArm

Program References None
Used With All devices

daqAdcDisarm allows you to disarm an ADC acquisition if one is currently active.
• If the specified trigger event has not yet occurred, the trigger event will be disabled and no

ADC acquisition will be performed.
• If the trigger event has occurred, the acquisition will be halted and the data transfer stopped

and no more ADC data will be collected.

Daq* Command Reference (Enhanced API) Chapter 3

3-16 Programmer’s Manual

daqAdcExpSetBank
DLL Function daqAdcExpSetBank(DaqHandleT handle, DWORD chan, DaqAdcExpType bankType);

C daqAdcExpSetBank(DaqHandleT handle, DWORD chan, DaqAdcExpType bankType);

Visual BASIC VBdaqAdcExpSetBank&(ByVal handle&, ByVal chan&, ByVal bankType&)

Delphi daqAdcExpSetBank(handle:DaqHandleT; chan:DWORD; bankType:DaqAdcExpType)

Parameters
handle Handle to the device for which to set the expansion bank
chan Channel number on the DBK card. Channel numbers are in groups of 16 channels per bank.
bankType Type of channel bank.
Returns DerrInvChan - Invalid Channel Number (also, refer to API Error Codes on page 3-83)
See Also daqAdcExpSetChanOption, daqAdcExpSetModuleOption

Program References None
Used With All devices

daqAdcExpSetBank internally programs intelligent DBK card channels so the Daq* gains may
be set just before the acquisition. A bank consists of 16 channels, but daqAdcExpSetBank must
be called once for each card in the bank. For example, if four 4-channel cards (such as a DBK7) are
used in the first expansion bank, you must call daqAdcExpSetBank 4 times with channels 16, 20,
24, and 28. With only one such card, you cannot fill the remainder of the bank with another type of
device. See the DBK Card Definition table for bankType settings.

daqAdcExpSetChanOption
DLL Function daqAdcExpSetChanOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
C daqAdcExpSetChanOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqAdcExpSetChanOption&(ByVal handle&, ByVal chan&, ByVal optionType&, ByVal

optionValue!)
Delphi daqAdcExpSetChanOption(handle:DaqHandleT; chan:DWORD; const

optionType:DaqChanOptionType; optionValue:single)
Parameters
handle Handle to the device for which to set the channel option
chan The number of the channel to be configured.
optionType The configurable option to be set (see table DBK Card Definitions)
optionValue The configurable option to be set (see table DBK Card Definitions)
Returns DerrNoError - No Errors (also, refer to API Error Codes on page 3-83)

DerrInvChan - Invalid Channel Number
See Also daqAdcExpSetModuleOption

Program References None
Used With All devices

daqAdcExpSetChanOption allows you to configure channel parameters for DBK modules with
software-configurable settings on a per channel basis. See the DBK Card Definition table for
optionType and optionValue settings.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-17

daqAdcExpSetModuleOption
DLL Function daqAdcExpSetModuleOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
C daqAdcExpSetModuleOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqAdcExpSetModuleOption&(ByVal handle&, ByVal chan&, ByVal optionType&, ByVal

optionValue!)
Delphi daqAdcExpSetModuleOption(handle:DaqHandleT; chan:DWORD; const

optionType:DaqChanOptionType; optionValue:single)
Parameters
handle Handle to the device for which to set the module option.
chan Any channel on the module (expansion chassis) to be configured.
optionType The configurable option to be set (see table DBK Card Definitions).
optionValue The configurable option to be set (see table DBK Card Definitions).
Returns An error number, or 0 if no error (also, refer to API Error Codes on page 3-83)
See Also daqAdcExpSetChannelOption

Program References None
Used With All devices

daqAdcExpSetModuleOption allows you to configure parameters that apply to the whole
module (for DBK modules with software-configurable settings) on a per expansion module basis.
See the DBK Card Definition table for optionType and optionValue settings.

daqAdcGetFreq
DLL Function daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);

C daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);

Visual BASIC VBdaqAdcGetFreq&(ByVal handle&, freq!)

Delphi daqAdcGetFreq(handle:DaqHandleT; var freq:single)

Parameters
handle Handle to the device for which to get the current frequency setting
freq A variable to hold the currently defined sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No errors (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetFreq, daqAdcSetClock

Program References None
Used With All devices

daqAdcGetFreq reads the sampling frequency of the pacer clock.

Note: daqAdcSetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1
MHz.

Daq* Command Reference (Enhanced API) Chapter 3

3-18 Programmer’s Manual

daqAdcGetScan
DLL Function daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
C daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
Visual BASIC VBdaqAdcGetScan&(ByVal handle&, channels&(), gains&(), flags&(), chanCount&)

Delphi daqAdcGetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;
flags:PDWORD; chanCount:PDWORD)

Parameters
handle Handle to the device for which to get the current scan configuration.
channels An array to hold up to 512 channel numbers or 0 if the channel information is not desired.
*gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired
flags Channel configuration flags in the in the form of a bit mask
chanCount A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetScan, daqAdcSetMux

Program References None
Used With All devices

daqAdcGetScan reads the current scan group consisting of all channels currently configured. The
returned parameter settings directly correspond to those set using the daqAdcSetScan function. For
further description of these parameters, refer to daqAdcSetScan. See ADC Flags Definition
table for channel flag definitions.

daqAdcRd
DLL Function daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
C daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcRd&(ByVal handle&, ByVal chan&, sample%, ByVal gain&, ByVal flags&)

Delphi daqAdcRd(handle:DaqHandleT; chan:DWORD; var sample:WORD; const gain:DaqAdcGain;
flags:DWORD)

Parameters
handle Handle to the device for which the ADC reading is to be acquired
chan A single channel number
sample A pointer to a value where an A/D sample is stored. Valid values: (See daqAdcSetTag)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer Overrun

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also daqAdcSetMux, daqAdcSetTrig, daqAdcSoftTrig

Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRd is used to take a single reading from the given local A/D channel. This function will use
a software trigger to immediately trigger and acquire one sample from the specified A/D channel.

• The chan parameter indicates the channel for which to take the sample.
• The sample parameter is a pointer to where the collected sample should be stored.
• The gain parameter indicates the channel’s gain setting.
• The flags parameter allows the setting of channel-dependent options. See ADC Flags

Definition table for channel flags definitions.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-19

daqAdcRdN
DLL Function daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,

DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

C daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdN&(ByVal handle&, ByVal chan&, buf%(), ByVal scanCount&, ByVal
triggerSource&, ByVal rising&, ByVal level%, ByVal freq!, ByVal gain&, ByVal
flags&)

Delphi daqAdcRdN(handle:DaqHandleT; chan:DWORD; buf:PWORD; scanCount:DWORD;
triggerSource:DaqAdcTriggerSource; rising:longbool; level:WORD; freq:single;
const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device for which the ADC channel samples are to be acquired
chan A single channel number
buf An array where the A/D scans will be returned
scanCount The number of scans to be taken

Valid values: 1 - 32767
triggerSource The trigger source
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz (100000.0 to 0.0002)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer overrun

DerrInvGain -Invalid gain
DerrIncChan - Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid level (also, refer to API Error Codes on page 3-83)

See Also daqAdcSetFreq, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig

Program References None
Used With All devices

daqAdcRdN is used to take multiple scans from a single A/D channel. This function will:
• Configure the pacer clock
• Configure all channels with the specified gain parameter
• Configure all channel options with the channel flags specified
• Arm the trigger
• Acquire count scans from the specified A/D channel
See ADC Flags Definition table (in ADC Miscellaneous Definitions) for channel flags
parameter definition.

Daq* Command Reference (Enhanced API) Chapter 3

3-20 Programmer’s Manual

daqAdcRdScan
DLL Function daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
C daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal

scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which the ADC scan is to be acquired
startChan The starting channel of the scan group
endChan The ending channel of the scan group
buf An array where the A/D scans will be placed
gain The channel gain
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqAdcRdNScan, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig

Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. See
ADC Flags Definition table for channel flags definitions.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-21

daqAdcRdScanN
DLL Function daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

C daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal
scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which ADC scans are to be acquired
startchan The starting channel of the scan group (see table at end of chapter)
endchan The ending channel of the scan group (see table at end of chapter)
buf An array where the A/D scans will be placed
scanCount The number of scans to be read

Valid values: 1 - 65536
triggerSource The trigger source (see table at end of chapter)
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
gain The channel gain (See tables at end of chapter).
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid Level
DerrFIFOFull -Buffer Overrun
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqAdcRd, daqAdcRdN, daqAdcRdScan, daqAdcSetClock, daqAdcSetTrig

Program References None
Used With All devices

daqAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure
the pacer clock, arm the trigger and acquire count scans consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. The
freq parameter is used to set the acquisition frequency. See ADC Flags Definition table for
channel flags parameter definition.

Daq* Command Reference (Enhanced API) Chapter 3

3-22 Programmer’s Manual

daqAdcSetAcq
DLL Function daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
C daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
Visual BASIC VBdaqAdcSetAcq&(ByVal handle&, ByVal mode&, ByVal preTrigCount&, ByVal

postTrigCount&)
Delphi daqAdcSetAcq(handle:DaqHandleT; mode:DaqAdcAcqMode; preTrigCount:DWORD;

postTrigCount:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition is to be configured
mode Selects the mode of the acquisition
preTrigCount Number of pre-trigger ADC scans to be collected
postTrigCount Number of post-trigger ADC scans to be collected
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcArm, daqAdcDisarm, daqAdcSetTrig

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetAcq allows you to characterize the acquisition mode and the pre- and post-trigger
durations. The mode parameter describes the style of data collection. The preTrigCount and
postTrigCount parameters specify the respective durations, or lengths, of the pre-trigger and
post-trigger acquisition states.

Acquisition modes can be defined as follows:
• DaamNShot - Once triggered, continue acquisition until the specified post-trigger count has

been satisfied. Once the post-trigger count has been satisfied, the acquisition will be
automatically disarmed.

• DaamNShotRearm - Once triggered, continue the acquisition for the specified post-trigger
count, then re-arm the acquisition with the same acquisition configuration parameters as
before. The automatic re-arming of the acquisition may be disabled at any time by issuing a
daqAdcDisarm.

• DaamInfinitePost - Once triggered, continue the acquisition indefinitely until the
acquisition is disabled by the daqAdcDisarm function.

• DaamPrePost - Begin collecting the specified number of pre-trigger scans immediately
upon issuance of the daqAdcArm function. The trigger will not be enabled until the
specified number of pre-trigger scans have been collected. Once triggered, the acquisition
will then continue collecting post-trigger data until the post-trigger count has been satisfied.
Once the post-trigger count has been satisfied, the acquisition will be automatically disarmed.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-23

daqAdcSetClockSource
DLL Function daqAdcSetClockSource(DaqHandleT handle, DaqAdcClockSource clockSource);

C daqAdcSetClockSource(DaqHandleT handle, DaqAdcClockSource clockSource);

Visual BASIC VBdaqAdcSetClockSource&(ByVal handle&, ByVal clockSource&)

Delphi daqAdcSetClockSource(handle:DaqHandleT; clockSource:DaqAdcClockSource)

Parameters
handle Handle to the device for which to set the ADC clock source.
clockSource Specifies the clock source for ADC acquisitions
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetFreq

Program References None
Used With All devices

daqAdcSetClockSource allows you to set up the clock source to be used to drive the ADC
acquisition frequency.

daqAdcSetDataFormat
DLL Function daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
C daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
Visual BASIC VBdaqAdcSetDataFormat &(ByVal handle&, ByVal rawFormat&, ByVal postProcFormat&)

Delphi daqAdcSetDataFormat(Handle:DaqHandleT; rawFormat:DaqAdcRawDataFormatT rawFormat;
postProcFormat:DaqAdcPostProcDataFormatT);

Parameters
handle The handle to the device for which to set the option
rawFormat The channel number on the device for which the option is to be set
postProcFormat Flags specifying the options to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCvtRawDataFormat,daqCvtRawDataFormat

Program References None
Used With All devices

daqAdcSetDataFormat allows the setting of the raw and the post-acquisition data formats
which will be returned by the acquisition transfer functions. Note: Certain devices may be limited to
the types of raw and post-acquisition data formats which can be presented.

The rawFormat parameter indicates how the raw data format is to be presented. Normally, the
raw-data format represents the data from the A/D converter. The default value for this parameter is
DardfNative where the raw-data format follows the native-data format of the A/D for the
particular device. An optional parameter is DardfPacked where raw A/D values are compressed
to make full use of all unused bits for any native format that leaves unused bits in the byte-aligned
count value. For instance, a 12-bit raw A/D value (which would normally be represented in a 16-bit
word, 2-byte count value) will be compressed so that 4 12-bit A/D raw counts can be represented in
3 16-bit word count values. Currently, only the WaveBook/512 supports this packed format (used
with the generic functions of the form daqAdcTransfer…).

The postProcFormat parameter specifies the format for which post-acquisition data will be
presented. This format is used by the one-step functions of the form daqAdcRd…. The default
value is DappdfRaw where the post-acquisition data format will follow the rawFormat
parameter.

Daq* Command Reference (Enhanced API) Chapter 3

3-24 Programmer’s Manual

daqAdcSetDiskFile
DLL Function daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
C daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
Visual BASIC VBdaqAdcSetDiskFile&(ByVal handle&, ByVal filename$, ByVal openMode&, ByVal

preWrite&)
Delphi daqAdcSetDiskFile(handle:DaqHandleT; filename:PChar; openMode:DaqAdcOpenMode;

preWrite:DWORD)
Parameters
handle Handle to the device for which direct to disk ADC acquisition is to be performed.
filename String representing the path and name of the file to place the raw ADC acquisition data.
openMode Specifies how to open the file for writing
preWrite Specifies the amount to pre-write(in bytes) the file
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer, daqAdcTransferStart,

daqAdcTransferStop
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetDiskFile allows you to set a destination file for ADC data transfers. ADC data
transfers will be directed to the specified disk file. The filename parameter is a string
representing the path\name of the file to be opened. The openMode parameter indicates how the
file is to be opened for writing data. Valid file open modes are defined as follows:

• DaomAppendFile - Open an existing file to append subsequent ADC transfers. This mode
should only be used when the existing file has a similar ADC channel group configuration as
the subsequent transfers.

• DoamWriteFile - Rewrite or write over an existing file. This operation will destroy the
original contents of the file.

• DoamCreateFile- Create a new file for subsequent ADC transfers. This mode does not
require that the file exist beforehand.

The preWrite parameter may, optionally, be used to specify the amount that the file is to be pre-
written before the actual data collection begins. Specifying the pre-write amount may increase the
data-to-disk performance of the acquisition if it is known beforehand how much data will be
collected. If no pre-write is to be done, then the preWrite parameter should be set to 0.

daqAdcSetFreq
DLL Function daqAdcSetFreq(DaqHandleT handle, FLOAT freq);

C daqAdcSetFreq(DaqHandleT handle, FLOAT freq);

Visual BASIC VBdaqAdcSetFreq&(ByVal handle&, ByVal freq!)

Delphi daqAdcSetFreq(handle:DaqHandleT; freq:single)

Parameters
handle Handle to the device for which the ADC acquisition frequency is to be set.
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcGetFreq, daqAdcSetClockSource

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency
specified in Hz. The frequency is converted to two counter values that control the frequency of the
pacer clock (in this conversion, some resolution of the frequency may be lost). daqAdcRdFreq
can be used to read the exact frequency setting of the pacer clock. daqAdcSetClock can be used
to explicitly set the two counter values of the pacer clock. The pacer clock can be used to control
the sampling rate of the A/D converter.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-25

daqAdcSetMux
DLL Function daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
C daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcSetMux&(ByVal handle&, ByVal startChan&, ByVal endChan&, ByVal gain&,

ByVal flags&)
Delphi daqAdcSetMux(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; const

gain:DaqAdcGain; flags:DWORD)
Parameters
handle Handle to the device for which to configure the ADC channel scan group
startChan The starting channel of the scan group
endChan The ending channel of the scan group
gain The gain value for all channels
flags Channel configuration flags in the form of a bit mask
Returns DerrInvGain - Invalid gain

DerrIncChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqAdcSetScan, daqAdcGetScan

Program References DACEX1.C, DAQEX.FRM (VB)
Used With All devices

daqAdcSetMux sets a simple scan sequence of local A/D channels from startChan to
endChan with the specified gain value. This command provides a simple alternative to
daqAdcSetScan if only consecutive channels need to be acquired. The flags parameter is used
to set channel dependent options. See ADC Flags Definition table for channel flags definitions.

daqAdcSetRate
DLL Function daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
C daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
Visual BASIC VBdaqAdcSetRate(ByVal handle&, ByVal mode&, ByVal acqState&, ByVal reqRate!,

actualRate!);
Delphi daqAdcSetRate(handle: DaqHandleT; mode: DaqAdcRateMode, acqState:

DaqAdcAcqState; reqRate:FLOAT; actualRate:PFLOAT);
Parameters
handle Handle to the device for which to set ADC scanning frequency.
mode Specifies the rate mode (frequency or period).
acqState Specifies the acquisition state to which the rate is to be applied.
reqRate Specifies the requested rate.
actualRate Returns the actual rate applied. This may be different from the requested rate.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetAcq, daqAdcSetTrig, daqAdcArm, daqAdcSetFreq, daqAdcGetFreq

Program References
Used With All devices

daqAdcSetRate configures the ADC scan rate using the rate mode specified by the mode
parameter. Currently, the valid modes are:

• DarmPeriod - Defines the requested rate to be in periods/sec.
• • DarmFrequency - Defines the requested rate to be a frequency.

This function will set the ADC acquisition rate requested by the reqRate parameter for the
acquisition state specified by the acqState parameter. Currently, the following acquisition states
are valid:

• DaasPreTrig - Sets the pre-trigger ADC acquisition rate to the requested rate.
• DaasPostTrig - Sets the post-trigger ADC acquisition rate to the requested rate.

If the requested rate is unattainable on the specified device, a rate will be automatically adjusted to
the device’s closest attainable rate. If this occurs, the actualRate parameter will return the actual
rate for which the device has been programmed.

Daq* Command Reference (Enhanced API) Chapter 3

3-26 Programmer’s Manual

daqAdcSetScan
DLL Function daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
C daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
Visual BASIC VBdaqAdcSetScan&(ByVal handle&, channels&(), gains&(), flags&(), ByVal

chanCount&)
Delphi daqAdcSetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;

flags:PDWORD; chanCount:DWORD)
Parameters
handle Handle to the device for which ADC scan group is to be configured
channels An array of up to 512 channel numbers
*gains An array of up to 512 gain values
flags Channel configuration flags in the form of a bit mask
chanCount The number of values in the chans and gains arrays

Valid values: 1 -512
Returns DerrNotCapable - No high speed digital

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqAdcGetScan, daqAdcSetMux

Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

DaqAdcSetScan configures an A/D scan group consisting of multiple channels. As many as 512
channel entries can be made in the A/D scan group configuration. Any analog input channel can be
included in the scan group configuration at any valid gain setting. Scan group configuration may be
composed of local or expansion channels and (for the DaqBook/DaqBoard) the high-speed digital
I/O port.

The channels parameter is a pointer to an array of up to 512 channel values. Each entry
represents a channel number in the scan group configuration. Channels can be entered multiple
times at the same or different gain setting.

The gains parameter is a pointer to an array of up to 512 gain settings. Each gain entry represents
the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting
for the corresponding channel.

The flags parameter is a pointer to an array of up to 512 channel flag settings. Each flag entry
represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel
entry. The channel flags can be used to set channel specific configuration settings (such as polarity).
See the ADC Flags Definition table for valid channel flag values.

The chanCount parameter represents the total number of channels in the scan group configuration.
This number also represents the number of entries in each of the channels, gains and flags
arrays.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-27

daqAdcSetTrig
DLL Function daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
C daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
Visual BASIC VBdaqAdcSetTrig&(ByVal handle&, ByVal triggerSource&, ByVal rising&, ByVal

level%, ByVal hysteresis%, ByVal channel&)
Delphi daqAdcSetTrig(handle:DaqHandleT; triggerSource:DaqAdcTriggerSource;

rising:longbool; level:WORD; hysteresis:WORD; channel:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition trigger is to be configured.
triggerSource Sets the trigger source.
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level (in A/D counts) for an analog level trigger
hysteresis hysteresis value for analog level trigger (if selected)
channel Channel for which the analog level trigger(if selected) is to be detected.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetAcq

Program References ADCEX1.C, DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqAdcSetTrig sets and arms the trigger of the A/D converter. Several trigger sources and
several mode flags can be used for a variety of acquisitions. daqAdcSetTrig will stop current
acquisitions, empty acquired data, and arm the Daq* using the specified trigger.

Trigger detection for the given trigger source will not begin until the acquisition has been armed
with the daqAdcArm function. Trigger sources may be defined as follows:

• DatsImmediate - Trigger the acquisition immediately upon issuance of the daqAdcArm
function. This trigger mode is used to begin collecting data immediately upon configuration
of the acquisition.

• DatsSoftware - Trigger the acquisition upon issuance of the daqAdcSoftTrig function.
This trigger mode can be used to initiate a trigger upon some form of user or application
program input.

• DatsAdcClock - Trigger the acquisition upon ADC pacer clock input. This trigger mode
can be used to synchronize the trigger event with the ADC pacer clock.

• DatsExternalTTL - Trigger the acquisition upon sensing a rising or falling (depending
on state of rising flag) signal on an external TTL input signal (trig0 - pin 25 on P1).

• DatsHardwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in hardware to allow generally faster acquisition frequencies
than the DatsSoftwareAnalog trigger source. However, use of this mode is restricted to
channel level triggering on only the first channel within the channel scan (defined by the
channel parameter). Note: This mode is not available on Daq PCMCIA product lines.

• DatsSoftwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in software and generally will not allow the acquisition speeds of
the DatsHardwareAnalog trigger source. However, this mode has no trigger channel
restrictions. Any valid channel in the scan group can be configured as the trigger channel by
specifying it in the channel parameter.

Note: The level parameter is only used for the analog trigger modes. level is a count
representing the A/D count level trigger threshold to be passed through in order to satisfy the analog
trigger event. A number of factors are used to determine its proper value. For help in calculating
this analog count level properly, see the daqAdcCalcTrig function.

Daq* Command Reference (Enhanced API) Chapter 3

3-28 Programmer’s Manual

daqAdcSetTrigEnhanced
DLL Function daqAdcSetTrigEnhanced(DaqHandleT handle, DaqAdcTriggerSource *triggerSources,

PDWORD gains, PDWORD adcRanges, DaqEnhTrigDef trigDef, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

C daqAdcSetTrigEnhanced(DaqHandleT handle, DaqAdcTriggerSource *triggerSources,
PDWORD gains, PDWORD adcRanges, DaqEnhTrigDef trigSense, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

Visual BASIC VBdaqAdcSetTrigEnhanced&(ByVal handle&, triggerSources&, gains&, adcRanges&,
trigSense&, levels!, hysteresis!, channels&, chanCount&, opStr$)

Delphi daqAdcSetTrigEnahanced(handle:DaqHandleT; triggerSources:DaqAdcTriggerSource;
gains: PDWORD; adcRanges: PDWORD; trigSense:DaqEnhTrigDef; levels : PFLOAT;

 hysteresis : PFLOAT; channels:PDWORD; chanCount:DWORD; opStr: String)
Parameters
handle Handle to the device for which the ADC acquisition trigger is to be configured.
triggerSource A pointer to an array of trigger sources for each defined trigger channel.
gains A pointer to an array of gains for each defined A/D trigger channel.
levels A pointer to an array of A/D analog trigger levels for each defined A/D trigger channel.
hysteresis A pointer to an array of hysteresis values for each defined A/D trigger channel.
trigSense A pointer to an array of trigger sensitivity flags for each defined A/D channel trigger source.
adcRanges A pointer to an array of polarity flag definitions for each defined A/D channel.
channels A pointer to an array of trigger channels representing the actual A/D trigger channels to trigger on.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetAcq, daqAdcSetTrig, daqAdcSetScan

Program References
Used With WaveBook/512, WaveBook/516

daqAdcSetTrigEnhanced configures the device for enhanced triggering. Enhanced trigger
configuration allows the device to be configured to detect A/D triggering formed with multiple A/D
channel trigger-event conditions. The enhanced trigger event may be defined as a combination of
multiple A/D analog-level event conditions that are logically and’d or or’d.

The trigger event is formulated based on the channel trigger event for each channel in the trigger
sequence. The total number of trigger channels is defined by the chanCount parameter. Each
channel trigger configuration parameter definition is a pointer to an array of chanCount length and
is defined as follows:

• channels - Defines a pointer to an array of actual A/D channel numbers for which to
configure the corresponding trigger events.

• triggerSources - Defines a pointer to an array of trigger sources for which to configure
the corresponding A/D trigger events for the corresponding channel in the channels array. See
the ADC Trigger Source Definitions table for valid triggers.

• gains - Defines a pointer to an array of gains corresponding to the actual A/D channels in
the corresponding A/D channel number in the channels array.

• adcRanges - Defines a pointer to an array of A/D ranges for the A/D channels defined in the
corresponding channels array.

• hysteresis - Defines a pointer to an array of hysteresis values for each corresponding A/D
channel defined in the channels array.

• levels - Defines a pointer to an array of A/D levels for which, when satisfied, will set the
trigger event for the corresponding channel defined in the channels array.

• opStr - Defines a string that defines the logical relationship between the individual channel
trigger events and the global A/D trigger condition. Currently, the string can be defined as “*”
 to perform an and operation or “+” to perform an or operation on the individual channel
trigger events to formulate the global A/D trigger condition.

• trigSense - Defines an array of trigger sensitivity definitions for satisfying the defined
trigger event for the corresponding channel defined in the channels array. Currently, the valid
trigger sensitivity values are as follows:

DatdRisingEdge Trigger the channel on the rising edge of the signal at the specified level.
DatdFallingEdge Trigger the channel on the falling edge of the signal at the specified level.
DatdAboveLevel Trigger the channel when the signal is above the specified level.
DatdBelowLowel Trigger the channel when the signal is below the specified level.
DatdRisingEdgeLatched Trigger the channel on the rising edge of the signal at the specified level

and latch the channel trigger event.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-29

DatdFallingEdgeLatched Trigger the channel on the falling edge of the signal at the specified level
and latch the channel trigger event.

DatdAboveLevelLatched Trigger the channel when the signal is above at the specified level and
latch the channel trigger event.

DatdBelowLevelLatched Trigger the channel when the signal is below at the specified level and
latch the channel trigger event.

Note: The …Latched trigger sensitivities indicate the device will maintain the trigger event for the given
channel regardless of subsequent states of the input signal. After the channel has triggered, it will remain
in a triggered state while the current acquisition is active. The non-latched trigger sensitivities will only
indicate a channel trigger event while the input signal for the given channel is in the triggered state.

daqAdcSoftTrig
DLL Function daqAdcSoftTrig(DaqHandleT handle);

C daqAdcSoftTrig(DaqHandleT handle);

Visual BASIC VBdaqAdcSoftTrig&(ByVal handle&)

Delphi daqAdcSoftTrig(handle:DaqHandleT)

Parameters
handle Handle to the device to which the ADC software trigger is to be applied
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetTrig, daqAdcSetAcq

Program References None
Used With All devices

daqAdcSoftTrig is used to send a software trigger command to the Daq* device. This software
trigger can be used to initiate a scan or an acquisition from a program after configuring the software
trigger as the trigger source. This function may only be used if the trigger source for the acquisition
has been set to DatsSoftware with the daqAdcSetTrig function.

Daq* Command Reference (Enhanced API) Chapter 3

3-30 Programmer’s Manual

daqAdcTransferBufData

DLL Function daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

C daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC VBdaqAdcTransferBufData(ByVal handle, buf%, ByVal scanCount&, ByVal bufMask&,
retCount&);

Delphi daqAdcTransferBufData(handle: DaqHandleT; buf : PWORD, scanCount : DWORD,
bufMask: DaqAdcBufferXferMask; retCount: PDWORD);

Parameters
handle Handle to the device for which the ADC buffer should be retrieved.
buf Pointer to an application-supplied buffer to place the buffered data.
scanCount Number of scans to retrieve from the acquisition buffer.
bufMask A mask defining operation depending on the current state of the acquisition buffer
retCount A pointer to the total number of scans returned, if any.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferSetBuffer, daqAdcTransferGetStat

Program References
Used With All devices

daqAdcTransferBufData requests a transfer of scanCount scans from the driver-allocated
ADC acquisition buffer to the specified user-supplied buffer. The bufMask parameter can be used
to specify the conditions for the transfer as follows:

• DabtmWait - Instructs the function to wait until the requested number of scans are available
in the driver-allocated acquisition buffer. When the requested number of scans are available,
the function will return with retCount set to scanCount, the number of scans requested.
ADC data will be returned in the memory referred to by the buf parameter.

• DabtmNoWait - Instructs the function to return immediately if the specified number of scans
are not available when the function is called. If the entire amount requested is not available,
the function will return with no data and retCount will be set to 0. If the requested number
of scans are available in ADC acquisition buffer, the function will return with retCount set
to scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

• DabtmRetAvail - Instructs the function to return immediately, regardless of the number of
scans available in the driver-allocated acquisition buffer. The retCount parameter will
return the total number of scans retrieved. retCount can return anything from 0 to
scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

The driver-allocated acquisition buffer must have been allocated prior to calling this function. This
is performed via the daqAdcTransferSetBuffer. Refer to daqAdcTransferSetBuffer
for more details on specifying the driver-allocated acquisition buffer.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-31

daqAdcTransferGetStat
DLL Function daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);

C daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);

Visual BASIC VBdaqAdcTransferGetStat&(ByVal handle&, active&, retCount&)

Delphi daqAdcTransferGetStat(handle:DaqHandleT; var active:DWORD; var retCount:DWORD)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
active A pointer to the transfer-state flags in the form of a bit mask
retCount A pointer to the total number of ADC scans acquired (or available) in the current transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferStop

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferGetStat allows you to retrieve the current state of an ADC acquisition
transfer.

The active parameter will indicate the current state of the transfer in the form of a bit mask. Refer
to the ADC Acquisition/Transfer Active Flag Definitions (in the ADC Miscellaneous Definitions
table) for valid bit-mask states.

The retCount parameter will return the total number of scans acquired in the current transfer if
the transfer is in user-allocated buffer mode or will return the total number of unread scans in the
acquisition buffer if the transfer is in driver-allocated buffer mode. Refer to the
daqAdcTransferSetBuffer function for more information on buffer allocation modes.

The transfer state and return count values will continue to be updated until any of the following
occurs:

• the transfer count is satisfied
• the transfer is stopped (daqAdcStopTransfer)
• the acquisition is disarmed (daqDisarm)

Daq* Command Reference (Enhanced API) Chapter 3

3-32 Programmer’s Manual

daqAdcTransferSetBuffer
DLL Function DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
C DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
Visual BASIC VBdaqAdcTransferSetBufferAllocMem&(ByVal handle&, ByVal scanCount&, ByVal

transferMask&)
Delphi daqAdcTransferSetBufferAllocMem(handle:DaqHandleT; scanCount:DWORD;

transferMask:DWORD)
Parameters
handle Handle to the device for which an ADC transfer is to be performed.
buf Pointer to the buffer for which the acquired data is to be placed.
scanCount The total length of the buffer (in scans).
transferMask Configures the buffer transfer mode.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferStart, daqAdcTransferStop, daqAdcTransferGetStat, daqAdcSetAcq,

daqAdcTransferBufData
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferSetBuffer allows you to configure transfer buffers for ADC data
acquisition. This function can be used to configure the specified user- or driver-allocated buffers for
subsequent ADC transfers.

If a user-allocated buffer is to be used, two conditions apply:
• The buffer specified by the buf parameter must have already been allocated by the user

prior to calling this function.
• The allocated buffer must be large enough to hold the number of ADC scans as determined

by the current ADC scan group configuration.

The scanCount parameter is the total length of the transfer buffer in scans. The scan size is
determined by the current scan group configuration. Refer to the daqAdcSetScan and
daqAdcSetMux functions for further information on scan group configuration.

The character of the transfer can be configured via the transferMask parameter. Among other
things, the transferMask specifies the update, layout/usage, and allocation modes of the buffer.
The modes can be set as follows:

• DatmCycleOn - Specifies the buffer to be a circular buffer in buffer-cycle mode; allows the
transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of
ADC data back to the beginning of the buffer. In this mode, the ADC transfer buffer will
continue to be wrapped until the post-trigger count has been reached (specified by
daqAdcSetAcq) or the transfer/acquisition is halted by the application
(daqAdcTransferStop, daqAdcDisarm). The default setting is DatmCycleOff.

• DatmUpdateSingle - Specifies the update mode as single sample. The update mode can
be set to update for every sample or for every block of ADC data. The update-on-single
setting allows the ADC transfer buffer to be updated for each sample collected by the ADC.
Compared to the block mode, this setting provides a higher degree of real-time transfer-buffer
updating at the expense of slower aggregate-data throughput rates. The default setting is
DatmUpdateBlock.

• DatmDriverBuf - Specifies that the driver allocate the ADC acquisition buffer as a circular
buffer whose length is determined by the scanCount parameter with current scan group
configuration. This option allows the driver to manage the circular acquisition buffer rather
than placing the burden of buffer management on the user. This option should be used with
the daqAdcTransferBufData to access the ADC acquisition buffer. The
daqAdcTransferStop or the daqAdcDisarm function will stop the current transfer and
de-allocate the driver-supplied ADC acquisition buffer. The default setting is
DatmUserBuf. The DatmUserBuf option specifies a user-allocated ADC acquisition
buffer. Here, buffer management must be done in user code. This option should be used with
the daqAdcTransferStart function to perform the ADC data transfer operation.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-33

daqAdcTransferStart
DLL Function daqAdcTransferStart(DaqHandleT handle);

C daqAdcTransferStart(DaqHandleT handle);

Visual BASIC VBdaqAdcTransferStart&(ByVal handle&)

Delphi daqAdcTransferStart(handle:DaqHandleT)

Parameters
handle Handle to the device to initiate an ADC transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTranferSetBuffer, daqAdcTransferGetStat, daqAdcTransferStop

Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferStart allows you to initiate an ADC acquisition transfer. The transfer will be
performed under the current active acquisition. If no acquisition is currently active, the transfer will
not initiate until an acquisition becomes active (via the daqAdcArm function). The transfer will be
characterized by the current settings for the transfer buffer. The transfer buffer can be configured
via the daqAdcSetTransferBuffer function.

daqAdcTransferStop
DLL Function daqAdcTransferStop(DaqHandleT handle);

C daqAdcTransferStop(DaqHandleT handle);

Visual BASIC VBdaqAdcTransferStop&(ByVal handle&)

Delphi daqAdcTransferStop(handle:DaqHandleT)

Parameters
handle Handle to the device for which the Adc data transfer is to be stopped
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferGetStat

Program References None
Used With All devices

daqAdcTransferStop allows you to stop a current ADC buffer transfer, if one is active. The
current transfer will be halted and no more data will transfer into the transfer buffer. Though the
transfer is stopped, the acquisition will remain active. Transfers can be re-initiated with
daqAdcStartTransfer after the stop, as long as the current acquisition remains active. The
acquisition can be halted by calling the daqAdcDisarm function.

Daq* Command Reference (Enhanced API) Chapter 3

3-34 Programmer’s Manual

daqCalGetConstants
DLL Function daqCalGetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);
C daqCalGetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);
Visual BASIC VBdaqCalGetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,

al gainConstant%, offsetConstant%);
Delphi daqCalGetConstants(handle: DaqHandleT;channel:DWORD; gain: DaqAdcGain; range:

DaqAdcRangeT; gainConstant:PWORD; offsetConstant:PSHORT);
Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
channel Channel number to apply the calibration settings
gain Gain range to apply the calibration settings
range A/D input range to apply the calibration settings
gain Pointer to the gain value for the current entry
offset Pointer to the offset value for the current entry
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCalSetConstants, daqCalSelectCalTable,

daqCalSelectInputSignal,daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalGetConstants gets the calibration constants from the currently selected calibration table
chosen by the daqCalSetConstants command.

The user-calibration constants are gains and offsets that are applied to the input data. The data
comes in, is multiplied by the gain, then the offset is added to it. The resulting data is the conversion
between the raw A/D data and the data that is presented during the acquisition. Each channel, gain,
and bipolar/unipolar setting has a different pair of gain and offset values. The first three parameters
of the daqCalGetConstants function specify which set of constants are to be retrieved. The
last two parameters are the actual constants. These constants are in a particular binary format. The
gain constant is 32768 times the gain. For a gain of ×1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768), and the minimum gain is ×0 (0/32768). The
offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-35

daqCalSaveConstants
DLL Function daqCalSaveConstants(DaqHandleT handle, DWORD channel);

C daqCalSaveConstants(DaqHandleT handle, DWORD channel);

Visual BASIC VBdaqCalSaveConstants(ByVal handle&, ByVal channel&)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; channel: DWORD)

Parameters
handle Handle to the device for which the calibration constants are to be saved.
channel Channel to save to the current calibration settings for
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal,

daqCalSelectCalTable
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSaveConstants will save the current calibration table as set by the
daqCalSelectCalTable routine. Current calibration constants can be updated or modified
with the daqCalSetConstants routine. The working calibration table should only be saved
after all desired calibration constants have been updated for the device.

daqCalSelectCalTable
DLL Function daqCalSelectCalTable(DaqHandleT handle, DaqCalTableTypeT tableType);

C daqCalSelectCalTable(DaqHandleT handle, DaqCalTableTypeT tableType);

Visual BASIC VBdaqCalSelectCalTable(ByVal handle&, ByVal tableType as DaqCalTableTypeT)

Delphi daqCalSelectCalTable(handle: DaqHandleT; tableType : DaqCalTableTypeT)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
tableType Calibration table type to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal,

daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSelectCalTable allows the selection of the calibration-table source for the device.
Currently, there are two valid calibration-table types which are selected via the tableType
parameter:

• DcttFactory - Selects the factory calibration table. The factory calibration table reflects
factory calibration constants for the selected device. This is the default setting.

• DcttUser - Selects the user-calibration table. The user-calibration table reflects calibration
constants defined by the user or the device’s user-calibration application. Refer to the
calibration documentation for specific settings.

This function should be used to set the current calibration table for the device. The current
calibration table at any time will be set to the calibration table last selected during the current device
session.

Daq* Command Reference (Enhanced API) Chapter 3

3-36 Programmer’s Manual

daqCalSelectInputSignal
DLL Function daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

C daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

Visual BASIC VBdaqCalSelectInputSignal(ByVal handle&, ByVal input as DaqCalInputT)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; input: DaqCalInputT)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
input Calibration input signal source to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectCalTable,

daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSelectInputSignal allows the selection of the input signal source for user calibration.
The input signal source is specified by the input parameter. Please refer to the Calibration Input
Signal Sources table for valid parameters on input signal sources.

daqCalSetConstants
DLL Function daqCalSetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, WORD gainConstant, SHORT offsetConstant);
C daqCalSetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, WORD gainConstant, SHORT offsetConstant);
Visual BASIC VBdaqCalSetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,

ByVal gainConstant%, ByVal offsetConstant%);
Delphi daqCalSetConstants(handle: DaqHandleT;channel:DWORD; gain: DaqAdcGain; range:

DaqAdcRangeT; gainConstant:WORD; offsetConstant:SHORT);
Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
channel Channel number to apply the calibration settings
gain Gain range to apply the calibration settings
range A/D input range to apply the calibration settings
gain Gain value to apply
offset Offset value to apply
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCalGetConstants, daqCalSelectCalTable,

daqCalSelectInputSignal,daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSetConstants sets the user-accessible calibration constants. These calibration
constants are gains and offsets that are applied to the input data. The data comes in, is multiplied by
the gain, then the offset is added to it. The resulting data is the conversion between the raw A/D data
and the data that is presented during the acquisition. Each channel, gain, and bipolar/unipolar setting
has a different pair of gain and offset values. The first three parameters of the
daqCalSetConstants function specify which set of constants are to be changed. The last two
parameters are the actual constants. These constants are in a particular binary format. The gain
constant is 32768 times the gain. For a gain of ×1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768), and the minimum gain is ×0 (0/32768). The
offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent
acquisitions until another daqOpen is performed. After daqOpen, the original calibration
constants are re-read from the NVRAM in the WaveBook and expansion chassis; then, the working
copy as set by daqCalSetCalConstants is overwritten.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-37

daqCalConvert
DLL Function daqCalConvert(DaqHandleT handle,PWORD counts, DWORD scans);

C daqCalConvert(DaqHandleT handle,PWORD counts, DWORD scans);

Visual BASIC VBdaqCalConvert&(ByVal handle&, counts%(), ByVal scans&)

Delphi daqCalConvert(handle:DaqHandleT; counts:PWORD; scans:DWORD)

Parameters
handle Handle to the device to be calibrated.
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqReadCalFile, daqCalSetup, daqCalSetupConvert

Program References None
Used With All devices

daqCalConvert performs the actual calibration of one or more scans according to the previously
called daqCalSetup function. This function will modify the array of data passed to it. This
function should be preceded by the daqCalSetup function.

The counts parameter specifies a pointer to an array of the raw A/D counts retrieved during an
acquisition. Upon return, the counts array will hold calibrated data.

The scans parameter indicates the number of scans (as defined by the current scan group
configuration) in the acquisition.

daqCalSetup
DLL Function daqCalSetup(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings,

DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL
noOffset);

C daqCalSetup(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings,
DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL
noOffset);

Visual BASIC VBdaqCalSetupConvert&(ByVal handle&, ByVal nscan&, ByVal readingsPos&, ByVal
nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&, ByVal
bipolar&, ByVal noOffset&, counts%(), ByVal scans&)

Delphi daqCalSetupConvert(handle:DaqHandleT; nscan:DWORD; readingsPos:DWORD;
nReadings:DWORD; chanType:DcalType; chanGain:DaqAdcGain; startChan:DWORD;
bipolar:longbool; noOffset:longbool; counts:PWORD; scans:DWORD)

Parameters
handle Handle to the device to be calibrated
nscan The number of readings in a single scan.
readingsPos The position of the readings to be calibrated within the scan.
nReadings The number of readings to calibrate.
chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1 when

calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.
chanGain The gain setting of the channels to be calibrated.
startChan The channel number of the first channel to be converted.
bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqReadCalFile, daqCalConvert, daqCalSetupConvert

Program References None
Used With All devices

daqCalSetup will configure the order and type of data to be calibrated. This function requires all
data to be calibrated to come from consecutive channels configured for the same gain, polarity, and
channel type. The calibration can be configured to use only the gain calibration constant and not the
offset constant. This allows the offset to be removed at runtime using the zero compensation
functions.

Daq* Command Reference (Enhanced API) Chapter 3

3-38 Programmer’s Manual

daqCalSetupConvert
DLL Function daqCalSetupConvert(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD

nReadings, DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset, PWORD counts, DWORD scans);

C daqCalSetupConvert(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD
nReadings, DcalType chanType, DaqAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset, PWORD counts, DWORD scans);

Visual BASIC VBdaqCalSetupConvert&(ByVal handle&, ByVal nscan&, ByVal readingsPos&, ByVal
nReadings&, ByVal chanType&, ByVal chanGain&, ByVal startChan&, ByVal
bipolar&, ByVal noOffset&, counts%(), ByVal scans&)

Delphi daqCalSetupConvert(handle:DaqHandleT; nscan:DWORD; readingsPos:DWORD;
nReadings:DWORD; chanType:DcalType; chanGain:DaqAdcGain; startChan:DWORD;
bipolar:longbool; noOffset:longbool; counts:PWORD; scans:DWORD)

Parameters
handle Handle to the device to be calibrated
nscan The number of readings in a single scan.
readingsPos The position of the readings to be calibrated within the scan.
nReadings The number of readings to calibrate.
chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1 when

calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.
chanGain The gain setting of the channels to be calibrated.
startChan The channel number of the first channel to be converted.
bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqReadCalFile, daqCalSetup, daqCalConvert
Program References None
Used With All devices

daqCalSetupConvert allows you to perform both the setup and convert steps with one call to
daqCalSetupConvert. This is useful when the calibration needs to be performed multiple
times because data was read from non-consecutive channels or at different gains.

daqClose
DLL Function daqClose(DaqHandleT handle);

C daqClose(DaqHandleT handle);

Visual BASIC VBdaqClose&(ByVal handle&)

Delphi daqClose(handle:DaqHandleT)

Parameters
handle Handle to the device to be closed
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqOpen
Program References ADCEX1.C, DACEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqClose is used to close a Daq* device. Once the specified device has been closed, no
subsequent communication with the device can be performed. In order to re-establish
communications with a closed device, the device must be re-opened with the daqOpen function.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-39

daqCvtLinearConvert
DLL Function daqCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);

C daqCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);

Visual BASIC VBdaqCvtLinearConvert&(counts%(), ByVal scans&, fValues!(), ByVal nValues&)

Delphi daqCvtLinearConvert(counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)

Parameters
counts The acquired ADC readings to be converted.
scans The number of scans to be converted.
fValues An array to hold the converted readings.
nValues The size of the reading array.
Returns Refer to API Error Codes on page 3-81
See Also daqCvtLinearSetup, daqCvtLinearSetupConvert

Program References None
Used With All devices

daqCvtLinearConvert converts the ADC readings into floating point numbers using the linear
relationship that was specified with daqCvtLinearSetup. daqCvtLinearConvert may be
invoked repeatedly to perform multiple conversions, each using the same linear relationship.

daqCvtLinearSetup
DLL Function daqCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT

signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg);
C daqCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT

signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg);
Visual BASIC VBdaqCvtLinearSetupConvert&(ByVal nscan&, ByVal readingsPos&, ByVal nReadings&,

ByVal signal1!, ByVal voltage1!, ByVal signal2!, ByVal voltage2!, ByVal avg&,
counts%(), ByVal scans&, fValues!(), ByVal nValues&)

Delphi daqCvtLinearSetupConvert(nscan:DWORD; readingsPos:DWORD; nReadings:DWORD;
signal1:single; voltage1:single; signal2:single; voltage2:single; avg:DWORD;
counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)

Parameters
nscan The number of readings in a single scan (1 to 512)
readingsPos The position within the scan of the first reading to convert (0 to nscan - 1)
nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)
signal1 The transducer input signal that produces voltage1
voltage1 The transducer output voltage for input signal1
signal2 The transducer input signal that produces voltage2
voltage2 The transducer output voltage for input signal2
avg The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.
“2” (or more) specifies moving average of the specified number of scans. Each scan’s readings are

averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCvtLinearSetup, daqCvtLinearSetupConvert

Program References None
Used With All devices

daqCvtLinearSetup saves the data required for daqCvtLinearConvert to perform
conversions. Four parameters are used to specify a linear relationship: the transducer input signal
level and output voltage at 2 points in the range.

Readings from Channel Results from Channel
Scan 0 1 0 1

1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Daq* Command Reference (Enhanced API) Chapter 3

3-40 Programmer’s Manual

daqCvtLinearSetupConvert
DLL Function daqCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT

signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg, PWORD
counts, DWORD scans, PFLOAT fValues, DWORD nValues);

C daqCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signal1, FLOAT voltage1, FLOAT signal2, FLOAT voltage2, DWORD avg, PWORD
counts, DWORD scans, PFLOAT fValues, DWORD nValues);

Visual BASIC VbdaqCvtLinearSetupConvert&(ByVal nscan&, ByVal readingsPos&, ByVal nReadings&,
ByVal signal1!, ByVal voltage1!, ByVal signal2!, ByVal voltage2!, ByVal avg&,
counts%(), ByVal scans&, fValues!(), ByVal nValues&)

Delphi daqCvtLinearSetupConvert(nscan:DWORD; readingsPos:DWORD; nReadings:DWORD;
signal1:single; voltage1:single; signal2:single; voltage2:single; avg:DWORD;
counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)

Parameters
nscan The number of readings in a single scan (1 to 512).
readingsPos The position within the scan of the first reading to convert (0 to nscan - 1).
nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)
signal1 The transducer input signal that produces voltage1.
voltage1 The transducer output voltage for input signal1.
signal2 The transducer input signal that produces voltage2.
voltage2 The transducer output voltage for input signal2.
avg The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.
“2” (or more) specifies moving average of the specified number of scans. Each scan’s readings are

averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

counts The acquired ADC readings to be converted.
scans The number of scans to be converted.
fValues An array to hold the converted readings.
nValues The size of the reading array.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCvtLinearConvert, daqCvtLinearSetup

Program References None
Used With All devices

daqCvtLinearSetupConvert combines the linear setup and conversion processes into one
function.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-41

daqCvtRawDataFormat
DLL Function daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
C daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
Visual BASIC VBdaqCvtRawDataFormat&(buf%, ByVal action&, ByVal lastRetCount&,ByVal

scanCount&, ByVal chanCount&)
Delphi daqCvtRawDataFormat(PWORD buf, action:DaqAdcCvtAction; lastRetCount:DWORD;

scanCount:DWORD: chanCount:DWORD);
Parameters
buf Pointer to the buffer containing the raw data
action The type of conversion action to perform on the raw data
lastRetCount The last retCount returned from daqAdcTransferGetStat
scanCount The length of the raw data buffer in scans
chanCount The number of channels per scan in the raw data buffer
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqAdcSetDataFormat

Program References None
Used With All devices

daqCvtRawDataFormat allows the conversion of raw data to a specified format. This function
should be called after the raw data has been acquired. See the transfer data functions
(daqAdcTransfer…) for more details on the actual collection of raw data.

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling
this function, this user-allocated buffer should already contain the entire raw data transfer. Upon
completion, this data buffer will contain the converted data (the buffer must be able to contain all the
converted data).

The action parameter specifies the type of conversion to perform. The DacaUnpack value can
be used de-compress raw data. The DacaRotate can be used to reformat a circular buffer into a
linear buffer.

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data
will overwrite the raw data in the buffer, make sure the specified buffer is large enough, physically,
to contain all of the converted data.

The chanCount parameter specifies the number of channels in each scan.

Daq* Command Reference (Enhanced API) Chapter 3

3-42 Programmer’s Manual

daqCvtRtdConvert
DLL Function daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC VBdaqCvtRtdConvert&(counts%(), ByVal scans&, temp%(), ByVal ntemp&)

Delphi daqCvtRtdConvert(counts:PWORD; scans:DWORD; temp:PWORD; nTemp:DWORD)

Parameters
counts Raw A/D data from one or more scans
scans Number of scans of raw data in counts
temp Variable array to hold converted temperatures
ntemp Size of temperature array (should be number of RTDs specified in setup times the number of scans)
Returns DerrRtdNoSetup - Setup was not called

DerrRtdTArraySize - Temperature array is not large enough
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also DaqRtdSetup, DaqRtdSetupConvert

Program References None
Used With All devices

daqRTDConvert takes raw A/D readings from RTDs and converts them to temperature readings in
tenths-of-degrees Celsius (0.1°C). Note: The total number of conversions [scan * (RTD channels per
scan) * 4] must be less than 32K.

The Daq* measures temperatures sensed by RTDs attached via a DBK9 RTD expansion card. Up to 8
RTDs can attach to each DBK9. Up to 32 DBK9s may be attached to a single Daq* for a maximum of
256 temperatures. The software currently supports 100-, 500-, and 1000-ohm RTDs.

The RTD measurement functions are designed for simple temperature measurement in which each RTD
channel is read 4 times. These 4 readings must be grouped together in the scan and in order:
Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1), Dbk9VoltageD (gain=3), Dbk9VoltageD
(gain=3). The RTDs must be of the same type, and the reading groups must follow each other in the
scan sequence.

The temperature conversion functions use input data from one or more Daq* scans. They take 4
voltage readings for each RTD channel, apply the appropriate averaging method, convert the voltages
to a resistance and then (using the appropriate curves for the RTD type) convert the resistance into a
temperature. For example, assume the following readings:

Readings Channel 0 Readings Channel 1
Scan 0 1 2 3 4 5 6 7

1 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
2 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
3 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
4 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
5 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd

The 4 readings for each channel are grouped together in order. If this
scan data is passed to daqRtdConvert (through the counts
parameter) with averaging disabled (avg parameter set to 1), the
function will return the temp parameters shown in the table. Note:
Temperatures returned will be in tenths of a degree Celsius.

If the scan data is passed to daqRtdConvert (in the counts
parameter) with averaging set to block
averaging (avg parameter set to 0), the function
will return the temp parameters shown in the
table.

The conversion process is divided into two steps: setup and conversion. Setup describes the
characteristics of the temperature measurement; Conversion changes raw readings into temperatures.
For convenience, both setup and conversion can be performed at once by daqRtdSetupConvert.
All of the functions return error codes, which are defined in Daqx.h.

Temperatures
Scan 0 1

1 Ch 0 °C Ch 1 °C
2 Ch 0 °C Ch 1 °C
3 Ch 0 °C Ch 1 °C
4 Ch 0 °C Ch 1 °C
5 Ch 0 °C Ch 1 °C

Temperatures
0 1

Average of all Temperatures Ch 0 °C Ch 1 °C

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-43

daqCvtRtdSetup
DLL Function daqCvtRtdSetup(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType, rtdType,

DWORD avg);
C daqCvtRtdSetup(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType rtdType,

DWORD avg);
Visual BASIC VBdaqCvtRtdSetup&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&, ByVal

rtdType&, ByVal avg&)
Delphi daqCvtRtdSetup(nScan:DWORD; startPosition:DWORD; nRtd:DWORD; rtdType:RtdType;

avg:DWORD)
Parameters
nScan The total number of readings in a scan.

valid range 1-512
startPosition Position of the first RTD reading group in the scan.

Valid range 1-509
nRtd Number of RTD reading groups in the scan.

Valid range 1-128
rtdType Value of RTD being used.

Dbk9RtdType100 - 100 ohm RTD
Dbk9RtdType500 - 500 ohm RTD
Dbk9RtdType1K - 1000 ohm RTD

avg Type of averaging to be used.
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average

Returns DerrRtdParam - Setup parameter out of range
DerrRtdValue - Invalid RTD type
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also DaqRtdSetupConvert, DaqRtdSetupConvert

Program References None
Used With All devices

daqCvtRtdSetup sets up parameters for subsequent RTD temperature conversions. Refer to the
discussion of daqRTDConvert.

Daq* Command Reference (Enhanced API) Chapter 3

3-44 Programmer’s Manual

daqCvtRtdSetupConvert
DLL Function daqCvtRtdSetupConvert(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType

rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
C daqCvtRtdSetupConvert(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType

rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtRtdSetupConvert&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&, ByVal

rtdType&, ByVal avg&, counts%(), ByVal scans&, temp%(), ByVal ntemp&)
Delphi daqCvtRtdSetupConvert(nScan:DWORD; startPosition:DWORD; nRtd:DWORD;

rtdType:RtdType; avg:DWORD; counts:PWORD; scans:DWORD; temp:PWORD;
ntemp:DWORD)

Parameters
nScan The total number of readings in a scan.

valid range 1-512
startPosition Position of the first RTD reading group in the scan.

Valid range 1-509
nRtd Number of RTD reading groups in the scan.

Valid range 1-128
rtdType Value of RTD being used.

Dbk9RtdType100 - 100 ohm RTD
Dbk9RtdType500 - 500 ohm RTD
Dbk9RtdType1K - 1000 ohm RTD

avg Type of averaging to be used
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average

counts Raw A/D data readings from one or more scans.
scans Number of scans of raw data in contained in *counts.
temp Array to hold converted temperatures.
ntemp Size of temperature array. Should be the number of RTDs times the number of scans for no averaging and

moving averages or the number of RTDs for block averaging.
Returns DerrRtdParam - Setup parameter out of range

DerrRtdValue - Invalid RTD type
DerrRtdTArraySize - temperature storage array not large enough
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also daqRtdSetup, daqRtdConvert

Program References None
Used With All devices

daqCvtRtdSetupConvert sets up and converts raw A/D readings from RTDs into temperature
readings. Refer to the discussion of daqRTDConvert.

daqCvtSetAdcRange
DLL Function daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

C daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

Visual BASIC VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)

Delphi daqCvtSetAdcRange(Admin:single; Admax:single)

Parameters
Admin A/D minimum voltage range
Admax A/D maximum voltage range
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also
Program References None
Used With

daqCvtSetAdcRange allows you to set the current ADC range for use by the daqCvt…
functions. This function should not need to be called if used for data collected by the Daq* devices.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-45

daqCvtTCConvert
DLL Function daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC VBdaqCvtTCConvert&(counts%(), ByVal scans&, temp%(), ByVal ntemp&)

Delphi daqCvtTCConvert(counts:PWORD; scans:DWORD; temp:PWORD; ntemp:DWORD)

Parameters
counts An array of one or more scans of raw data as received from the Daq. The ADC data bits are in the 12 most

significant bits of the 16-bit integers, and the tag bits (which are discarded) are in the 4 least-significant
bits.

Valid range: Each raw data item may be any 16-bit value.
scans The number of scans of data in counts array.

Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes).
temp Variable array to hold converted temperature results. The integer values are 10 times the temperatures in

°C. For example, 50°C would be represented as 500 and -10°C would be -100.
Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the thermocouple type.

ntemp The number of entries in the temperature array. This value is checked by the functions to avoid writing past
the end of the array.

Valid range: If avg is 0, then ntc or greater. If avg is non-zero, then scans * ntc or greater.
Returns DerrTCE_NOSETUP - Setup was not called

DerrTCE_PARAM - Parameter out of range
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also DaqCvtTCSetup, DaqCvtTCSetupConvert

Program References None
Used With All devices

daqCvtTCConvert takes raw A/D readings and converts them to temperature readings in tenths of
degrees Celsius (0.1°C). The total number of conversions (scan * chans/scan) must be less than 32K.
The Daq* measures thermocouple temperatures by way of a DBK19 or DBK52 that includes a cold-
junction compensation circuit (CJC) attached to channel 0. Channel 1 is shorted for performing auto-
zero compensation. Channels 2 through 15 accept thermocouples for temperature measurement. Up to
16 expansion cards may be attached to a single Daq* to measure a maximum of 224 (16×14)
temperatures. The software supports type J, K, T, E, N28, N14, S, R and B thermocouples.

Two software techniques (calibration and zero compensation) can be used to increase the accuracy of
the DBK19 card:

• Software calibration uses gain and offset calibration constants, unique to each card, to
compensate for inherent errors on the card.

• Zero compensation is a method by which any offset voltage on the card can be removed at run-
time. This is done by measuring a shorted channel at the same gain on the actual input to find the
offset, and subtracting this value from the actual reading.

The thermocouple linearization function has a special auto-zero compensation feature that will perform
zero compensation on the raw thermocouple data before linearizing when using a DBK19. The auto-
zero feature is enabled by default, but can be disabled using the daqZeroDbk19 function. It is not
available when using unipolar mode.

The temperature measurement conversion functions are designed for temperature measurement where:
• The cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is

immediately followed in the scan sequence by the T/C channel readings, all of which must be
from the same type of T/C (including: J, K, T, E, N28, N14, S, R, or B).

• If a DBK19 is used with auto-zeroing enabled, the CJC channel reading described above must be
preceded by 2 readings from the shorted channel (channel 1). The first shorted reading must be
at the same gain setting as the CJC reading. The other shorted reading must be at the gain of the
T/C to be converted.

• If software calibration is used with the DBK19, the calibration constants for the card to be used
should be entered into the calibration file.

• The CJC and T/C readings are taken with the optimal gains (as described below).
• All non-thermocouple data conversion, if any, must be done by other means.

Daq* Command Reference (Enhanced API) Chapter 3

3-46 Programmer’s Manual

The temperature conversion functions take input data from one or more scans from the Daq*. They
then examine the CJC and thermocouple readings within that scan and, after optional averaging,
convert them to temperatures which are stored as output. For example, see the readings in the table.

The first 2 readings of each scan
are non-temperature voltage
readings to compensate for the
CJC circuit and the shorted
channel 0. The third reading is
from the CJC, and the remaining
3 readings are from 3 type J thermocouples. If the auto-zero feature is disabled, the first 2 readings will
be ignored. Otherwise, the first 2 readings will be used to remove offset errors in the CJC and T/C
reading. The CJC and T/C readings are used to produce one temperature result for each T/C reading.
Thus, the 24 original readings are reduced to 12 temperatures.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement, and Conversion changes the raw readings into temperatures. All of the
functions return error codes as defined in Daqx.h which also includes the function prototypes and the
definitions of the thermocouple-type codes.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If
auto-zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and
a T/C zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the
same type: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple,
they must be sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to
thermocouple measurements.
The scan may include other
types of signals such as
voltage, current, or digital
input; but conversion of these
readings is up to you. The
temperature conversion
functions cannot handle them.

The temperature measurements
must be made with the correct
gain settings. The gain settings
for the different thermocouple types depend on the channel type and the bipolar/unipolar setting of the
Daq* as specified in the table. Note: Unipolar operations are not recommended for thermocouple
measurement unless the measured temperatures will be greater than the Daq* temperature.

When measuring thermocouples using the gains above, the following temperature ranges apply.

Reading
Scan 0 1 2 3 4 5

1 V or CJC Zero V or J Zero CJC J1a J1b J1c
2 V or CJC Zero V or J Zero CJC J2a J2b J2c
3 V or CJC Zero V or J Zero CJC J3a J3b J3c
4 V or CJC Zero V or J Zero CJC J4a J4b J4c

Gain Codes
Type Unipolar Gain Code Unipolar

Gain
Bipolar Gain

Code
Bipolar

Gain
CJC Dbk19UniCJC 90 Dbk19BiCJC 60
J Dbk19UniTypeJ 180 Dbk19BiTypeJ 90
K Dbk19UniTypeK 180 Dbk19BiTypeK 90
T Dbk19UniTypeT 240 Dbk19BiTypeT 180
E Dbk19UniTypeE 90 Dbk19BiTypeE 60
N28 Dbk19UniTypeN28 240 Dbk19BiTypeN28 240
N14 Dbk19UniTypeN14 180 Dbk19BiTypeN14 90
S Dbk19UniTypeS 240 Dbk19BiTypeS 240
R Dbk19UniTypeR 180 Dbk19BiTypeR 240
B Dbk19UniTypeB 240 Dbk19BiTypeB 240

Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature
T/C

Type
Measured Temperature Range

@ 0°C ambient
Measured Temperature Range

@ 25°C ambient
Measured Temperature Range

@ 50°C ambient
Temperature °C 0°C Output (mV) Temperature°C 25°C Output (mV) Temperature°C 50°C Output (mV)

J -200 to 760 -7.9 to 42.9 -200 to 760 -9.2 to 41.6 -200 to 760 -11.8 to 39.0
K -200 to 1372 -5.9 to 54.9 -200 to 1372 -6.9 to 53.9 -200 to 1372 -8.9 to 52.9 (50.0
T -200 to 400 -5.6 to 20.9 -200 to 400 -6.6 to 19.9 -200 to 400 -8.7 to 17.7
E -270 to 1000 -9.8 to 76.4 -270 to 1000 -11.3 to 74.9 -270 to 1000 -14.5 to 71.7

 N28 -270 to 400 -4.3 to 13.0 -270 to 400 -5.0 to 12.3 -270 to 400 -6.4 to 10.9
N14 0 to 1300 0.0 to 47.5 0 to 1300 -0.7 to 46.8 0 to 1300 -2.0 to 45.5

S -50 to 1780 -0.2 to 18.8 -50 to 1780 -0.4 to 18.7 -50 to 1780 -0.7 to 18.4
R -50 to 1780 -0.2 to 21.3 -50 to 1780 -0.4 to 21.1 -50 to 1780 -0.7 to 20.8
B 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-47

daqCvtTCSetup
DLL Function daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL

bipolar, DWORD avg);
C daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL

bipolar, DWORD avg);
Visual BASIC VBdaqCvtTCSetup&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal tcType&,

ByVal bipolar&, ByVal avg&)
Delphi daqCvtTCSetup(nscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;

bipolar:longbool; avg:DWORD)
Parameters
nscan The number of readings in a single scan of DaqBook/DaqBoard data. The daqCvtTC… functions can

convert several consecutive scans worth of data in a single invocation.
Valid range: 2 to 512.

cjcPosition The position of the actual cold-junction compensation circuit (CJC) reading within each scan (not the CJC
zero reading, if any). The first reading of the scan is position 0, and the last reading is nscan -1. Each
scan of temperature data must include a reading of the CJC signal on the expansion board to which the
thermocouples are attached. The CJC readings must be taken with the gain in the section Scan Setup.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero compensation.
ntc The number of thermocouple signals that are to be converted to temperature values. The thermocouple

signal readings must immediately follow the CJC reading in the scan data. The first thermocouple signal
is at scan position cjcPosition+1,; the next is at cjcPosition+2,; and so on. Valid range: 1 to nscan-1-
cjcPosition.

tcType The type of thermocouples that generated the measurements. Valid range: One of the pre-defined values,
Dbk19TCTypeJ, Dbk19TCTypeK, Dbk19TCTypeT, Dbk19TCTypeE, Dbk19TCTypeN28,
Dbk19TCTypeN14, Dbk19TCTypeS, Dbk19TCTypeR or Dbk19TCTypeB.

bipolar Must be set true (non-zero) if the readings were acquired with the Daq* set for bipolar operation. Must be
set false (zero) for unipolar operation. The required gain settings for the CJC and thermocouple channels
change depending on the unipolar/bipolar mode. Valid range: 0 for unipolar or any non-zero value for
bipolar.

avg The type of averaging to be performed. Valid range: any unsigned integer. Since the thermocouple voltage
may be small compared to the ambient electrical noise, averaging may be necessary to yield a steady
temperature output.

0 specifies block averaging in which all of the scans are averaged together to compute a single temperature
measurement for each of the ntemp thermocouples.

1 specifies no averaging. Each scan’s readings are converted into ntemp measured temperatures for a
total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Scan readings are averaged with the
avg-1 preceding scans’ readings before conversion. The first avg-1 scans are averaged with all of the
preceding scans because they do not have enough preceding scans. For example, if avg is 3, then the
results from the first scan are not averaged at all, the results from the second scan are averaged with the
first scan, the results from the third and subsequent scans are averaged with the preceding two scans as
shown in the table.

Returns DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also daqCvtTCConvert, daqCvtTCSetupConvert

Program References None
Used With All devices

daqCvtTCSetup sets up parameters for subsequent temperature conversions. The next table
shows how averages are computed.

Scan Readings
from
Channel

Results from Channel

0 1 0 1
1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Daq* Command Reference (Enhanced API) Chapter 3

3-48 Programmer’s Manual

daqCvtTCSetupConvert
DLL Function daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,

BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
C daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,

BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtTCSetupConvert&(ByVal nscan&, ByVal cjcPosition&, ByVal ntc&, ByVal

tcType&, ByVal bipolar&, ByVal avg&, counts%(), ByVal scans&, temp%(), ByVal
ntemp&)

Delphi daqCvtTCSetupConvert(nscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;
bipolar:longbool; avg:DWORD; counts:PWORD; scans:DWORD; temp:PWORD;
ntemp:DWORD)

Parameters
nscan The number of readings in a single scan.

Valid range: 1- 512
cjcPosition The position of the CJC reading within the scan.

Valid range:
0 -(nscan-1)
2 -(nscan-1), if auto-zeroing is used with DBK19.

ntc The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 -(nscan-cjcposition-1)

tcType The type of thermocouples being measured.
bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
avg The type of averaging to be performed: block, none or moving.
counts The raw data from one or more scans.
scans The number of scans of raw data in counts.
temp The converted temperatures in tenths of a degree C.
ntemp The number of elements provided in the temp array (for error checking).
Returns DerrTCE_PARAM - Parameter out of range

DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also DaqCvtTCSetup, daqCvtTCConvert

Program References None
Used With All devices

daqCvtTCSetupConvert sets up and converts raw A/D readings into temperature readings.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-49

daqDacSetOutputMode
DLL Function daqDacSetOutputMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacOutputMode outputMode);
C daqDacSetOutputMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacOutputMode outputMode);
Visual BASIC VBdaqDacSetOutputMode&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal

outputMode&)
Delphi daqDacSetOutputMode(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;

outputMode:DaqDacOutputMode)
Parameters
handle Handle to the device to set the DAC waveform output mode
deviceType Specifies the device type
chan Specifies the DAC channel
outputMode Defines the DAC waveform output mode to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWt, daqDacWtMany

Program References DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, DACEX.PAS (Delphi)
Used With DaqBook100, DaqBook112, DaqBook120, DaqBook200, DaqBook216,DaqBoard100A, DaqBoard 112A

DaqBoard200A, DaqBoard216A

daqDacSetOutputMode allows you to set the output mode of the DAC operations for the
specified DAC channel. The outputMode parameter indicates the type of waveform output
update to be performed on the specified DAC channel. The following DAC modes can be specified:

• DdomVoltage - Specifies a single voltage output mode. This mode defines the output mode
of the specified DAC channel to be updated only when written to explicitly. With this mode,
no waveform outputs can be generated. See the daqDacWt and daqDacWtMany functions
for DAC channel voltage updates.

• DdomStaticWave - Specifies static waveform output. This mode allows the generation of a
non-streamed waveform output to the specified DAC channel. In this mode, the output stream
cannot be continuously updated by the application during actual waveform output. Once the
output data buffer has been set and the waveform operation has been initiated, the output data
buffer remains static. This mode requires the specified waveform to fit within the physical
size of the FIFO on the device.

• DdomDynamicWave - Specifies dynamic waveform generation. This mode allows
continual, dynamic updating of the DAC waveform during DAC waveform output. Dynamic
waveform generation is not size dependent, and waveform updating can be performed
indefinitely. Actual waveform generation updating is performed by continually feeding
waveform data to the device using the daqDacWaveSetBuffer and
daqDacTransferStart routines to continually fill the device’s DAC FIFO. The
waveform transfer operation to the DAC FIFO can be halted at any time with
daqDacTransferStop; and the waveform output can be disabled at any time with
daqDacDisarm.

Note: The DdomDynamicWave output mode is not available on any device at this time.

Daq* Command Reference (Enhanced API) Chapter 3

3-50 Programmer’s Manual

daqDacTransferGetStat
DLL Function daqDacTransferGetStat(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, PDWORD active, PDWORD retCount);
C daqDacTransferGetStat(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, PDWORD active, PDWORD retCount);
Visual BASIC VBdaqDacTransferGetStat&(ByVal handle&, ByVal deviceType&, ByVal chan&, active&,

retCount&)
Delphi daqDacTransferGetStat(handle:DaqHandleT; deviceType:DaqDacDeviceType;

chan:DWORD; var active:DWORD; var retCount:DWORD)
Parameters
handle Handle of the device from which to retrieve current DAC transfer status
deviceType Specifies the DAC type
chan Specifies the DAC channel
active Bit mask representing flags indicating the current state of the DAC waveform transfer
retCount Total number of DAC waveform samples transferred for the current DAC waveform transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacTransferSetBuffer, daqDacTransferStart, daqDacTransferStop

Program References None
Used With

daqDacTransferGetStat allows you to get the current status of a DAC dynamic waveform
transfer for the specified DAC channel. This function will return the current status and the total
transfer count of the current DAC waveform output.

The active parameter is a bit mask representing various DAC waveform events. The bit masks for
each event are defined as follows:

• DdafWaveformActive - This bit set indicates that a DAC waveform output is currently
active.

• DdafWaveformTriggered - This bit set indicates that the DAC waveform output has
been triggered and waveform output is currently taking place.

• DdafTransferActive - This bit set indicates that a DAC dynamic waveform transfer to
the devices DAC FIFO is taking place.

The retCount parameter indicates the total number of DAC dynamic waveform samples that have
been transferred since the start of the transfer. Note: DAC output mode must be set to
DdomDynamicWave for this function to be called. See the daqDacSetOutputMode function.

daqDacTransferStart
DLL Function daqDacTransferStart(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

C daqDacTransferStart(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

Visual BASIC VBdaqDacTransferStart&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi daqDacTransferStart(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD)

Parameters
handle Handle to the device for which a DAC waveform transfer is to be initiated
deviceType Specifies the DAC type
chan Specifies the DAC channel
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacTransferSetBuffer, daqDacTransferGetStat, daqDacTransferStop,

daqDacWaveDisarm
Program References None
Used With

daqDacTransferStart allows you to initiate a DAC dynamic waveform output transfer for the
specified DAC channel. The waveform transfer will be performed from the waveform buffer
configured using the daqDacWaveSetBuffer function. The transfer will continue until the
entire buffer has been transferred, until the transfer is halted (daqDacTransferStop); or until
the DAC output is disarmed (daqDacWaveDisarm).

Note: DAC output mode must be set to DdomDynamicWave for this function to be called. See the
daqDacSetOutputMode function.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-51

daqDacTransferStop
DLL Function daqDacTransferStop(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

C daqDacTransferStop(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

Visual BASIC VBdaqDacTransferStop&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi daqDacTransferStop(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD)

Parameters
handle Handle to the device for which the current DAC waveform transfer is to be stopped
deviceType Specifies the DAC type
chan Specifies the DAC channel
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacTransferSetBuffer, daqDacTransferGetStat, daqDacTransferStart,

daqDacWaveDisarm
Program References None
Used With

daqDacTransferStop allows you to stop a DAC dynamic waveform transfer for the specified
DAC channel if one is currently active. This function will terminate the transfer of DAC data;
however, it will not halt the waveform output on the DAC channel. DAC output data already sent to
the devices DAC FIFO will continue to be output until there is no more data in the FIFO. The
transfer may be re-initiated for the same DAC transfer buffer or another buffer by again calling the
daqDacTransferStart function. To terminate the waveform output as well as the transfer,
refer to the daqDacWaveDisarm function.

Note: DAC output mode must be set to DdomDynamicWave for this function to be called. See the
daqDacSetOutputMode function.

daqDacWaveArm
DLL Function daqDacWaveArm(DaqHandleT handle, DaqDacDeviceType deviceType);

C daqDacWaveArm(DaqHandleT handle, DaqDacDeviceType deviceType);

Visual BASIC VBdaqDacWaveArm&(ByVal handle&, ByVal deviceType&)

Delphi daqDacWaveArm(handle:DaqHandleT; deviceType:DaqDacDeviceType)

Parameters
handle Handle to the device for which a DAC waveform output is to be armed
deviceType Specifies the DAC type
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveDisarm

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveArm allows you to arm a DAC waveform output for the specified device. This
command enables the DAC waveform output, based upon the current waveform output
configuration. Once issued, DAC waveform output will begin on the specified device when the
specified DAC waveform output trigger event has occurred. If the trigger event has been configured
as DdtsImmediate, the waveform output will begin immediately.

Daq* Command Reference (Enhanced API) Chapter 3

3-52 Programmer’s Manual

daqDacWaveDisarm
DLL Function daqDacWaveDisarm(DaqHandleT handle, DaqDacDeviceType deviceType);

C daqDacWaveDisarm(DaqHandleT handle, DaqDacDeviceType deviceType);

Visual BASIC VBdaqDacWaveDisarm&(ByVal handle&, ByVal deviceType&)

Delphi daqDacWaveDisarm(handle:DaqHandleT; deviceType:DaqDacDeviceType)

Parameters
handle Handle to the device for which a current DAC waveform output is to be disarmed
deviceType Specifies the DAC type
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveArm

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveDisarm allows you to disarm a DAC waveform output if one is active on the
specified device. This function will disable the waveform output on the specified device and
terminate any DAC buffer transfers that are currently active. Waveform output will be terminated
immediately, regardless of the current state of the waveform output or the state of the device’s DAC
FIFO.

daqDacWaveGetFreq
DLL Function daqDacWaveGetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

PFLOAT freq);
C daqDacWaveGetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

PFLOAT freq);
Visual BASIC VBdaqDacWaveGetFreq&(ByVal handle&, ByVal deviceType&, ByVal chan&, freq!)

Delphi daqDacWaveGetFreq(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;
var freq:single)

Parameters
handle Handle to the device for which to retrieve the current waveform output frequency
deviceType Specifies the DAC type
chan Specifies the DAC channel
freq Returns the current DAC waveform output frequency setting
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveArm, daqDacWaveDisarm, daqDacWaveSetFreq

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveGetFreq gets the current DAC waveform update frequency for the specified device
and channel.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-53

daqDacWaveSetBuffer
DLL Function daqDacWaveSetBuffer(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

PWORD buf, DWORD scanCount, DWORD transferMask);
C daqDacWaveSetBuffer(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

PWORD buf, DWORD scanCount, DWORD transferMask);
Visual BASIC VBdaqDacWaveSetBuffer&(ByVal handle&, ByVal deviceType&, ByVal chan&, buf%(),

ByVal scanCount&, ByVal transferMask&)
Delphi daqDacWaveSetBuffer(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;

buf:PWORD; scanCount:DWORD; transferMask:DWORD)
Parameters
handle Handle to the device for which a DAC waveform transfer buffer is to be configured
deviceType Specifies the DAC type
Chan Specifies the DAC channel
buf Pointer to the user allocated waveform transfer buffer
ScanCount Length of the waveform buffer in output samples
transferMask Configures the buffer transfer mode
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacTransferStart, daqDacWaveTransferStop

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveSetBuffer allows you to configure the DAC output waveform transfer buffer for
the specified device and channel. This function may be used to configure a user-supplied buffer for
output to a DAC channel on the specified device.

The supplied buffer must be loaded by the application with the desired output data before invoking
the daqDacTransferStart routine to initiate the DAC waveform transfer.

The transferMask parameter is used to configure the characteristics of the DAC waveform
output transfer. Among other things the transferMask specifies the update mode and the cycle mode
of the buffer. The modes can be set as follows:

• DdtmCycleOn - Specifies the buffer cycle mode. Allows the transfer to continue when the
end of the transfer buffer is reached (by wrapping the transfer of DAC data back to the
beginning of the buffer). In this mode, the DAC transfer buffer will continue to be wrapped
until the transfer/waveform output is halted by the application (daqDacTransferStop/
daqDacDisarm). The default setting is DdtmCycleOff.

• DdtmUpdateSingle - Specifies the update mode as single sample. The update mode can
be set to update for every sample or block of DAC data. The update-on-single-setting allows
the DAC transfer buffer to be updated for each sample output to the specified DAC.
Compared to the block mode, this setting provides a higher degree of real-time waveform
output-buffer updating at the expense of slower aggregate waveform output rates. The default
setting is DdtmUpdateBlock.

Daq* Command Reference (Enhanced API) Chapter 3

3-54 Programmer’s Manual

daqDacWaveSetClockSource
DLL Function daqDacWaveSetClockSource(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, DaqDacClockSource clockSource);
C daqDacWaveSetClockSource(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, DaqDacClockSource clockSource);
Visual BASIC VBdaqDacWaveSetClockSource&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal

clockSource&)
Delphi daqDacWaveSetClockSource(handle:DaqHandleT; deviceType:DaqDacDeviceType;

chan:DWORD; clockSource:DaqDacClockSource)
Parameters
handle Handle to the device for which the waveform output clock source is to be set
deviceType Specifies the DAC type
chan Specifies the DAC channel
clockSource Set the clock to the specified source
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveSetFreq, daqDacWaveGetFreq

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveSetClockSource allows you to set the clock source for the DAC waveform
update frequency for the specified device and channel. The clockSource parameter specifies the
clock source to use for DAC output. The valid sources for the DAC waveform update clock include:

• DdcsGatedDacClock - Specifies a clock based upon a gated DAC default timebase
(DdcsDacClock); is gated by TTL input on pin 25 of P1.

• Ddcs9513Ctrl - Specifies a DAC timebase driven by Counter 1 of the 9513.
• DdcsExternalTTL - Specifies an external timebase supplied via TTL input pin 21 of P1.
• DdcsAdcClock - Specifies the current ADC pacer-clock timebase.
• DdcsDacClock - Specifies the internal DAC default timebase of 10 MHz.

Note: The first 3 of these potential clock sources pass through and are divided by Counter 0 of the
8254 before the update signal reaches the DAC FIFO.

The DAC waveform update frequency is the rate at which samples are sent from the DAC FIFO to a
single DAC channel. If the more than one DAC channel waveform output is active, the waveform
update frequency for each channel is this rate divided by the total number of active DAC waveform
output channels. If, however, all DAC channels are simultaneously outputting the same waveform,
then the waveform update frequency for each channel will not be divided by the total number of
channels.

daqDacWaveSetDiskFile
DLL Function daqDacWaveSetDiskFile(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, LPSTR filename);
C daqDacWaveSetDiskFile(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, LPSTR filename);
Visual BASIC VBdaqDacWaveSetDiskFile&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal

filename$)
Delphi daqDacWaveSetDiskFile(handle:DaqHandleT; deviceType:DaqDacDeviceType;

chan:DWORD; filename:PChar)
Parameters
handle Handle to the device from which to generate the waveform output
deviceType Specifies the DAC type
chan Specifies the DAC channel
filename String representing the path and filename of the disk file to be output.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveSetBuffer

Program References None
Used With

daqDacWaveSetDiskFile allows you to specify a disk file from which a DAC waveform
output will be generated for the specified device and channel.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-55

daqDacWaveSetFreq
DLL Function daqDacWaveSetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

FLOAT freq);
C daqDacWaveSetFreq(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

FLOAT freq);
Visual BASIC VBdaqDacWaveSetFreq&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal freq!)

Delphi daqDacWaveSetFreq(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;
freq:single)

Parameters
handle Handle to the device for which to set the waveform output update frequency
deviceType Specifies the DAC type
chan Specifies the DAC channel
freq Sets the DAC waveform output frequency to the specified frequency
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveGetFreq, daqDacWaveSetClockSource

Program References None
Used With

daqDacWaveSetFreq allows you to set the DAC waveform update frequency for the specified
device and channel. The frequency is set via the freq parameter and is dependent upon the clock
source chosen for the selected device. The clock source can be configured by using the
daqDacWaveSetClockSource function.

daqDacWaveSetMode
DLL Function daqDacWaveSetMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacWaveformMode mode, DWORD updateCount);
C daqDacWaveSetMode(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacWaveformMode mode, DWORD updateCount);
Visual BASIC VBdaqDacWaveSetMode&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal mode&,

ByVal updateCount&)
Delphi daqDacWaveSetMode(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;

mode:DaqDacWaveformMode; updateCount:DWORD)
Parameters
handle Handle to the device for which to set the DAC waveform output mode
deviceType Specifies the DAC type
chan Specifies the DAC channel
mode Specifies the desired DAC waveform output mode
updateCount Sets the total sample update count
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveSetTrig, daqDacWaveSetFreq

Program References None
Used With

daqDacWaveSetMode allows you to set the DAC waveform update mode for the specified
device’s DAC channel. This function allows the setting of the waveform output mode and the total
number of DAC waveform samples to output.

The mode parameter defines the state in which the waveform is to be output. The mode values are
defined as follows:

• DdwmNShot - Continue outputting waveform until updateCount number of samples have
been output. Upon completion of the specified amount, automatically terminate and disarm
the waveform output operation.

• DdwmNShotRearm - Continue outputting waveform until updateCount number of
samples have been output. Upon completion of the specified amount, reset the
updateCount and re-arm the DAC waveform output, using the previous configuration.
Waveform output will then be restarted when the specified trigger event is detected. The
automatic re-arming of the waveform output will continue until the waveform output is
disarmed via the daqDacWaveDisarm function.

• DdwmInfinite - Continue outputting waveform indefinitely. Waveform output will
continue until the daqDacWaveDisarm function is issued. updateCount is ignored.

The updateCount parameter defines the total number of samples in the waveform to be output.

Daq* Command Reference (Enhanced API) Chapter 3

3-56 Programmer’s Manual

daqDacWaveSetPredefWave
DLL Function daqDacWaveSetPredefWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan, DaqDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD dutyCycle,
DWORD phaseShift);

C daqDacWaveSetPredefWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD
chan, DaqDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD dutyCycle,
DWORD phaseShift);

Visual BASIC VBdaqDacWaveSetPredefWave&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal
waveType&, ByVal amplitude&, ByVal offset&, ByVal dutyCycle&, ByVal
phaseShift&)

Delphi daqDacWaveSetPredefWave(handle:DaqHandleT; deviceType:DaqDacDeviceType;
chan:DWORD; waveType:DaqDacWaveType; amplitude:DWORD; offset:DWORD;
dutyCycle:DWORD; phaseShift:DWORD)

Parameters
handle Handle to the device to setup a pre-defined waveform output
deviceType Specifies the DAC type
chan Specifies the DAC channel
filename Specifies the optional predefined waveform output filename
waveType Specifies the predefined waveform output type. Three types: 0 for DdwtSine, 1 for DdwtSquare, 2 for

DdwtTriangle.
amplitude Sets the peak-to-peak amplitude for which to generate the pre-defined waveform (in D/A counts 0 to 4095)
offset Sets the offset for the pre-defined waveform (voltage level in D/A counts 0 to 4095)
dutyCycle Sets the duty cycle (as a percentage) of the predefined waveform
phaseShift Set the phase shift (in degrees) of the predefined waveform relative to other DAC channel
Returns DerrInvDacChan - The DAC channel number doesn’t exist

DerrInvDacParam - Parameters were out of range
DerrInvPredefWave - Predefined waveform is not supported
DerrMemAlloc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqDacWaveSetUserWave

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveSetPredefWave allows you to specify a pre-defined waveform for DAC waveform
output on the specified device channel. daqDacWaveSetMode is used to set the update rate and
cycling mode for this waveform.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-57

daqDacWaveSetTrig
DLL Function daqDacWaveSetTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacTriggerSource triggerSource, BOOL rising);
C daqDacWaveSetTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan,

DaqDacTriggerSource triggerSource, BOOL rising);
Visual BASIC VBdaqDacWaveSetTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal

triggerSource&, ByVal rising&)
Delphi daqDacWaveSetTrig(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;

triggerSource:DaqDacTriggerSource; rising:longbool)
Parameters
handle Handle of the device for which to set DAC waveform triggering
deviceType Specifies the DAC type
chan Specifies the DAC channel
triggerSource Specifies the DAC output trigger source
rising Boolean indicating the trigger source edge
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveSetMode

Program References None
Used With

daqDacWaveSetTrig allows you to set the DAC waveform output trigger for the specified DAC
channel. This function is used to setup the trigger event to initiate a DAC waveform output for the
specified DAC channel.

The triggerSource parameter specifies the source of the event which will trigger the DAC
waveform output. Currently, there are only two valid DAC waveform trigger events:

• DdtsImmediate - Trigger DAC waveform immediately upon execution of the
daqDacWaveArm function. This trigger source is used to trigger the DAC waveform output
immediately upon waveform configuration.

• DdtsSoftware - Trigger the DAC waveform upon execution of the
daqDacWaveSoftTrig function. This trigger source requires that the daqDacWaveArm
function be issued before the daqDacWaveSoftTrig function. This trigger source is used
to trigger the waveform output from input from the user application.

The rising flag is currently ignored and is reserved for future use.

daqDacWaveSetUserWave
DLL Function daqDacWaveSetUserWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan);
C daqDacWaveSetUserWave(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD

chan);
Visual BASIC VBdaqDacWaveSetUserWave&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi daqDacWaveSetUserWave(handle:DaqHandleT; deviceType:DaqDacDeviceType;
chan:DWORD)

Parameters
handle Handle to the device for which the user - defined waveform is to be output
deviceType Specifies the DAC device type
chan Specifies the DAC device channel
Returns DerrInvDacChan - The DAC channel number doesn’t exist

DerrInvBuf - A waveform buffer was not specified
DerrMemAlloc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqDacWaveSetPredefWave

Program References None
Used With

daqDacWaveSetUserWave allows you to configure a user-defined buffer for DAC waveform
output. Any arbitrary waveform can be built in an array. daqDacWaveSetUserWave can then
be called by specifying a pointer to the beginning of the waveform, the size of the array, and the
target DAC channel to send the waveform.

Daq* Command Reference (Enhanced API) Chapter 3

3-58 Programmer’s Manual

daqDacWaveSoftTrig
DLL Function daqDacWaveSoftTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

C daqDacWaveSoftTrig(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan);

Visual BASIC VBdaqDacWaveSoftTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi daqDacWaveSoftTrig(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD)

Parameters
handle Handle to the device for which to trigger the DAC waveform output
deviceType Specifies the DAC type
chan Specifies the DAC channel
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWaveSetTrig

Program References None
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWaveSoftTrig allows you to software trigger the DAC waveform output on the
specified device channel. The device channel must first have been configured for software
triggering with the daqDacWaveSetTrig function prior to calling this function. DAC waveform
trigger source must be DdtsSoftware.

daqDacWt
DLL Function daqDacWt(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, WORD

dataVal);
C daqDacWt(DaqHandleT handle, DaqDacDeviceType deviceType, DWORD chan, WORD

dataVal);
Visual BASIC VBdaqDacWt&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal dataVal%)

Delphi daqDacWt(handle:DaqHandleT; deviceType:DaqDacDeviceType; chan:DWORD;
dataVal:WORD)

Parameters
handle Handle to the device for which the Daq* channel value is to be updated
deviceType Specifies the DAC type
chan The D/A channel to output to

Valid values: 0 - 1
dataVal The value to output to the selected D/A channel

Valid values: 0 -4095
Returns DerrInvChan - Invalid channel

DerrInvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqDacWtMany

Program References DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, DACEX.PAS (Delphi)
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWt outputs a voltage between 0 and 5 V to the specified 12-bit D/A channel. The voltage
has a resolution of approximately 1.22 mV (5 V/4095).

Note: daqAdcSetTrig will configure the D/A channel 1 if an analog trigger is source selected
for the A/D converter.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-59

daqDacWtMany
DLL Function daqDacWtMany(DaqHandleT handle, DaqDacDeviceType *deviceTypes, PDWORD chans,

PWORD dataVals, DWORD count);
C daqDacWtMany(DaqHandleT handle, DaqDacDeviceType *deviceTypes, PDWORD chans,

PWORD dataVals, DWORD count);
Visual BASIC VBdaqDacWtMany&(ByVal handle&, deviceTypes&(), chans&(), dataVals%(), ByVal

count&)
Delphi daqDacWtMany(handle:DaqHandleT; deviceTypes:DaqDacDeviceTypeP; chans:PDWORD;

dataVals:PWORD; count:DWORD)
Parameters
handle Handle to the device for which the values of the Daq* channels are to be updated
deviceTypes Specifies the DAC types
chans Specifies the DAC channels
dataVals The value to output to the D/A channel

Valid values: 0 -4095
count
Returns DerrInvDacVal - Invalid data value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDacWt

Program References DACEX1.C, DAQEX.FRM (VB)
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWtMany outputs voltages between 0 and 5 V to all active 12-bit D/A channels. Each
voltage has a resolution of approximately 1.22 mV (5 V/4095).

Note: daqAdcSetTrig will configure the D/A channel 1 if an analog trigger source is selected
for the A/D converter.

daqDefaultErrorHandler
DLL Function daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);

C daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);

Visual BASIC VBdaqDefaultErrorHandler(ByVal handle&, ByVal errCode&)

Delphi daqDefaultErrorHandler(handle:DaqHandleT; errCode:DaqError)

Parameters
handle Handle to the device to which the default error handler is to be attached.
ErrCode The error code number of the detected error (see table API Error Codes at end of this chapter).
Returns Nothing (also, refer to API Error Codes on page 3-83)
See Also daqGetLastError, daqProcessError, daqSetDefaultErrorHandler

Program References None
Used With All devices

daqDefaultErrorHandler displays an error message and then exits the application program.
When the Daq* library is loaded, it invokes the default error handler whenever it encounters an
error. The error handler may be changed with daqSetErrorHandler.

Daq* Command Reference (Enhanced API) Chapter 3

3-60 Programmer’s Manual

daqFormatError
DLL Function daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

C daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

Visual BASIC VBdaqCalSelectInputSignal(ByVal handle&, ByVal input as DaqCalInputT)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; input: DaqCalInputT)

Parameters
daqError Daq* Enhanced API error code
msg Pointer to a string to return the error text
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqSetDefaultErrorHandler, daqSetErrorHandler, daqProcessError, daqGetLastError,

daqDefaultErrorHandler
Program References None
Used With All devices

daqFormatError returns the text-string equivalent for the specified error condition. The error
condition is specified by the daqError parameter. The error text will be returned in the character
string pointed to by the msg parameter. The character string space must have been previously
allocated by the application before calling this function. The allocated character string should be, at
minimum, 64 bytes in length.

For more information on specific error codes refer to the API Error Codes on page 3-83.

daqGetDeviceCount
DLL Function daqGetDeviceCount(PDWORD deviceCount);

C daqGetDeviceCount(PDWORD deviceCount);

Visual BASIC VBdaqGetDevice&(deviceCount&)

Delphi daqGetDeviceCount(var deviceCount:DWORD)

Parameters
deviceCount Pointer to which the device count is to be returned
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetDeviceList, daqGetDeviceProperties

Program References None
Used With All devices

daqGetDeviceCount returns the number of currently configured devices. This function will
return the number of devices currently configured in the system. The devices do not need to be
opened for this function to operate properly. If the number returned does not seem appropriate, the
device configuration list should be checked via the Daq* Configuration applet located in the Control
Panel. Refer to the configuration section in your device’s user manual for more details.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-61

daqGetDeviceList
DLL Function daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);

C daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);

Visual BASIC VBdaqGetDeviceList(deviceList as DaqDeviceListT, deviceCount&)

Delphi daqGetDeviceList(var deviceList: DaqDeviceListT; var deviceCount: DWORD)

Parameters
deviceList Pointer to memory location to which the device list is to be returned
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetDeviceCount, daqGetDeviceProperties, daqOpen,

Program References None
Used With All devices

daqGetDeviceList returns a list of currently configured devices. This function will return the
device names in the deviceList parameter for the number of devices returned by the
deviceCount parameter. Each deviceList entry contains a device name consisting of up to
64 characters. The device name can then be used with the daqOpen function to open the specific
device.

If the number returned does not seem appropriate, the device configuration list should be checked
via the Daq* Configuration applet located in the Control Panel. Refer to the configuration section in
your device’s user manual for more details.

daqGetDeviceProperties
DLL Function daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);

C daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);

Visual BASIC VBdaqGetDeviceProperties(daqName$, deviceProps as DaqDevicePropsT)

Delphi daqGetDeviceProperties(daqName: string; var deviceProps: DaqDevicePropsT)

Parameters
daqName Pointer to a character string representing the name of the device for which to retrieve properties
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetDeviceCount, daqGetDeviceList, daqOpen

Program References None
Used With All devices

daqGetDeviceProperties returns the properties for the specified device. The device is
specified by passing the name of the device in the daqName parameter. This name should be a
valid name of a configured device. The properties for the device are returned in the deviceProps
parameter. deviceProps is a pointer to user-allocated memory which will hold the device-
properties structure. This memory must have been allocated before calling this function.

For detailed device-property structure layout, refer the to Daq Device Properties Definition table.

If this function fails, make sure the daqName parameter references a valid device which is currently
configured. This can be checked via the Daq* Configuration applet located in the Control Panel.
Refer to the configuration section in your device’s user manual for more details.

Daq* Command Reference (Enhanced API) Chapter 3

3-62 Programmer’s Manual

daqGetDriverVersion
DLL Function daqGetDriverVersion(PDWORD version);

C daqGetDriverVersion(PDWORD version);

Visual BASIC VBdaqGetDriverVersion&(version&)

Delphi daqGetDriverVersion(var version:DWORD)

Parameters
version Pointer to the version number of the current device driver.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetHardwareInfo

Program References ERREX.PAS (Delphi)
Used With All devices

daqGetDriverVersion allows you to get the revision level of the driver currently in use.

daqGetHardwareInfo
DLL Function daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);

C daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);

Visual BASIC VBdaqGetHardwareInfo&(ByVal handle&, ByVal whichInfo&, info As Variant)

Delphi daqGetHardwareInfo(handle:DaqHandleT; whichInfo:DaqHardwareInfo; info:pointer)

Parameters
handle Handle to the device
whichInfo Specifies what type of device information to retrieve
* info Pointer to the returned device information
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetDriverVersion, daqOpen

Program References DACEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqGetHardwareInfo allows you to retrieve specific hardware information for the specified
device. The device handle must be a valid device handle that is currently open. To open a device,
see the daqOpen function.

daqGetLastError
DLL Function daqGetLastError(DaqHandleT handle, DaqError *errCode);

C daqGetLastError(DaqHandleT handle, DaqError *errCode);

Visual BASIC VBdaqGetLastError&(ByVal handle&, errCode&)

Delphi daqGetLastError(handle:DaqHandleT; var errCode:DaqError): DaqError; stdcall;
external DAQX_DLL; procedure daqDefaultErrorHandler(handle:DaqHandleT;
errCode:DaqError)

Parameters
handle Handle to the device
*errCode Returned last error code
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDefaultErrorHandler, daqProcessError, daqSetDefaultErrorHandler

Program References None
Used With All devices

daqGetLastError allows you to retrieve the last error condition registered by the driver.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-63

daqIOGet8255Conf
DLL Function daqIOGet8255Conf(DaqHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh, BOOL

portCLow, PDWORD config);
C daqIOGet8255Conf(DaqHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh, BOOL

portCLow, PDWORD config);
Visual BASIC VBdaqIOGet8255Conf&(ByVal handle&, ByVal portA&, ByVal portB&, ByVal portCHigh&,

ByVal portCLow&, config&)
Delphi daqIOGet8255Conf(handle:DaqHandleT; portA:longbool; portB:longbool;

portCHigh:longbool; portCLow:longbool; var config:DWORD)
Parameters
handle Handle to the device
portA 8255 port A value
portB 8255 port B value
portCHigh 8255 port C high nibble value
portCLow 8255 port C low nibble value
config 8255 current configuration
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqIORead, daqIOReadBit, daqIOWrite, daqIOWriteBit

Program References DIGEX1.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)
Used With DaqBook100, DaqBook120, DaqBook200, DaqBoard100A, DaqBoard200A

daqIOGet8255Conf allows you to set/get the configuration for the specified 8255 device with
the specified port configurations. The configuration is returned in the config parameter and will
indicate the current configuration of the 8255. When set to TRUE, portA, portB, portCHigh
and portCLow flags will configure the respective port as an input port. If the flag is set to FALSE,
the port will be configured as an output.

daqIORead
DLL Function daqIORead(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, PDWORD value);
C daqIORead(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, PDWORD value);
Visual BASIC VBdaqIOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal

whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)
Delphi daqIOReadBit(handle:DaqHandleT; devType:DaqIODeviceType; dvPort:DaqIODevicePort;

whichDevice:DWORD; whichExpPort:DaqIOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters
handle Handle to the device to perform the IO read
devType IO Device type
devPort IO port selection
whichDevice IO device instance to read from
whichExpPort IO device expansion port to read from
value IO value read
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqIOReadBit, daqIOWrite, daqIOWriteBit

Program References DIGEX1.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)
Used With All devices

daqIORead allows you to read the specified port on the selected device. The read operation will
return the current state of the port in the value parameter. Normally, if the selected port is a byte-
wide port, the port state will occupy the low-order byte of the value parameter. Digital IO
channels for the port correspond to each bit within this low-order byte. If the bit is set, it indicates
the channel is in a high state. If the bit is not set, the channel is indicated to be in a low state.

Daq* Command Reference (Enhanced API) Chapter 3

3-64 Programmer’s Manual

daqIOReadBit
DLL Function daqIOReadBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort

devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitValue);

C daqIOReadBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort
devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitValue);

Visual BASIC VBdaqIOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)

Delphi daqIOReadBit(handle:DaqHandleT; devType:DaqIODeviceType; dvPort:DaqIODevicePort;
whichDevice:DWORD; whichExpPort:DaqIOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters
handle Handle to the device from which to perform the IO
devType IO Device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO expansion port address
bitNum IO port bit location to read
bitValue IO port bit value (TRUE - high, FALSE - low)
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqIORead, daqIOWrite, daqIOWriteBit

Program References DIGEX1.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)
Used With All devices

daqIOReadBit allows you to read a specified bit on the selected device and port. The read
operation will return the current state of the selected bit in the bitValue parameter. The selected
bit (specified by the bitNum parameter) corresponds to the IO channel on the port which is to be
read. The bitValue will be TRUE indicating a high state or FALSE indicating a low state.

daqIOWrite
DLL Function daqIOWrite(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD value);
C daqIOWrite(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD value);
Visual BASIC VBdaqIOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal

whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)
Delphi daqIOWriteBit(handle:DaqHandleT; devType:DaqIODeviceType;

dvPort:DaqIODevicePort; whichDevice:DWORD; whichExpPort:DaqIOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters
handle Handle of the device to perform an IO write operation
devType IO device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO device expansion port address
value Value to write
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqIORead, daqIOWriteBit, daqIOReadBit

Program References DIGEX1.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)
Used With All devices

daqIOWrite allows you to write to the specified port on the selected device. The write operation
will write the settings indicated in the value parameter to the selected port. The value written
will depend on the width of the selected port. Normally, for byte-wide ports, only the low-order byte
of the value parameter will be written. The IO channels for the port correspond to each bit within
the value written. If the channel is to be driven to a high state, then the corresponding bit should be
set. Likewise, if the channel is to be driven to a low state, then the corresponding bit should not be
set.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-65

daqIOWriteBit
DLL Function daqIOWriteBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort

devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitValue);

C daqIOWriteBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort
devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitValue);

Visual BASIC VBdaqIOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)

Delphi daqIOWriteBit(handle:DaqHandleT; devType:DaqIODeviceType;
dvPort:DaqIODevicePort; whichDevice:DWORD; whichExpPort:DaqIOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters
handle Handle of the device to perform an IO write to
devType IO device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO device expansion port address
bitNum Bit number to write
bitValue Bit value to write (TRUE - high, FALSE - low)
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqIOWrite, daqIORead, daqIOReadBit

Program References DIGEX1.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)
Used With All devices

daqIOWriteBit allows you to write a specified bit on the selected device and port. The write
operation will write the specified bit value to the bit selected. The selected bit, specified by the
bitNum parameter, corresponds to the channel on the port for the IO to be driven. The bitValue
parameter should be set to TRUE to drive the channel to a high state or FALSE indicating a low
state.

daqOnline
DLL Function daqOnline(DaqHandleT handle, PBOOL online);

C daqOnline(DaqHandleT handle, PBOOL online);

Visual BASIC VBdaqOnline&(ByVal handle&, online&)

Delphi daqOnline(handle: DaqHandleT; var online: longbool)

Parameters
handle Handle of the device to test for online
online Boolean indicating whether the device is currently online
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqOpen, daqClose

Program References ERREX.PAS (Delphi)
Used With All devices

daqOnline allows you to determine if a device is online. The device handle must be a valid
device handle which has been opened using the daqOpen function. The online parameter
indicates the current online state of the device (TRUE - device online; FALSE - device not online).

Daq* Command Reference (Enhanced API) Chapter 3

3-66 Programmer’s Manual

daqOpen
DLL Function daqOpen(LPSTR daqName);

C daqOpen(LPSTR daqName);

Visual BASIC VBdaqOpen&(ByVal daqName$)

Delphi daqOpen(devName: PChar)

Parameters
daqName String representing the name of the device to be opened
Returns A handle to the specified device (also, refer to API Error Codes on page 3-83)
See Also daqClose, daqOnline

Program References ADCEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS, ADCEX.PAS (Delphi)
Used With

daqOpen allows you to open an installed Daq* device for operation. The daqOpen function will
initiate a session for the device name specified by the daqName parameter by opening the device,
initializing it, and preparing it for further operation. The daqName specified must reference a
currently configured device. See Daq* Configuration utility (in the …Installation chapters) for
more details on configuring devices and assigning device names.

daqOpen should be performed prior to any other operation performed on the device. This function
will return a device handle that is used by other functions to reference the device. Once the device
has been opened, the device handle should be used to perform subsequent operations on the device.

Most functions in this manual require a device handle in order to perform their operation. When the
device session is complete, daqClose may be called with the device handle to close the device
session.

daqProcessError
DLL Function daqProcessError(DaqHandleT handle, DaqError errCode);

C daqProcessError(DaqHandleT handle, DaqError errCode);

Visual BASIC VBdaqProcessError&(ByVal handle&, ByVal errCode&)

Delphi daqProcessError(handle:DaqHandleT; errCode:DaqError)

Parameters
handle Handle to the device for which the specified error is to be processed.
errCode Specifies the device error code to process
Returns Refer to API Error Codes on page 3-83
See Also daqSetDefaultErrorHandler, daqGetLastError, daqDefaultErrorHandler

Program References None
Used With All devices

daqProcessError allows an application to initiate an error for processing by the driver. This
command can be used when it is desirable for the application to initiate processing for a device-
defined error.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-67

daqReadCalFile
DLL Function daqReadCalFile(DaqHandleT handle, LPSTR calfile);

C daqReadCalFile(DaqHandleT handle, LPSTR calfile);

Visual BASIC VBdaqReadCalFile&(ByVal handle&, ByVal calfile$)

Delphi daqReadCalFile(handle:DaqHandleT; calfile:PChar)

Parameters
handle Handle to the device for which to associate the calibration file.
calfile The file name with optional path information of the calibration file. If calfile is NULL or empty (“”), the default

calibration file DAQBOOK.CAL will be read.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

DerrInvCalfile - Error occurred while opening or reading calibration file
See Also daqCalSetup, daqCalConvert, daqCalSetupConvert

Program References None
Used With

daqReadCalFile is the initialization function for reading in the calibration constants from the
calibration text file. This function (usually called once at the beginning of a program) will read all
the calibration constants from the specified file. The calfile parameter specifies the
path\filename of the calibration file to read.

If calibration constants for a specific channel number and gain setting are not contained in the file,
ideal calibration constants will be used—essentially performing no calibration for that channel. If an
error occurs while trying to open the calibration file, ideal calibration constants will be used for all
channels and a non-zero error code will be returned by the daqReadCalFile function.

daqSetDefaultErrorHandler
DLL Function daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);

C daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);

Visual BASIC VBdaqSetDefaultErrorHandler&(ByVal handler&)

Delphi daqSetDefaultErrorHandler(handler:DaqErrorHandlerFPT)

Parameters
handler Pointer to a user-defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqDefaultErrorHandler, daqGetLastError, daqProcessError, daqSetErrorHandler

Program References ERREX.PAS (Delphi)
Used With All devices

daqSetDefaultErrorHandler allows you to set the driver to use the default error handler
specified for all devices.

daqSetErrorHandler
DLL Function daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);

C daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);

Visual BASIC VBdaqSetErrorHandler&(ByVal handle&, ByVal handler&)

Delphi daqSetErrorHandler(handle:DaqHandleT; handler:DaqErrorHandlerFPT)

Parameters
handle Handle to the device to which to attach the specified error handler
handler Pointer to a user defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqSetDefaultErrorHandler, daqDefaultErrorHandler, daqGetLastError,

daqProcessError
Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS (Delphi)
Used With

daqSetErrorHandler specifies the routine to call when an error occurs in any command. The
default routine displays a message and then terminates the program. If this is not desirable, use this
command to specify your own routine to be called when errors occur. If you want no action to occur
when a command error is detected, use this command with a null (0) parameter. The default error
routine is daqDefaultHandler.

Daq* Command Reference (Enhanced API) Chapter 3

3-68 Programmer’s Manual

daqSetOption
DLL Function daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
C daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqSetOption&(ByVal handle&, ByVal chan&, ByVal flags&, ByVal optionType&,

ByVal optionValue!)
Delphi daqSetOption(Handle:DaqHandleT; chan:DWORD; flags:DWORD;

optionType:DaqOptionType; optionValue:FLOAT)
Parameters
handle The handle to the device for which to set the option
chan The channel number on the device for which the option is to be set
flags Flags specifying the options to use.
optionType Specifies the type of option.
optionValue The value of the option to set
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-44)
See Also daqAdcExpSetChanOption,

Program References None
Used With All devices

daqSetOption allows the setting of options for a device’s channel/signal path configuration.
• The chan parameter specifies which channel the option applies to.
• The optionType specifies the type of option to apply to the channel.
• The optionValue parameter specifies the value of the option.
• The flags parameter specifies how the option is to be applied.

For more information on the options and their valid settings, refer to the Option Value and Option
Type tables.

daqSetTimeout
DLL Function daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);

C daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);

Visual BASIC VBdaqSetTimeout&(ByVal handle&, ByVal mSecTimeout&)

Delphi daqSetTimeout(handle:DaqHandleT; mSecTimeout:DWORD)

Parameters
handle Handle to the device for which the event time-out is to be set
mSecTimeout Specifies time-out (ms) for events
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqWaitForEvent, daqWaitForEvents

Program References None
Used With All devices

daqSetTimeout allows you to set the time-out for waiting on a single event or multiple events.
This function can be used in conjunction with the daqWaitForEvent and
daqWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to
be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for
the event(s) to occur. If the event(s) do not occur within the specified time-out, the
daqWaitForEvent and/or daqWaitForEvents will return.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-69

daqTest
DLL Function daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
C daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
Visual BASIC VBdaqTest&(ByVal handle&, ByVal command&, ByVal count&, cmdAvailable&, result&)

Delphi [not supported]
Parameters
handle Handle to the device for which the test is to be performed
command Specifies the type of test to be run
count Optional parameter which specifies the length of the test
cmdAvailable Return Boolean indicating the availability of the test for the device
result Pointer to the test result field
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqOpen

Program References None
Used With All devices

daqTest allows you to test a Daq* device for specific functionality. Test types vary, and test
results are based on the type of test requested. Tests can only be performed on valid, opened Daq*
devices. If there are problems with the test, be sure to check the device for proper configuration and
that the device is powered-on and properly connected.

The command parameter specifies the test to run. There are two main types of tests: resource and
performance.

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources
to function efficiently. If one or more of the resource tests fail, the Daq Configuration utility (found
in the operating system’s Control Panel) may be used to change the resource settings related to the
problem. Valid resource test types are defined as follows:
• DtsBaseAddressValid - This test will indicate if there is a problem communicating with

the device at its currently specified base address. A non-zero in the result parameter will
indicate a failed condition.

• DtsInterruptLevelValid - This test will indicate if there is a problem with performing
acquisitions using interrupts. A non-zero in the result parameter will indicate a failed
condition. If this is the case, the interrupts may not be properly configured (if the device is a
DaqBook, the LPT interrupts may not be enabled on the system) or an interrupt conflict exists
with another device.

• DtsDmaChannelValid - (DaqBoard only) This test will indicate if there is a problem with
performing acquisitions through DMA transfers with the currently configured DMA channel for
the device. A non-zero in the result parameter will indicate a failed condition. If this is the
case, DMA may not be enabled for the device or a conflict may exist with another device.

Performance tests measure the speed at which certain operations can be performed on the device.
In general, the performance test results indicate the maximum rate at which the operation can be
performed on the device. The valid performance test types are defined as follows:
• DtsAdcFifoInputSpeed - This test will determine the maximum rate at which analog

input can be acquired and transferred to system memory. Analog input performance results will
be returned in the result parameter with units of samples/second.

• DtsDacFifoOutputSpeed - (DaqBoard only) This test will determine the maximum rate
at which analog output data can be read from system memory and transferred to the device’s
DAC FIFO. Analog output performance results will be returned in the result parameter with
units of samples/second.

• DtsIOInputSpeed - This test will determine the maximum rate at which digital input can
be read from the device’s DIO port and transferred to system memory. Digital input
performance results will be returned in the result parameter with units of bytes/second.

• DtsIOOutputSpeed - This test will determine the maximum rate at which digital output can
be read from system memory and output to the device’s DIO port. Digital output performance
results will be returned in the result parameter with units of bytes/second.

Daq* Command Reference (Enhanced API) Chapter 3

3-70 Programmer’s Manual

The cmdAvailable parameter is a pointer to a Boolean value that indicates whether or not the
specified test is available for the device.

The count parameter can be used to indicate the duration or length of the test. For instance, a
resource test will be run count times; and if any one iteration of the test fails, it will indicate an
overall failure of the test. For a performance test, the count parameter will indicate the number of
times to run the test, and the test result will be an average of all the tests performed.

daqWaitForEvent
DLL Function daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);

C daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);

Visual BASIC VBdaqWaitForEvent&(ByVal handle&, ByVal daqEvent&)

Delphi daqWaitForEvent(handle:DaqHandleT; daqEvent:DaqTransferEvent)

Parameters
handle Handle of the device for which to wait of the specified event
daqEvent Specifies the event to wait on
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqWaitForEvents, daqSetTimout

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqWaitForEvent allows you to wait on a specific Daq* event to occur on the specified device.
This function will not return until the specified event has occurred or the wait has timed out—
whichever comes first. The event time-out can be set with the daqSetTimout function. See the
Transfer Event Definitions table for event definitions.

daqWaitForEvents
DLL Function daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
C daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
Visual BASIC VBdaqWaitForEvents&(handles&(), daqEvents&(), ByVal eventCount&, eventSet&(),

ByVal waitMode&)
Delphi daqWaitForEvents(handles:DaqHandlePT; daqEvents:DaqTransferEventP;

eventCount:DWORD; eventSet:PLONGBOOL; waitMode:DaqWaitMode)
Parameters
*handles Pointer to an array of handles which represent the list of device on which to wait for the events
*daqEvents Pointer to an array of events which represents the list of events to wait on
eventCount Number of defined events to wait on
*eventSet Pointer to an array of Booleans indicating if the events have been satisfied.
waitMode Specifies the mode for the wait
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqWaitForEvent, daqSetTimeout

Program References None
Used With All devices

daqWaitForEvents allows you to wait on specific Daq* events to occur on the specified
devices. This function will wait on the specified events and will return based upon the criteria
selected with the waitMode parameter. A time-out for all events can be specified using the
daqSetTimeout command.

Events to wait on are specified by passing an array of event definitions in the events parameter.
The number of events is specified with the eventCount parameter. See the Transfer Event
Definitions table for events parameter definitions. Also see the Transfer Event Wait Mode
Definitions table for waitMode parameter definitions.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-71

daqZeroConvert
DLL Function daqZeroConvert(PWORD counts, DWORD scans);

C daqZeroConvert(PWORD counts, DWORD scans);

Visual BASIC VBdaqZeroConvert&(counts%(), ByVal scans&)

Delphi daqZeroConvert(counts:PWORD; scans:DWORD)

Parameters
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqZeroSetup, daqZeroSetupConvert, daqZeroDbk19

Program References None
Used With All devices

daqZeroConvert compensates one or more scans according to the previously called
daqZeroSetup function. This function will modify the array of data passed to it.

daqZeroDBK19
DLL Function daqZeroDbk19(BOOL zero);

C daqZeroDbk19(BOOL zero);

Visual BASIC VBdaqZeroDbk19&(ByVal zero&)

Delphi daqZeroDbk19(zero:longbool)

Parameters
zero If non-zero will enable auto zero compensation in the daqCvtTC... functions
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqZeroSetup, daqZeroConvert, daqZeroSetupConvert, daqCvtTCSetup,

daqCvtTCConvert, daqcvtTcSetupConvert
Program References None
Used With All devices

daqZeroDBK19 will configure the thermocouple linearization functions to automatically perform
zero compensation. This is the easiest way to use zero compensation with the DBK19. When
enabled, the thermocouple conversion functions will require a CJC zero reading and a TC zero
reading to precede the actual CJC and TC reading. This can easily be done by configuring the scan
group to read:

• channel 1 using the DBK19 CJC gain code (CJC zero)
• channel 1 using the gain code of the connected TC (TC zero)
• channel 0 using the DBK19 CJC gain code (CJC)
• and finally, the thermocouple channels using the gain code of the connected thermocouples.

Note: the offset of the real CJC value should be specified (not the offset of the CJC zero) when
calling the thermocouple linearization setup functions.

Daq* Command Reference (Enhanced API) Chapter 3

3-72 Programmer’s Manual

daqZeroSetup
DLL Function daqZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);

C daqZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);

Visual BASIC VBdaqZeroSetup&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal
nReadings&)

Delphi daqZeroSetup(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD; nreadings:DWORD)

Parameters
nscan The number of readings in a single scan.
zeroPos The position of the zero reading within the scan
readingsPos The position of the readings to be zeroed within the scan.
nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the

zero reading.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqZeroConvert, daqZeroSetupConvert, daqZeroDbk19

Program References None
Used With All devices

daqZeroSetup configures the location of the shorted channel and the channels to be zeroed
within a scan, the size of the scan, and the number of readings to zero. However, this function does
not do the actual conversion. A non-zero return value indicates an invalid parameter error.

daqZeroSetupConvert
DLL Function daqZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD

nReadings, PWORD counts, DWORD scans);
C daqZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD

nReadings, PWORD counts, DWORD scans);
Visual BASIC VBdaqZeroSetupConvert&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal

nReadings&, counts%(), ByVal scans&)
Delphi daqZeroSetupConvert(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD;

nreadings:DWORD; counts:PWORD; scans:DWORD)
Parameters
nscan The number of readings in a single scan.
zeroPos The position of the zero reading within the scan
readingsPos The position of the readings to be zeroed within the scan.
nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the

zero reading.
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqZeroSetup, daqZeroConvert, daqZeroDbk19

Program References None
Used With All devices

daqZeroSetupConvert performs both the setup and convert steps with one call. This is useful
when the zero compensation needs to be performed multiple times because data was read from
channels at different gains or from different boards.

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-73

API Reference Tables
These tables provide information for programming with the Daq* Application Programming Interface.
Information includes channel identification and error codes, as well as valid parameter values and
descriptions. The tables are organized as follows:

API Parameter Reference Tables
Table Title Sub-Title/Parameter/Description Page
A/D Channel Descriptions Identifies Daq* local and expansion channel numbering scheme 3-74
Daq Device Property Definitions -
daqGetDeviceProperties

Identifies the format (DWORD, STRING, or FLOAT) for property parameters 3-74

Digital I/O Port Connection Identifies Daq* local and expansion digital port numbering scheme 3-75
Event-Handling Definitions Transfer Event Definitions - DaqTransferEvent

Transfer Event Wait Mode Definitions - DaqWaitMode
3-76

Hardware Information Definitions Hardware Information Selector Definitions - DaqHardwareInfo
Hardware Version Definitions - DaqHardwareVersion

3-76

DBK Card Definitions DBK Card Expansion Bank Definitions - DaqAdcExpType
Dbk Card Option Value Definitions - DaqChanOptionValue
Dbk Card Option Type Selector Definitions - DaqChanOptionType

3-76

ADC Gain Definitions Identifies gain codes for Daq* base unit and several DBKs 3-77
ADC Trigger Source Definitions DaqAdcTriggerSource

DaqEnhTrigSensT
3-78

ADC Miscellaneous Definitions ADC Flag Definitions - DaqAdcFlag
Frequency vs Period - DaqAdcRateMode
ADC Acquisition Mode Definitions - DaqAdcAcqMode
ADC Transfer Mask Definitions - DaqAdcTransferMask
ADC Clock Source Definitions - DaqAdcClockSource
ADC File Open Mode Definitions - DaqAdcOpenMode
ADC Acquisition/Transfer Active Flag Definitions - DaqAdcActiveFlag
ADC Acquisition State - DaqAdcAcqState
ADC BufferTransfer Mask- DaqAdcBufferXferMask

3-78

DAC Definitions DAC Device Type Definitions - DaqDacDeviceType
DAC Output Mode Definitions - DaqDacOutputMode
DAC Trigger Source Definitions - DaqDacTriggerSource
DAC Clock Source Definitions - DaqDacClockSource
DAC Waveform Mode Definitions - DaqDacWaveformMode
DAC Predefined Waveform Type Definitions - DaqDacWaveType
DAC Transfer Mask Definitions - DaqDacTransferMask
DAC Waveform/Transfer Active Flag Definitions - DaqDacActiveFlag

3-79

Data Conversion Definitions Software Calibration Type Definitions - DcalType
RTD Type Definitions - RtdType
Thermocouple Type Definitions - TCType

3-79

WBK Card Definitions WBK Option Values - DaqChanOptionValue
WBK Channel Options - DaqAdcExpType
WBK Module Option-Types - DaqOptionType

3-80

General I/O Definitions I/O Device Type Definitions - DaqIODeviceType
I/O Operation Code Definitions - DaqIOOperationCode
I/O Operation Code Definitions - DaqIOExpansionPort
DAC Transfer Mask Definitions - DaqIOTransferMask
I/O Operation Code Definitions - DaqIOEventCode
DAC Transfer Active Flag Definitions - DaqIOActiveFlag
I/O Port Type Definitions - DaqIODevicePort

3-81

9513 Counter/Timer Definitions Time-of-Day Definitions - Daq9513TimeOfDay
Count Source Definitions - Daq9513CountSource
Output Control Definitions - Daq9513OutputControl
Gating Control Definitions - Daq9513GatingControl
Multiple Counter Command Definitions - Daq9513MultCtrCommand

3-82

DaqTest Command Definitions DaqTestCommand 3-82
Calibration Input Signal Sources DaqCalInputT

DaqCalTableTypeT
3-82

API Error Codes Identifies API errors by number and description 3-83

Daq* Command Reference (Enhanced API) Chapter 3

3-74 Programmer’s Manual

A/D Channel Descriptions
A/D Channel Source
0 to 15 Local channels 0 to 15
16 to 31 Channels 0 to 15 of A/D expansion card 0
32 to 47 Channels 0 to 15 of A/D expansion card 1
48 to 63 Channels 0 to 15 of A/D expansion card 2
64 to 79 Channels 0 to 15 of A/D expansion card 3
80 to 95 Channels 0 to 15 of A/D expansion card 4
96 to 111 Channels 0 to 15 of A/D expansion card 5
112 to 127 Channels 0 to 15 of A/D expansion card 6
128 to 143 Channels 0 to 15 of A/D expansion card 7
144 to 159 Channels 0 to 15 of A/D expansion card 8
160 to 175 Channels 0 to 15 of A/D expansion card 9
176 to 191 Channels 0 to 15 of A/D expansion card 10
192 to 207 Channels 0 to 15 of A/D expansion card 11
208 to 223 Channels 0 to 15 of A/D expansion card 12
224 to 239 Channels 0 to 15 of A/D expansion card 13
240 to 255 Channels 0 to 15 of A/D expansion card 14
256 to 271 Channels 0 to 15 of A/D expansion card 15
272 High-speed digital I/O (DaqBook/100,

DaqBook/200, DaqBoard/100A or
DaqBoard/200A)

Note: In differential mode, only (sub)channels 0 to 7 are valid.

Daq Device Property Definitions - daqGetDeviceProperties
Property Description Format
deviceType Main Chassis Device Type Definition DWORD
basePortAddress Port Address (ISA Addr, LPT Port, etc) DWORD
dmaChannel DMA Channel (if applicable) DWORD
protocol Interface Protocol DWORD
alias Device Alias Name STRING
maxAdChannels Maximum A/D channels (with full expansion) DWORD
maxDaChannels Maximum D/A channels (with full expansion) DWORD
maxDigInputBits Maximum Dig. Inputs (with full expansion) DWORD
maxDigOutputBits Maximum Dig. Outputs (with full expansion) DWORD
maxCtrChannels Maximum Counter/Timers (with full expansion) DWORD
mainUnitAdChannels Maximum Main Unit A/D channels (no expansion) DWORD
mainUnitDaChannels Maximum Main Unit D/A channels (no expansion) DWORD
mainUnitDigInputBits Maximum Main Unit Digital Inputs (no expansion) DWORD
mainUnitDigOutputBits Maximum Main Unit Digital Outputs (no expansion) DWORD
mainUnitCtrChannels Maximum Main Unit Counter/Timer channels (no exp.) DWORD
adFifoSize A/D on-board FIFO Size DWORD
daFifoSize D/A on-board FIFO Size DWORD
adResolution Maximum A/D Converter Resolution DWORD
daResolution Maximum D/A Converter Resolution DWORD
adMinFreq Minimum A/D Conversion Scan Frequency (Hz) FLOAT
adMaxFreq Maximum A/D Conversion Scan Frequency (Hz) FLOAT
daMinFreq Minimum D/A Output Update Frequency (Hz) FLOAT
daMaxFreq Maximum D/A Output Update Frequency (Hz) FLOAT

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-75

Digital I/O Port Connection
Base Unit
Description Value Address Select Jumper Location
Ddp4BitIO 83h Connector P1
DdpLocalA 10h Connector P2 Port A
DdpLocalB 11h Connector P2 Port B
DdpLocalC 12h Connector P2 Port C
DdpLocalCHigh B2h Connector P2 Port C High Nibble
DdpLocalCLow 92h Connector P2 Port C Low Nibble

Expansion Unit Address A
Description Value Address Select Jumper Location / (DBK20 & 21
DdpExp0A 60h Dig Exp Chan 0 Port A / (P2 A)
DdpExp0B 61h Dig Exp Chan 0 Port B / (P2 A)
DdpExp0C 62h Dig Exp Chan 0 Port C / (P2 A)
DdpExp0High E2h Dig Exp Chan 0 Port C High Nibble / (P2 A)
DdpExp0Low C2h Dig Exp Chan 0 Port C Low Nibble / (P2 A)
DdpExp1A 64h Dig Exp Chan 1 Port A / (P3 A)
DdpExp1B 65h Dig Exp Chan 1 Port B / (P3 A)
DdpExp1C 66h Dig Exp Chan 1 Port C / (P3 A)
DdpExp1CHigh E6h Dig Exp Chan 1 Port C High Nibble / (P3 A)
DdpExp1Low C6h Dig Exp Chan 1 Port C Low Nibble / (P3 A)

Expansion Unit Address B
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp2A 68h Dig Exp Chan 2 Port A / (P2 B)
DdpExp2B 69h Dig Exp Chan 2 Port B / (P2 B)
DdpExp2C 6Ah Dig Exp Chan 2 Port C / (P2 B)
DdpExp2CHigh EAh Dig Exp Chan 2 Port C High Nibble / (P2 B)
DdpExp2Low CAh Dig Exp Chan 2 Port C Low Nibble / (P2 B)
DdpExp3A 6Ch Dig Exp Chan 3 Port A / (P3 B)
DdpExp3B 6Dh Dig Exp Chan 3 Port B / (P3 B)
DdpExp3C 6Eh Dig Exp Chan 3 Port C / (P3 B)
DdpExp3CHigh EEh Dig Exp Chan 3 Port C High Nibble / (P3 B)
DdpExp3Low CEh Dig Exp Chan 3 Port C Low Nibble / (P3 B)

Expansion Unit Address C
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp4A 70h Dig Exp Chan 4 Port A / (P2 C)
DdpExp4B 71h Dig Exp Chan 4 Port B / (P2 C)
DdpExp4C 72h Dig Exp Chan 4 Port C / (P2 C)
DdpExp4CHigh F2h Dig Exp Chan 4 Port C High Nibble / (P2 C)
DdpExp4Low D2h Dig Exp Chan 4 Port C Low Nibble / (P2 C)
DdpExp5A 74h Dig Exp Chan 5 Port A / (P3 C)
DdpExp5B 75h Dig Exp Chan 5 Port B / (P3 C)
DdpExp5C 76h Dig Exp Chan 5 Port C / (P3 C)
DdpExp5CHigh F6h Dig Exp Chan 5 Port C High Nibble / (P3 C)
DdpExp5Low D6h Dig Exp Chan 5 Port C Low Nibble / (P3 C)

Expansion Unit Address D
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp6A 78h Dig Exp Chan 6 Port A / (P2 D)
DdpExp6B 79h Dig Exp Chan 6 Port B / (P2 D)
DdpExp6C 7Ah Dig Exp Chan 6 Port C / (P2 D)
DdpExp6CHigh FAh Dig Exp Chan 6 Port C High Nibble / (P2 D)
DdpExp6Low DAh Dig Exp Chan 6 Port C Low Nibble / (P2 D)
DdpExp7A 7Ch Dig Exp Chan 7 Port A / (P3 D)
DdpExp7B 7Dh Dig Exp Chan 7 Port B / (P3 D)
DdpExp7C 7Eh Dig Exp Chan 7 Port C / (P3 D)
DdpExp7CHigh FEh Dig Exp Chan 7 Port C High Nibble / (P3 D)
DdpExp7Low DEh Dig Exp Chan 7 Port C Low Nibble / (P3 D)

Daq* Command Reference (Enhanced API) Chapter 3

3-76 Programmer’s Manual

Event-Handling Definitions

Transfer Event Definitions -
daqTransferEvent

Transfer Event Wait Mode Definitions -
daqWaitMode

DteAdcData 0 DwmNoWait 0
DteAdcDone 1 DwmWaitForAny 1
DteDacData 2 DwmWaitForAll 2
DteDacDone 3
DteIOData 4
DteIODone 5

Hardware Information Definitions

Hardware Information Selector
Definitions - daqHardwareInfo

Hardware Version Definitions -
daqHardwareVersion

Definition Value Definition Value
DhiHardwareVersion 0 DaqBook100 0
DhiProtocol 1 DaqBook112 1
DhiAdcBits 2 DaqBook120 2
DhiADmin 3 DaqBook200 3
DhiADmax 4 DaqBook216 4

DaqBoard100 5
DaqBoard112 6
DaqBoard200 7
DaqBoard216 8
Daq112 9
Daq216 10
WaveBook512 11
WaveBook516 12
TempBook66 13

DBK Card Definitions

DBK Card Expansion Bank Definitions - daqAdcExpType DBK Card Option Value Definitions -
daqChanOptionValue

DaetNotDefined 0 Bank is unknown or undefine the bank Dbk4 cutoff frequencies for DcotMaxFreq option type
DaetDbk50 1 Dbk50 option DcovDbk4Freq18000Hz 0
DaetDbk5 2 Dbk5 option DcovDbk4Freq9000Hz 1
DaetDbk2 3 Dbk2 option DcovDbk4Freq4500Hz 2
DaetDbk4 4 Dbk4 option DcovDbk4Freq2250Hz 3
DaetDbk7 5 Dbk7 option DcovDbk4Freq1125Hz 4

DBK Card Option Type Selector Definitions -
daqChanOptionType

DcovDbk4Freq563Hz 5

DcotDbk4MaxFreq 0 DcovDbk4Freq281Hz 6
DcotDbk4SetBaseline 1 DcovDbk4Freq141Hz 7
DcotDbk4Excitation 2 Dbk4 set baseline for DcotSetBaseline option type
DcotDbk4Clock 3 DcovDbk4BaselineNever 0
DcotDbk4Gain 4 internally used by daqAdcSetScan DcovDbk4BaselineOneShot 1
DcotDbk7Slope 0 Dbk7 debounce times for DcotDebounceTime option

type
DcotDbk7DebounceTime 1 DcovDbk7DebounceNone 0
DcotDbk7MinFreq 2 DcovDbk7Debounce600us 1
DcotDbk7MaxFreq 3 DcovDbk7Debounce2500us 2
DcotDbk50Gain 0 internally used by daqAdcSetScan DcovDbk7Debounce10ms 3

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-77

ADC Gain Definitions
Base Unit DBK13 Dbk19BiTypeN28 3
DgainX1 0 Dbk13X1 0 Dbk19BiTypeN14 1
DgainX2 1 Dbk13X10 1 Dbk19BiTypeS 3
DgainX4 2 Dbk13X100 2 Dbk19BiTypeR 2
DgainX8 3 Dbk13X1000 3 Dbk19BiTypeB 3

Dbk13X2 4 DBK19 Unipolar
DBK4-Filter Dbk13X20 5 Dbk19UniCJC 1
Dbk4FilterX1 0 Dbk13X200 6 Dbk19UniTypeJ 2
Dbk4FilterX10 1 Dbk13X2000 7 Dbk19UniTypeK 2
Dbk4FilterX100 2 Dbk13X4 8 Dbk19UniTypeT 3
Dbk4FilterX1000 3 Dbk13X40 9 Dbk19UniTypeE 1
Dbk4FilterX2 4 Dbk13X400 10 Dbk19UniTypeN28 3
Dbk4FilterX20 5 Dbk13X4000 11 Dbk19UniTypeN14 2
Dbk4FilterX200 6 Dbk13X8 12 Dbk19UniTypeS 3
Dbk4FilterX2000 7 Dbk13X80 13 Dbk19UniTypeR 3
Dbk4FilterX4 8 Dbk13X800 14 Dbk19UniTypeB 3
Dbk4FilterX40 9 Dbk13X8000 15
Dbk4FilterX400 10 DBK42
Dbk4FilterX4000 11 DBK14 Bipolar Dbk42X1 0
Dbk4FilterX8 12 Dbk14BiCJC Dbk13X2
Dbk4FilterX80 13 Dbk14BiTypeJ Dbk13X100 DBK43/43A
Dbk4FilterX800 14 Dbk14BiTypeK Dbk13X100 Dbk43ReadBridge 0
Dbk4FilterX8000 15 Dbk14BiTypeT Dbk13X200 Dbk43SetOffset 1
DBK4-Bypass Dbk14BiTypeE Dbk13X40 Dbk43SetScalingGain2
Dbk4BypassX1_583 0 Dbk14BiTypeN28 Dbk13X400 Dbk43SetInputGain 3
Dbk4BypassX15_83 1 Dbk14BiTypeN14 Dbk13X100
Dbk4BypassX158_3 2 Dbk14BiTypeS Dbk13X200 DBK44
Dbk4BypassX1583 3 Dbk14BiTypeR Dbk13X200 Dbk44X1 0
Dbk4BypassX3_166 4 Dbk14BiTypeB Dbk13X400
Dbk4BypassX31_66 5 DBK14 Unipolar DBK50
Dbk4BypassX316_6 6 Dbk14UniCJC Dbk13X4 Dbk50Range0 0
Dbk4BypassX3166 7 Dbk14UniTypeJ Dbk13X200 Dbk50Range10 1
Dbk4BypassX6_332 8 Dbk14UniTypeK Dbk13X200 Dbk50Range100 2
Dbk4BypassX63_32 9 Dbk14UniTypeT Dbk13X400 Dbk50Range300 3
Dbk4BypassX633_2 10 Dbk14UniTypeE Dbk13X100
Dbk4BypassX6332 11 Dbk14UniTypeN28 Dbk13X800 DBK51
Dbk4BypassX12_664 12 Dbk14UniTypeN14 Dbk13X200 Dbk51Range 0
Dbk4BypassX126_64 13 Dbk14UniTypeS Dbk13X400 Dbk51Range100mV 1
Dbk4BypassX1266_4 14 Dbk14UniTypeR Dbk13X400 Dbk51Range1 2
Dbk4BypassX12664 15 Dbk14UniTypeB Dbk13X800 Dbk51Range10 3

DBK7 DBK15 Bipolar DBK52 Bipolar
Dbk7X1 0 Dbk15BiX1 0 Dbk52BiCJC Dbk19BiCJC

Dbk15BiX2 1 Dbk52BiTypeJ Dbk19BiTypeJ

DBK8 DBK15 Unipolar Dbk52BiTypeK Dbk19BiTypeK
Dbk8X1 0 Dbk15UniX1 2 Dbk52BiTypeT Dbk19BiTypeT

Dbk15UniX2 3 Dbk52BiTypeE Dbk19BiTypeE

DBK9 Dbk52BiTypeN28 Dbk19BiTypeN28
Dbk9VoltageA 0 DBK16 Dbk52BiTypeN14 Dbk19BiTypeN14
Dbk9VoltageB 1 Dbk16ReadBridge 0 Dbk52BiTypeS Dbk19BiTypeS
Dbk9VoltageC 2 Dbk16SetOffset 1 Dbk52BiTypeR Dbk19BiTypeR
Dbk9VoltageD 3 Dbk16SetScalingGain 2 Dbk52BiTypeB Dbk19BiTypeB

Dbk16SetInputGain 3 DBK52 Unipolar
DBK12 Dbk52UniCJC Dbk19UniCJC
Dbk12X1 0 DBK18 Dbk52UniTypeJ Dbk19UniTypeJ
Dbk12X2 1 Dbk18X1 0 Dbk52UniTypeK Dbk19UniTypeK
Dbk12X4 2 Dbk52UniTypeT Dbk19UniTypeT
Dbk12X8 3 DBK19 Bipolar Dbk52UniTypeE Dbk19UniTypeE
Dbk12X16 7 Dbk19BiCJC 0 Dbk52UniTypeN28 Dbk19UniTypeN28
Dbk12X32 11 Dbk19BiTypeJ 1 Dbk52UniTypeN14 Dbk19UniTypeN14
Dbk12X64 15 Dbk19BiTypeK 1 Dbk52UniTypeS Dbk19UniTypeS

Dbk19BiTypeT 2 Dbk52UniTypeR Dbk19UniTypeR
Dbk19BiTypeE 0 Dbk52UniTypeB Dbk19UniTypeB

Daq* Command Reference (Enhanced API) Chapter 3

3-78 Programmer’s Manual

ADC Trigger Source Definitions
daqAdcTriggerSource DaqEnhTrigSensT

DatsImmediate 0 DetsRisingEdge 0
DatsSoftware 1 DetsFallingEdge 1
DatsAdcClock 2 DetsAboveLevel 2
DatsGatedAdcClock 3 DetsBelowLevel 3
DatsExternalTTL 4 DetsAfterRisingEdge 4
DatsHardwareAnalog 5 DetsAfterFallingEdge 5
DatsSoftwareAnalog 6 DetsAfterAboveLevel 6
DatsEnhancedTrig 7 DetsAfterBelowLevel 7

ADC Miscellaneous Definitions

ADC Flag Definitions - daqAdcFlag

Analog/High Speed Digital Flag Unsigned/Signed ADC Data Flag SSH Hold/Sample Flag - For Internal Use Only
DafAnalog 00h DafUnsigned 00h DafSSHSample 00h
DafHighSpeedDigita 01h DafSigned 04h DafSSHHold 10h

Unipolar/Bipolar Flag Single Ended/Differential Flag Clear or shift the least significant nibble - typically
used with 12-bit ADCs

DafUnipolar 00h DafSingleEnded 00h DafIgnoreLSNibble 00h
DafBipolar 02h DafDifferential 08h DafClearLSNibble 20h

DafShiftLSNibble 40h

Frequency vs Period -
daqAdcRateMode

ADC Acquisition Mode
Definitions - daqAdcAcqMode

ADC Transfer Mask Definitions -
daqAdcTransferMask

DarmPeriod 0 DaamNShot 0 DatmCycleOff 00h
DarmFrequency 1 DaamNShotRearm 1 DatmCycleOn 01h

DaamInfinitePost 2 DatmUpdateBlock 00h
DaamPrePost 3 DatmUpdateSingle 02h

DatmWait 00h
DatmReturn 04h
DatmUserBuf 00h
DatmDriverBuf 08h

ADC Clock Source Definitions
-daqAdcClockSource

ADC File Open Mode Definitions
- daqAdcOpenMode

ADC Acquisition/Transfer Active Flag
Definitions - daqAdcActiveFlag

DacsAdcClock 0 DaomAppendFile 0 DaafAcqActive 01h
DacsGatedAdcClock 1 DaomWriteFile 1 DaafAcqTriggered 02h
DacsTriggerSource 2 DaomCreateFile 2 DaafTransferActive 04h

ADC Acquisition State -
daqAdcAcqState

ADC Buffer Transfer Mask -
daqAdcBufferXferMask

DaasPreTrig 0 DabtmOldest 1
DaasPostTrig 1 DabtmNewest 2

DabtmWait 3
DabtmReturn 4

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-79

DAC Definitions

DAC Device Type Definitions -
daqDacDeviceType

DAC Output Mode Definitions -
daqDacOutputMode

DAC Trigger Source Definitions -
daqDacTriggerSource

DddtLocal 0 DdomVoltage 0 DdtsImmediate 0
DddtDbk 1 DdomStaticWave 1 DdtsSoftware 1

DdomDynamicWave 2

DAC Clock Source Definitions -
daqDacClockSource

DAC Waveform Mode Definitions -
daqDacWaveformMode

DAC Predefined Waveform Type
Definitions - daqDacWaveType

DdcsDacClock 0 DdwmNShot 0 DdwtSine 0
DdcsGatedDacClock 1 DdwmNShotRearm 1 DdwtSquare 1
DdcsAdcClock 2 DdwmInfinite 2 DdwtTriangle 2
DdcsExternalTTL 3
Ddcs9513Ctr1 4

DAC Transfer Mask Definitions -
daqDacTransferMask

DAC Waveform/Transfer Active Flag
Definitions - daqDacActiveFlag

DdtmCycleOff 00h DdafWaveformActive 01h
DdtmCycleOn 01h DdafWaveformTriggered 02h
DdtmUpdateBlock 00h DdafTransferActive 04h
DdtmUpdateSingle 02h DdafUnderrun 08h

Data Conversion Definitions

Software Calibration Type Definitions - DcalType
DcalTypeDefault 0
DcalTypeCJC 1 channel to be calibrated is a real CJC reading - not a CJC zero reading
DcalDbk4Bypass 2 channel to be calibrated using the methods and structures for a Dbk4 with the filters

bypassed (set by jumper on the card)
DcalDbk4Filter 3 channel to be calibrated using the methods and structures for a Dbk4 with the cutoff filters

enabled

RTD Type Definitions - RtdType
Dbk9RtdType100 0 RTD 100 ohm Platinum alpha = .00385
Dbk9RtdType500 1 RTD 500 ohm Platinum alpha = .00385
Dbk9RtdType1K 2 RTD 1000 ohm Platinum alpha = .00385

Thermocouple Type Definitions - TCType
DBK14 DBK19 DBK52
Dbk14TCTypeJ 0 Dbk19TCTypeJ 9 Dbk52TCTypeJ 9 (Dbk19TCTypeJ)
Dbk14TCTypeK 1 Dbk19TCTypeK 10 Dbk52TCTypeK 10 (Dbk19TCTypeK)
Dbk14TCTypeT 2 Dbk19TCTypeT 11 Dbk52TCTypeT 11 (Dbk19TCTypeT)
Dbk14TCTypeE 3 Dbk19TCTypeE 12 Dbk52TCTypeE 12 (Dbk19TCTypeE)
Dbk14TCTypeN28 4 Dbk19TCTypeN28 13 Dbk52TCTypeN28 13 (Dbk19TCTypeN28)
Dbk14TCTypeN14 5 Dbk19TCTypeN14 14 Dbk52TCTypeN14 14 (Dbk19TCTypeN14)
Dbk14TCTypeS 6 Dbk19TCTypeS 15 Dbk52TCTypeS 15 (Dbk19TCTypeS)
Dbk14TCTypeR 7 Dbk19TCTypeR 16 Dbk52TCTypeR 16 (Dbk19TCTypeR)
Dbk14TCTypeB 8 Dbk19TCTypeB 17 Dbk52TCTypeB 17 (Dbk19TCTypeB)

Daq* Command Reference (Enhanced API) Chapter 3

3-80 Programmer’s Manual

WBK Card Definitions

WBK Option Values - DaqChanOptionValue WBK Channel Options - DaqAdcExpType
WBK12 Filter-Type - WcotWbk12FilterType DoctWbk11 6
DcovWbk12FilterElliptic 0 DoctWbk12 7
DcovWbk12FilterLinear 1 DoctWbk13 8
WBK12 Filter-Mode - WcotWbk12FilterMode DmctWbk512 9
DcovWbk12FilterBypass 0 DmctWbk10 10
DcovWbk12FilterOn 1 DmctWbk14 11
WBK12 Anti-Aliasing Filter-Mode-WcotWbk12PreFilterMode DmctWbk15 12
DcovWbk12PreFilterDefault 0 DmctResponseDac *13
DcovWbk12PreFilterOff 1 *Response DAC on WaveBook
WBK13 Filter-Type - WcotWbk13FilterType
DcovWbk13FilterElliptic 0 WBK Module Option-Types - DaqOptionType
DcovWbk13FilterLinear 1 DcotWbk12FilterCutOff 0
WBK13 Filter-Mode - WcotWbk13FilterMode DcotWbk12FilterType 1
DcovWbk13FilterBypass 0 DcotWbk12FilterMode 2
DcovWbk13FilterOn 1 DcotWbk12PreFilterMode 3
WBK13 Anti-Aliasing Filter-Mode- WcotWbk13PreFilterMode DcotWbk13FilterCutOff 0
DcovWbk13PreFilterDefault 0 DcotWbk13FilterType 1
DcovWbk13PreFilterOff 1 DcotWbk13FilterMode 2
WBK14 Current-Source - WcotWbk14CurrentSrc DcotWbk13PreFilterMode 3
DcovWbk14CurrentSrcOff 0 DcotWbk14LowPassMode 0
DcovWbk14CurrentSrc2mA 1 DcotWbk14LowPassCutOff 1
DcovWbk14CurrentSrc4mA 2 DcotWbk14HighPassCutOff 2
WBK14 High-Pass Filter - WcotWbk14HighPassCutOff DcotWbk14CurrentSrc 3
DcovWbk14HighPass0_1Hz 0 DcotWbk14PreFilterMode 4
DcovWbk14HighPass10Hz 1 DmotWbk14ExcSrcWaveform 5
WBK14 Low-Pass Filter-Mode - WcotWbk14LowPassMode DmotWbk14ExcSrcFreq 6
DcovWbk14LowPassBypass 0 DmotWbk14ExcSrcAmplitude 7
DcovWbk14LowPassOn 1 DmotWbk14ExcSrcOffset 8

WBK-14 Low-Pass Filter-Mode - WcotWbk14PreFilterMode
DcovWbk14PreFilterDefault 0
DcovWbk14PreFilterOff 1
WBK14 Excitation-Source Waveform -
WmotWbk14ExcSrcWaveform

DmovWbk14ExcSrcRandom 0
DmovWbk14ExcSrcSine 1

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-81

General I/O Definitions

I/O Device Type Definitions - daqIODeviceType I/O Operation Code Definitions -
daqIOOperationCode

DiodtLocalBitIO 0 DioocReadByte 0
DiodtLocal8255 1 DioocWriteByte 1
DiodtLocal9513 2 DioocReadWord 2
DiodtExp8255 3 Dbk20, Dbk21 DioocWriteWord 3
DiodtDbk23 4 DioocReadDWord 4
DiodtDbk24 5 DioocWriteDWord 5
DiodtDbk25 6
DiodtExp9513 7 Not available

I/O Operation Code Definitions -
daqIOExpansionPort

DAC Transfer Mask Definitions -
daqIOTransferMask

DioepP1 0 DiotmCycleOff 0
DioepP2 1 DiotmCycleOn 1
DioepP3 2

I/O Operation Code Definitions - daqIOEventCode DAC Transfer Active Flag Definitions -
daqIOActiveFlag

DioecP1IR 0 DioafDone 0
DioecP2IR 1 DioafArmed 1
DioecP3IR 2 DioafTriggered 2

I/O Port Type Definitions - daqIODevicePort

Local 9513, Expansion 9513 Local Bit I/O
Diodp9513Command 0 DiodpBitIO 0
Diodp9513Data 1
Diodp9513MasterMode 2 Local 8255, Dbk20, Dbk21
Diodp9513Alarm1 3 Diodp8255A 0
Diodp9513Alarm2 4 Diodp8255B 1
Diodp9513Status 5 Diodp8255C 2
Diodp9513Mode1 6 Diodp8255IR 3
Diodp9513Mode2 7 Diodp8255CHigh 4
Diodp9513Mode3 8 Diodp8255CLow 5
Diodp9513Mode4 9
Diodp9513Mode5 10 DBK23
Diodp9513Load1 11 DiodpDbk23A 0
Diodp9513Load2 12 DiodpDbk23B 1
Diodp9513Load3 13 DiodpDbk23C 2
Diodp9513Load4 14 DiodpDbk23Unused 3
Diodp9513Load5 15
Diodp9513Hold1 16 DBK24
Diodp9513Hold2 17 DiodpDbk24A 0
Diodp9513Hold3 18 DiodpDbk24B 1
Diodp9513Hold4 19 DiodpDbk24C 2
Diodp9513Hold5 20 DiodpDbk24Unused 3
Diodp9513Hold1HC 21 *
Diodp9513Hold2HC 22 * DBK25
Diodp9513Hold3HC 23 * DiodpDbk25 0
Diodp9513Hold4HC 24 *
Diodp9513Hold5HC 25 *
* Hold register when in hold cycle mode

Daq* Command Reference (Enhanced API) Chapter 3

3-82 Programmer’s Manual

9513 Counter/Timer Definitions

Time-of-Day Definitions -
daq9513TimeOfDay

Count Source Definitions -
daq9513CountSource

Output Control Definitions -
daq9513OutputControl

DtodDisabled 0 DcsTcnM1* 0 DocInactiveLow 0
DtodDivideBy5 1 DcsSrc1 1 DocHighTermCntPulse 1
DtodDivideBy6 2 DcsSrc2 2 DocTCToggled 2
DtodDivideBy10 3 DcsSrc3 3 DocInactiveHighImp 3

DcsSrc4 4 DocLowTermCntPulse 4
DcsSrc5 5

Gating Control Definitions - DcsGate1 6 Multiple Counter Command Definitions -

daq9513GatingControl DcsGate2 7 daq9513MultCtrCommand
DgcNoGating 0 DcsGate3 8 DmccArm 0
DgcHighTCNM1 1 DcsGate4 9 DmccLoad 1
DgcHighLevelGateNP1 2 DcsGate5** 10 DmccLoadArm 2
DgcHighLevelGateNM1 3 DcsF1** 11 DmccDisarmSave 3
DgcHighLevelGateN 4 DcsF2** 12 DmccSave 4
DgcLowLevelGateN 5 DcsF3** 13 DmccDisarm 5
DgcHighEdgeGateN 6 DcsF4** 14
DgcLowEdgeGateN 7 DcsF5** 15

*invalid with daq9513SetMasterMode
or daqCtrRdFreq
**invalid with daq9513RdFreq

daqTest Command Definitions
DaqTestCommand
DtstBaseAddressValid 0
DtstInterruptLevelValid 1
DtstDmaChannelValid 2
DtstAdcFifoInputSpeed 3
DtstDacFifoOutputSpeed 4
DtstIOInputSpeed 5
DtstIOOutputSpeed 6

Calibration Input Signal Sources
DaqCalInputT
DciNormal 0 External signal from device input connector(s)
DciCalGround 1 Internal calibration ground signal
DciCal5V 2 Internal 5 V calibration signal
DciCal500mV 3 Internal 500 mV calibration signal
DaqCalTableTypeT
DcttFactory 0 Factory calibration constants
DcttUser 1 User-defined calibration constants

Chapter 3 Daq* Command Reference (Enhanced API)

Programmer’s Manual 3-83

API Error Codes
Error
Name

Code #
hex - dec Description

DerrNoError 00h - 0 No error
DerrBadChannel 01h - 1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested device is not online
DerrNoDaqbook 03h - 3 DaqBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrBadDma 06h - 6 Bad or illegal DMA channel or mode specified for device
DerrBadInterrupt 07h - 7 Bad or illegal INTERRUPT level specified for device
DerrDmaBusy 08h - 8 DMA is currently being used
DerrInvChan 10h - 16 Invalid analog input channel
DerrInvCount 11h - 17 Invalid count parameter
DerrInvTrigSource 12h - 18 Invalid trigger source parameter
DerrInvLevel 13h - 19 Invalid trigger level parameter
DerrInvGain 14h - 20 Invalid channel gain parameter
DerrInvDacVal 15h - 21 Invalid DAC output parameter
DerrInvExpCard 16h - 22 Invalid expansion card parameter
DerrInvPort 17h - 23 Invalid port parameter
DerrInvChip 18h - 24 Invalid chip parameter
DerrInvDigVal 19h - 25 Invalid digital output parameter
DerrInvBitNum 1Ah - 26 Invalid bit number parameter
DerrInvClock 1Bh - 27 Invalid clock parameter
DerrInvTod 1Ch - 28 Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 Invalid counter number
DerrInvCntSource 1Eh - 30 Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 Invalid counter command parameter
DerrInvGateCtrl 20h - 32 Invalid gate control parameter
DerrInvOutputCtrl 21h - 33 Invalid output control parameter
DerrInvInterval 22h - 34 Invalid interval parameter
DerrTypeConflict 23h - 35 An integer was passed to a function requiring a character
DerrMultBackXfer 24h - 36 A second background transfer was requested
DerrInvDiv 25h - 37 Invalid Fout divisor
Temperature Conversion Errors
DerrTCE_TYPE 26h - 38 TC type out-of-range
DerrTCE_TRANGE 27h - 39 Temperature out-of-CJC-range
DerrTCE_VRANGE 28h - 40 Voltage out-of-TC-range
DerrTCE_PARAM 29h - 41 Unspecified parameter value error
DerrTCE_NOSETUP 2Ah - 42 dacTCConvert called before dacTCSetup
DaqBook
DerrNotCapable 2Bh - 43 Device is incapable of function
Background
DerrOverrun 2Ch - 44 A buffer overrun occurred
Zero and Cal Conversion Errors
DerrZCInvParam 2Dh - 45 Unspecified parameter value error
DerrZCNoSetup 2Eh - 46 dac…Convert called before dac…Setup
DerrInvCalFile 2Fh - 47 Cannot open the specified cal file
Environmental Errors
DerrMemLock 30h - 48 Cannot lock allocated memory from operating system
DerrMemHandle 31h - 49 Cannot get a memory handle from operating system
Pre-trigger acquisition Errors
DerrNoPreTActive 32h - 50 No pre-trigger configured
Daq FIFO Errors (DaqBoard only)
DerrInvDacChan 33h - 51 DAC channel does not exist
DerrInvDacParam 34h - 52 DAC parameter is invalid
DerrInvBuf 35h - 53 Buffer points to NULL or buffer size is zero
DerrMemAlloc 36h - 54 Could not allocate the needed memory
DerrUpdateRate 37h - 55 Could not achieve the specified update rate
DerrInvDacWave 38h - 56 Could not start waveforms because of missing or invalid parameters
DerrInvBackDac 39h - 57 Could not start waveforms with background transfers
DerrInvPredWave 3Ah - 58 Predefined waveform not supported
RTD Conversion Errors
DerrRtdValue 3Bh - 59 rtdValue out-of-range
DerrRtdNoSetup 3Ch - 60 rtdConvert called before rtdSetup

Daq* Command Reference (Enhanced API) Chapter 3

3-84 Programmer’s Manual

Error
Name

Code #
hex - dec Description

DerrRtdArraySize 3Dh - 61 Temperature array not large enough
DerrRtdParam 3Eh - 62 Incorrect RTD parameter
DerrInvBankType 3Fh - 63 Invalid bank-type specified
DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed
DerrInvFreq 41h - 65 Invalid scan frequency specified
DerrNoDaq 42h - 66 No Daq112B/216B installed
DerrInvOptionType 43h - 67 Invalid option-type parameter
DerrInvOptionValue 44h - 68 Invalid option-value parameter
New API Error Codes
DerrTooManyHandles 60h - 96 No more handles available to open
DerrInvLockMask 61h - 97 Only a part of the resource is already locked, must be all or none
DerrAlreadyLocked 62h - 98 All or part of the resource was locked by another application
DerrAcqArmed 63h - 99 Operation not available while an acquisition is armed
DerrParamConflict 64h - 100 Each parameter is valid, but the combination is invalid
DerrInvMode 65h - 101 Invalid acquisition/wait/dac mode
DerrInvOpenMode 66h - 102 Invalid file-open mode
DerrFileOpenError 67h - 103 Unable to open file
DerrFileWriteError 68h - 104 Unable to write file
DerrFileReadError 69h - 105 Unable to read file
DerrInvClockSource 6Ah - 106 Invalid acquisition mode
DerrInvEvent 6Bh - 107 Invalid transfer event
DerrTimeout 6Ch - 108 Time-out on wait
DerrInitFailure 6Dh - 109 Unexpected result occurred while initializing the hardware
DerrBufTooSmall 6Eh - 110 Unexpected result occurred while initializing the hardware
DerrInvType 6Fh - 111 Invalid acquisition/wait/dac mode
DerrArraySize 70h - 112 Used as a catch all for arrays not large enough
DerrBadAlias 71h - 113 Invalid alias names for Vxd lookup
DerrInvCommand 72h - 114 Invalid command
DerrInvHandle 73h - 115 Invalid handle
DerrNoTransferActive 74h - 116 Transfer not active
DerrNoAcqActive 75h - 117 Acquisition not active
DerrInvOpstr 76h - 118 Invalid operation string used for enhanced triggering
DerrDspCommFailure 77h - 119 Device with DSP failed communication
DerrEepromCommFailure 78h - 120 Device with EEPROM failed communication
DerrInvEnhTrig 79h - 121 Device using enhanced trigger detected invalid trigger type
DerrInvCalConstant 7Ah - 122 User calibration constant out of range
DerrInvErrorCode 7Bh - 123 Invalid error code
DerrInvAdcRange 7Ch - 124 Invalid analog input voltage range parameter
DerrInvCalTableType 7Dh - 125 Invalid calibration table type
DerrInvCalInput 7Eh - 126 Invalid calibration input signal selection
DerrInvRawDataFormat 7Fh - 127 Invalid raw-data format selection
DerrNotImplemented 80h - 128 Feature/function not implemented yet
DerrInvDioDeviceType 81h - 129 Invalid digital I/O device type
DerrInvPostDataFormat 82h - 130 Invalid post-processing data format selection

Standard API Programming Models 4

Programmer’s Manual 4-1

Overview
By using the Application Programming Interface (API) with Daq* systems, you can create custom
software to satisfy your data acquisition requirements. Chapter 5 (Daq* Command Reference—
Standard API) explains the related API functions in detail. This chapter shows how to combine API
functions to perform typical tasks using the standard API (enhanced models are in chapter 3). When
you understand how the API commands work together and with the hardware, you are ready to program
for optimum data acquisition. To help you get this programmer’s perspective, this chapter is divided
into 3 parts:

• Data Acquisition Environment outlines related concepts and defines Daq* capabilities the
programmer must work with (the API, hardware features, and signal management).

• Programming Models explains the sequence and type of operations necessary for data
acquisition. These models provide the software building blocks to develop more complex and
specialized programs. The description for each model has a flowchart and program excerpt to
show how the API functions work.

• Summary Guide of Selected API Functions is an easy-to-read table that describes when to use
the basic API functions.

Data Acquisition Environment
In order to write effective data acquisition software, programmers must understand:

• Software tools (the API documented in this manual and the programming language—you may
need to consult documentation for your language).

• Hardware capabilities and constraints.
• General concepts of data acquisition and signal management.

Application Programming Interface (API)
The API includes all the software functions needed for building a data acquisition system with the
hardware described in the user’s manual. Chapter 5 supplies the details how each function is used
(parameters, hardware applicability, etc). (The Visual Basic VBX Support chapter explains special
features available in a VBX environment.) In addition, you may need to consult your language and
computer documentation.

Standard vs Enhanced API
Major differences between the standard and enhanced APIs were described in the introductory chapter.
Language support varies as follows:

• standard API accommodates C, QuickBASIC, Visual Basic, and Turbo Pascal 7
• enhanced API accommodates C, Visual Basic, and Delphi.

Note: Codes for standard and enhanced APIs are NOT compatible; hence, a separate chapter of
programming models for each (this chapter is for the standard API models; chapter 2 is for the
enhanced API models).

Standard API Programming Models Chapter 4

4-2 Programmer’s Manual

Hardware Capabilities and Constraints
To program the system effectively, you must understand your Daq* and DBK hardware capabilities.
Obviously you cannot program the hardware to perform beyond its design and specifications, but you
also want to take full advantage of the system’s power and features. In the hardware User’s Manual,
you may need to refer to sections that describe your hardware’s capability. In addition, you may need
to consult your computer documentation. In some cases, you may need to verify the hardware setup,
use of channels, and signal conditioning options. Some hardware devices have jumpers and DIP
switches that must match the programming (or reprogramming as the system evolves).

Signal Environment
This guide refers to several data acquisition concepts. Such concepts important for programmers are
listed here and explained in the chapter Signal Management and Troubleshooting Tips in the User’s
Manual. You must apply these concepts as needed in your situation. Some of these concepts include:

• Channel Identification. Refer to Signal Management and the related reference table in chapter
5.

• Scan Rates and Sequencing. With multiple scans, the time between scans becomes a
parameter. This time can be a constant or can be dependent upon a trigger. Refer to Signal
Management.

• Counter/Timer Operation. Refer to Signal Management and DaqCtr* functions in chapter 5.
• Triggering Options. Triggering starts the A/D conversion. The trigger can be an external

analog or TTL trigger, or a program controlled software trigger. Refer to Signal Management
and the trigger functions in chapter 5.

• Foreground/Background. Foreground transfer routines require the entire transfer to occur
before returning control to the application program. Background routines start the A/D
acquisition and return control to the application program before the transfer occurs. Data is
transferred while the application program is running. Data will be transferred to the user
memory buffer during program execution in 1 sample or 256 sample blocks depending on the
configuration. The programmer must determine what tasks can proceed in the background while
other tasks perform in the foreground and how often the status of the background operations
should be checked.

• Tagged Data. 12-bit Daq*s return data in a 16-bit format: the upper 12 bits contain the A/D
readings, and the lower 4 bits contain channel information. Channel tagging can be
enabled/disabled using the daqAdcSetTag command. Tagged data can be converted to an array
of A/D readings and an array of channel numbers using daqAdcConvertTagged. The DaqBook
and DaqBoard can use channel tagging, but the Daq PCMCIA cannot. Refer to daqAdcSetTag
in chapter 5.

Parameters in the various A/D routines include: number of channels; number of scans; start of
conversion triggering; timing between scans; and mode of data transfer. Up to 512 A/D channels can
be sampled in a single scan. These channels can be consecutive or non-consecutive with the same or
different gains. The scan sequence makes no distinction between local and expansion channels.

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-3

Basic Models
This section outlines basic programming steps commonly used for data acquisition. Consider the
models as building blocks that can be put together in different ways or modified as needed. As a
general tutorial, these examples use QuickBASIC since most programmers know BASIC and can
translate to other languages as needed.

The standard API programming models discussed in this chapter include:

Model Type Model Name Page

Configuration Initialization and Error Handling 4-4

Acquisition Foreground Acquisition with User-Level Commands
Foreground Acquisition with Low-Level Commands
Foreground Acquisition, High-Speed Digital Input
Background Acquisition, Multi-Channel, Multi-Scan
Background Acquisition, Direct-To-Disk In Cycle Mode

4-5
4-7
4-8
4-9

4-11

Analog Output Analog Output
Generating DAC FIFO Waveforms with User-Level Commands (DaqBoard Only)
Generating DAC FIFO Waveforms with Hardware-Level Commands (DaqBoard Only)

4-13
4-14
4-16

Use of P3’s
Counter/Timer

Background Counter Acquisition Using Interrupts
Variable Rate, Variable Duty-Cycle Square-Wave Output

4-18
4-20

Use of 8255 Chip Single Square-Wave Output
Digital I/O on P2

4-22
4-23

Temperature
Measurements

Temperature Measurements Using Single TC Type on Single DBK19 Card
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card

4-24
4-32
4-35

Calibration Using DBK Card Calibration Files 4-37

Zero Compensation Zero Compensation 4-40

Conversion Linear Conversions 4-42

Standard API Programming Models Chapter 4

4-4 Programmer’s Manual

Initialization and Error Handling
This program (INITEX1.BAS) demonstrates how to
initialize the Daq* and use various methods of error
handling. Similar code exists in all the example
programs but are only detailed here. Functions used
include:

• QBdaqInit%(lptPort%, intr%)
• QBdaqSetErrHandler%(errHandler%)
• QBdaqClose%

Every program begins with an INCLUDE directive
which defines constants and declarations used in the
program. (daqbook.bi for QuickBASIC; DaqBook.bas for Visual Basic; ifcode.int for Turbo Pascal;
DaqBook.h for C and DLL).

’$INCLUDE: ’daqbook.bi’
CLS
PRINT “INIT1.BAS”: PRINT
Ret% = QBdaqInit%(LPT1%, 7)
Ret% = QBdaqClose%

If there was a problem initializing, BASIC would return an “Illegal Function Call” error. Disable the
Daq* from reporting errors to BASIC.

Ret% = QBdaqSetErrHandler%(0)

If there is a Daq* error, the program will continue. The function’s return value (an error number or 0 if
no error) can help you debug a program.

IF (QBdaqInit%(LPT1%,) 0) THEN
PRINT “Cannot initialize DaqBook!”

Daq* functions return daqErrno%.

PRINT “daqErrno% : ”; HEX$(daqErrno%)
END IF

The next statement defines an error handling routine that frees us from checking the return value of
every Daq* function call. Although not necessary, this sample program transfers program control to a
user-defined routine when an error is detected. Without a Daq* error handler, QuickBASIC will
receive and handle the error, post it on the screen and terminate the program. QuickBASIC provides an
integer variable (ERR) that contains the most recent error code. This variable can be used to detect the
error source and take the appropriate action. The function QBdaqSetErrHandler tells QuickBASIC to
assign ERR to a specific value when a Daq*error is encountered. The following line tells QuickBASIC
to set ERR to 100 when a Daq*error is encountered. (Other languages work similarly; refer to specific
language documentation as needed.)

Ret% = QBdaqSetErrHandler%(100)

The ON ERROR GOTO command in QuickBASIC allows a user-defined error handler to be provided,
rather than the standard error handler that QuickBASIC uses automatically. The program uses ON
ERROR GOTO to transfer program control to the label ErrorHandler if an error is encountered.

ON ERROR GOTO ErrorHandler

Daq* errors will send the program into the error handling routine. The body of the program goes here.

Ret% = QBdaqInit%(LPT1%, 7)
END

This is the error handler. Program control is sent here on error.

ErrorHandler:
PRINT “ERROR! Program aborted”
PRINT “BASIC Error :”; ERR
IF ERR = 100 THEN PRINT “DaqBook Error : ”; HEX$(daqErrno%)
END

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-5

Foreground Acquisition with User-Level Commands
The program ADCEX1.BAS shows the use of several
high-level analog input routines. These commands are
easier to use than low-level commands but less flexible
in scan configuration. This example demonstrates the
use of the Daq*’s 4 highest ADC functions and channel
tagging. Functions used include:

• QBdaqAdcRd%(chan%, sample%, gain%)
• QBdaqAdcRdN%(chan%, Buf%(), count%,

trigger%, level%, freq!, gain%)
• QBdaqAdcRdScan%(startChan%, endChan%,

Buf%(), gain%)
• QBdaqAdcRdScanN%(startChan%, endChan%,

Buf%(), count%, trigger%, level%, freq!, gain%)
• QBdaqAdcSetTag%(Tag%)
• QBdaqAdcConvertTagged%(taggedData%(),

buf%(), tags%(), count%)

This program will initialize the Daq* hardware, then
take readings from the analog input channels in the base
unit (not the expansion cards). For transporting data in
and out of the Daq* driver, arrays are dimensioned.

DIM sample%(1), buf%(80),
taggedData%(80), tags%(80), ret%

Although not required, this example disables channel tagging. When analog input channels in the base
unit are accessed, the upper 4 bits of the 16-bit value are a channel tag; unless disabled by the following
function.

ret% = QBdaqAdcSetTag%(0)

The next line requests 1 reading from 1 channel with a gain of ×1. The variable DgainX1% is actually
a defined constant from DAQBOOK.BI, included at the beginning of this program.

ret% = QBdaqAdcRd%(0, sample%(0), DgainX1%)
PRINT USING “& ####”; “Result of AdcRd:”; sample%(0): PRINT

The next line requests 10 readings from channel 0 at a gain of ×1, using the pacer clock at 1 kHz.

ret% = QBdaqAdcRdN%(0, buf%(), 10, DtsPacerClock%, 0, 1000!, DgainX1%)
PRINT “Results of AdcRdN: ”;
FOR x = 0 TO 9
 PRINT USING “#### ”; buf%(x);

NEXT x

With channel tags enabled, the program will then collect one sample of channels 0 through 7 using the
QBdaqAdcRdScan function.

ret% = QBdaqAdcSetTag%(1)
ret% = QBdaqAdcRdScan%(0, 7, taggedData%(), DgainX1%)

After the data has been collected and placed in a QuickBASIC array, the QBdaqAdcConvertTagged
function can be used to separate the channel data from the tag data. After the function call, the data is
in the buf% array and the tags are in the tags% array.

ret% = QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), 8)
PRINT “Results of AdcRdscan:”
FOR x = 0 TO 7
PRINT USING “& # & ####”; “Channel:”; tags%(x); “Data:”; buf%(x)

NEXT x: PRINT

Using the QBdaqAdcRdScan function, the program will now take 10 readings from channels 0 though
7. After the data has been collected, the data is then separated from the tags.

Standard API Programming Models Chapter 4

4-6 Programmer’s Manual

ret% = QBdaqAdcRdScanN(0, 7, taggedData%(), 10, DtsPacerClock%, 0, 1000!,
DgainX1%)

ret% = QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), 80)
PRINT “Results of AdcRdscanN:”
FOR x = 0 TO 7
PRINT USING “& # & ”; “Channel:”; tags%(x); “Data:”;
FOR y = 0 TO 9

PRINT USING “#### ”; buf%((y * 8) + x);
NEXT y: PRINT

NEXT x

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-7

Foreground Acquisition with Low-Level Commands
This program (ADCEX2.BAS) sets up an acquisition that
collects scans in the foreground. After the channels and
frequency have been configured, a foreground acquisition
function is called. At this point, program execution is
suspended until all the data is gathered. This example
implements daqAdcRdNFore to get 10 samples from
channels 0 through 7, triggered by the pacer clock with a
1000 Hz sampling frequency and unity gain. Functions used
include:

• QBdaqAdcSetMux%(startChan%, endChan%, gain%)
• QBdaqAdcSetFreq%(freq!)
• QBdaqAdcSetTrig%(source%, level%, ctr0Mode%,

pacerMode%)
• QBdaqAdcRdNFore%(Buf%(), count%)
• QBdaqAdcSetTag%(Tag%)
• QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), count%)

This program will initialize the Daq* hardware, then take readings from the analog input channels in
the base unit (not the expansion cards). The functions used in this program are of a lower level than
those used in ADCEX1.BAS and provide more flexibility.

DIM buf%(80), taggedData%(80), tags%(80), ret%
To begin the setup, the base unit multiplexer is set to scan through channels 0 through 7 with a gain of
×1.

ret% = QBdaqAdcSetMux%(0, 7, DgainX1%)

Next, set the internal sample rate to 1 kHz.

ret% = QBdaqAdcSetFreq%(1000!)

The acquisition begins on a trigger. The next line defines the trigger event to be the pacer clock, which
will start the acquisition immediately. The variable DtsPacerClock% is a constant defined in
DAQBOOK.BI. The one-shot parameter is set to continuous. Since the trigger source is not an analog
input channel, the Level argument is not relevant. The ctr0Mode is also not relevant since the trigger is
not DtsTTLRise or DtsTTLFall.

ret% = QBdaqAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 1)

After setting up and arming the acquisition, the data is immediately ready to be collected. Had the
trigger source been an external TTL signal or analog input, the data would only be ready after the
trigger had been satisfied.

ret% = QBdaqAdcRdNFore%(taggedData%(), 10)

After the data has been collected and placed in a QuickBASIC array, the QBdaqAdcConvertTagged
function can be used to separate the channel data from the tag data. After the function call, the data is
in the buf% array and the tags are in the tags% array.

ret% = QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), 80)
PRINT “Results of AdcRdNFore:”: PRINT
FOR x = 0 TO 7
PRINT USING “& # & ”; “Channel:”; tags%(x); “Data:”;

FOR y = 0 TO 9
PRINT USING “#### ”; buf%((y * 8) + x);

NEXT y
PRINT

NEXT x
ret% = QBdaqClose%
END

Standard API Programming Models Chapter 4

4-8 Programmer’s Manual

Foreground Acquisition, High-Speed Digital Input
This program (ADCEX3.BAS) reads a single value
from the high-speed digital input (from the
DaqBook/100/200 or DaqBoard/100A/200A) using
a software trigger and foreground acquisition. After
the channel and trigger are configured, the software
trigger is executed and foreground acquisition starts.
At this point, program execution is suspended until
all the data is gathered. Functions used include:

• QBdaqAdcSetScan%(chans%(), gains%(),
count)

• QBdaqAdcSetTrig%(source%, level%,
ctr0Mode%, pacerMode%)

• QBdaqAdcSoftTrig%
• QBdaqAdcRdFore%(sample%)

DIM chans%(1), gains%(1), buf%(10),
ret%

The QBdaqAdcSetScan function loads the scan
sequencer with a list of channels and associated
gains. The function call requires 2 arrays: an array
of channels and an array of associated gains. This
example will access only the high-speed digital input
port, so only one entry is required in the array. The
last parameter in the function call is the number of elements in the array, which in our case is 1. The
variables DchHighSpeedDig% and DgainX1% are both constants found in DAQBOOK.BI.

chans%(0) = DchHighSpeedDig%
gains%(0) = DgainX1%
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 1)

The pacer clock is set using the QBdaqAdcSetClk function. Its 2 arguments adjust 2 internal counters
which affect the scanning speed of the analog inputs. Assuming the internal clock jumper is in the
default position of 1 MHz, the scan rate will be equal to 1 MHz/(argument1*argument2). In this case,
1,000,000/(10*10) leads to a scan rate of 10 kHz.

ret% = QBdaqAdcSetClk%(10, 10)

After setting up the sequencer, the trigger must be configured. This example uses a software trigger to
start the acquisition. The function QBdaqAdcSoftTrig serves as the trigger. The variable
DtsSoftware% is a defined constant in DAQBOOK.BI. The one-shot parameter is set to continuous.
The Level parameter is irrelevant when using the software trigger. The ctr0mode argument is also not
relevant since the trigger is not DtsTTLRise or DtsTTLFall.

ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 1)
ret% = QBdaqAdcSoftTrig%

After the software trigger, the data can be collected.

ret% = QBdaqAdcRdNFore%(buf%(),10)
FOR x =0 TO 9
PRINT USING “##/\ \” ; x + 1 ; “&H” ; HEX$(buf%(x))

NEXT

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-9

Background Acquisition, Multi-Channel, Multi-Scan
This program (ADCEX4.BAS) sets up an
acquisition that collects scans in the
background. After the acquisition is
configured and armed, the program continues
in the foreground while data is being collected
in the background. The foreground program
can poll the background acquisition to
determine its status.

This example reads multiple channels and
scans in the background mode to get 10
samples from channels 0 through 7 (triggered
by an analog level) with a 1 Hz sampling
frequency and unity gain. After the acquisition
has been started, data is transferred to the user
buffer as it is being collected (the user program
continues to run in the foreground). Functions
used include:

• QBdaqAdcSetScan%(chans%(),
gains%(), count)

• QBdaqAdcSetClk%(ctr1%, ctr2%)
• QBdaqAdcSetTrig%(source%, level%,

ctr0Mode%, pacerMode%)
• QBdaqAdcRdNBack%(Buf%(),

count%, cycle%, armNotEmpty%)
• QBdaqAdcGetBackStat%(active%,

count%)
• QBdaqAdcSetTag%(Tag%)
• QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), count%)

DIM taggedData%(80), buf%(80), tags%(80), active%, count%

The QBdaqAdcSetScan function loads the scan sequencer with a list of channels and associated gains.
The function call requires two arrays; an array of channels, and an array of associated gains. This
example will load the sequencer with channels 0 through 7, all with a gain of ×1. The last parameter in
the function call is the number of elements in the array, which in our case is 8. The variable DgainX1%
is a constant found in DAQBOOK.BI.

FOR x% = 0 TO 7
chans%(x%) = x%
gains%(x%) = DgainX1%

NEXT x%
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 8)

Although not required, this example enables channel tagging. When analog input channels in the base
unit are accessed, the upper 4 bits of the 16-bit value are a channel tag. The following function call
enables the channel tags.

ret% = QBdaqAdcSetTag%(1)

The pacer clock is set using the QBdaqAdcSetClk function. Its 2 arguments adjust 2 internal counters
which affect the scanning speed of the analog inputs. Assuming the internal clock jumper is in the
default position of 1 MHz, the scan rate will be equal to 1 MHz/(argument1*argument2). In this case,
1,000,000/(1,000*1,000) = 1 Hz.

ret% = QBdaqAdcSetClk%(1000, 1000)

The trigger is then set up using the QBdaqAdcSetTrig function. An analog level trigger is used to
trigger the acquisition. The trigger channel is always the first one in the scan sequence, in this case
channel 0. A level of 10 counts is selected.

ret% = QBdaqAdcSetTrig%(DtsAnalogRisePos%, 0, 10, 0, 1)

Standard API Programming Models Chapter 4

4-10 Programmer’s Manual

After setting up and arming the trigger, the function QBdaqAdcRdNBack can be called to collect the
data in the background. This function will wait until the trigger is satisfied before attempting to collect
the data. The following line collects 10 scans, placing them in the array taggedData%. This example
shows the Cycle flag as OFF which will stop background operation after 10 scans have been collected.
An Update Size parameter of 1 indicates the user buffer will be updated after every sample. A
parameter of 0 indicates the user buffer will be updated after 256 samples.

ret% = QBdaqAdcRdNBack%(taggedData%(), 10, 0, 1)

At this point, the Daq* is armed and, depending on the state of the trigger, possibly collecting data.
The program, however, proceeds to the next line. In our case, we enter into a polling loop to check the
status of the background operation.

DO
ret% = QBdaqAdcGetBackStat%(active%, count%)
LOCATE 3, 1
PRINT “Transfer in progress. ”; count%; “ samples acquired”

LOOP WHILE active% <>0
PRINT “Acquisition complete : ”; count%; “ samples acquired”: PRINT

After the data has been collected and placed in a QuickBASIC array, the QBdaqAdcConvertTagged
function can be used to separate the channel data from the tag data. After the function call, the data is
in the buf% array and the tags are in the tags% array.

ret% = QBdaqAdcConvertTagged(taggedData%(), buf%(), tags%(), 80)
PRINT “Data acquired : ”: PRINT
FOR x = 0 TO 7

 PRINT USING “& # & ”; “Channel:”; tags%(x); “Data:”;
 FOR y = 0 TO 9

PRINT USING “#### ”; buf%((y * 8) + x);
 NEXT y
 PRINT

NEXT x
ret% = QBdaqClose%
END

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-11

Background Acquisition, Direct-To-Disk In Cycle Mode
This program continuously reads data in the
background and periodically writes data to
disk in the foreground. In cycle mode, this
data transfer can contiune indefinitely. When
the background transfer reaches the end of the
data array, it will reset its array pointer back
to the beginning of the array and continue
writing data to it. Thus, the allocated buffer
can be used repeatedly like a FIFO buffer.

While reading and writing data, the program
must track two variables. The first is the
number of scans already processed and
written to disk (ScansProcessed) versus the
number of scans actually read by the Daq*
hardware. The difference between this
number and the count returned by
daqADCGetBackStat is the number of new
scans to be processed. The second item
tracked is the array position. The program
must write data to the disk until it reaches the
end of the data array and then set the read
index back to the beginning. As the
background operation is filling dataArray, the
foreground operation CollectDataTimer will
empty dataArray to disk. The foreground
emptying of dataArray will always lag
background filling, but both will loop back to
the beginning of dataQrray when the end is
reched. Either the entire block of data can be
written to disk, or the data needs to be broken
up into two smaller blocks to be written to
disk (see figure).

Use of a Data Array in Cycle Mode

Standard API Programming Models Chapter 4

4-12 Programmer’s Manual

DIM buffer1%(8000), buf%(8000), active%, count&, scansprocessed&
DIM newscans&, arrayposition&, j&
bufsize% = 1000

' Define arrays of channels and gains : 0-7 , unity gain
FOR x% = 0 TO 7
 chans%(x%) = x%
 gains%(x%) = DgainX1%

NEXT x%

' Load scan sequence FIFO
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 8)

' Set Sampling Frequency
ret% = QBdaqAdcSetFreq%(3000)

' Define and arm trigger
ret% = QBdaqAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 0)

' Read data in the background
ret% = QBdaqAdcRdNBack%(buffer1%(), bufsize%, 1, 0)

' Write data to disk
OPEN "c:dasqdata.bin" FOR OUTPUT AS #1
scansprocessed& = 0
arrayposition& = 0

DO
 ret% = QBdaqAdcGetBackStat%(active%, count&)
 LOCATE 3, 1
 newscans& = count& - scansprocessed&
 PRINT "Number of scans acquired:"; count&
 PRINT "Number of scans saved to disk:"; scansprocessed&

 'Write scans to end of array.
 IF ((newscans& * 8) + arrayposition&) > (bufsize% * 8) THEN

newscans& = newscans& - ((bufsize% * 8 - arrayposition&) / 8)
FOR arrayposition& = arrayposition& TO (bufsize% * 8)

 PRINT #1, buffer1%(arrayposition&)
NEXT arrayposition&
arrayposition& = 0

 END IF

 'Write scans to disk
 numloops& = newscans& * 8
 FOR j& = 0 TO numloops&

PRINT #1, buffer1%(arrayposition&)
arrayposition& = arrayposition& + 1

 NEXT j&
 scansprocessed& = count&

LOOP WHILE scansprocessed& < 5000

PRINT "Acquisition complete.": PRINT
CLOSE #1

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-13

Analog Output
The program DACEX1.BAS shows how to output analog voltages
on analog output channels 0 and 1. These commands only have to
be issued one time unless explicity changed. The output voltages
will be sustained. This example demonstrates the use of the two
digital-to-analog converters (values used assume bipolar mode).
Functions used include:

• QBdaqDacWt%(chan%, dataVal%)
• QBdaqDacWtBoth%(chan1Val%, chan2Val%)

Assuming the voltage reference to be connected to the internal,
default of 5 V, the next function will set channel 0 to an output
voltage of 5 V. Since the internal digital-to-analog converter has
12-bit resolution, 4095 represents full-scale. Channel 1 is equal to 0.

ret% = QBdaqDacWt%(0, 4095)

Prompt the user to hit a key to continue.

PRINT “5 VDC on channel 1.”
PRINT “hit any key to continue...”
WHILE INKEY$ = “”: WEND: PRINT

The QBdaqDacWtBoth writes to both analog outputs simultaneously. The next line sets channel 0 to 5
V and channel 1 to 2.5 V. At full-scale, a digital value of 4095 corresponds to 5 V; a digital value of
2048 corresponds to ½ of 5 V.

ret% = QBdaqDacWtBoth%(4095, 2048)

Prompt the user to hit a key to continue.

PRINT “5 VDC on channel 1, 2.5 VDC on channel 2.”
PRINT “hit any key to continue...”
WHILE INKEY$ = “”: WEND: PRINT

The next line sets both outputs to 0 V.

ret% = QBdaqDacWtBoth%(0,0)

Standard API Programming Models Chapter 4

4-14 Programmer’s Manual

Generating DAC FIFO Waveforms with User-Level Commands (DaqBoard Only)
This program (DACEX2.BAS) demonstrates the use
of the DAC FIFO to generate waveforms with user-
level commands. The DAC is configured for output
on both channels, and the user waveform is
constructed. Output begins after the waveform is
assigned to a channel. At this point, the program
continues while the waveforms are generated.

The user-level command set does not require an in-
depth knowledge of the FIFO hardware.
(DACEX3.BAS demonstrates the use of the low-
level commands to directly manipulate the FIFO
hardware.) Functions used include:

• QBdaqBrdDacSetMode%(updateRate!,
mode%, cycle%)

• QBdaqBrdDacPredefWave%(DAC%,
samples%, waveType%, amplitude%, offset%,
dutyCycle%, phaseShift%)

• QBdaqBrdDacUserWave%(DAC%, buf%(),
samples%)

• QBdaqBrdDacStart%
• QBdaqBrdDacStop%

Commands from the hardware-level and user-level
command sets should not be used together in the
same program. Note: This example uses the high-
speed DAC FIFO to generate waveforms and can
only be used with the DaqBoard product line.

DIM waveBuf%(512)

The next command sets the update rate (first parameter) to 10 µs per sample; enables waveform output
on both DACs (second parameter); and sets the waveforms to cycle continuously.

ret% = QBdaqBrdDacSetMode%(10, DacFIFOBoth%, 1)

The next series of statements build the waveform that will be output on DAC channel 0. The waveform
will be a ramp from the low-voltage level up to the high-voltage level for the first 128 samples (half of
the waveform). It will then drop back down to the low-voltage level for the next quarter of the
waveform and then rise to a level midway between the low and high references for the last quarter of
the waveform. Note: The voltage references depend on the configuration of the hardware (refer to
hardware sections of the manual as needed).

point% = 0
FOR x = 0 to 127
 waveBuf%(x) = point%
 point% = point% + &H20
NEXT x
FOR x = 128 to 191
 waveBuf%(x) = 0
NEXT x
FOR x = 192 to 255
 waveBuf%(x) = &H800
NEXT x

The next line assigns the 256 sample waveform we have just built to DAC channel 0.

ret% = QBdaqBrdDacUserWave%(0, waveBuf%(), 256)

The next line assigns a 256-sample sine wave to DAC channel 1. The sine wave will have a peak-to-
peak amplitude equal to the full-scale output of the DAC and will be centered around the half-scale
point. The waveform will have a 50% duty-cycle and a phase shift that lags DAC channel 0 by 90
degrees. This waveform is built for you by the driver.

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-15

ret% = QBdaqBrdDacPredefWave%(1, 256, PdwSine%, &Hfff, &H800, 50 , 90)

The next line starts all the waveforms that have been set up by the QBdaqBrdDacSetMode,
QBdaqBrdDacPredefWave, and QBdaqBrdDacUserWave commands.

ret% = QBdaqBrdDacStart%

After the user is prompted to stop the waveforms by pressing a key on the computer, the next line stops
all the waveforms that have been set up by the QBdaqBrdDacSetMode, QBdaqBrdDacPredefWave,
and QBdaqBrdDacUserWave commands and started by the QBdaqBrdDacStart command.

PRINT “The wafeforms are being outputted on DACs 0 and 1.”
PRINT “Press a key to stop the waveforms and end the program.”
WHILE INKEY$=“”:WEND:PRINT
ret% = QBdaqBrdDacStop%

Standard API Programming Models Chapter 4

4-16 Programmer’s Manual

Generating DAC FIFO Waveforms with Hardware-Level Commands (DaqBoard Only)
This program (DACEX3.BAS) demonstrates
the use of the DAC FIFO to generate
waveforms with hardware-level commands.
The programmer must understand the 8255
integrated circuit. After configuration and
output enabled, the program continues while the
waveforms are generated. Functions used
include:

• QBdaqBrdDacResetFIFO%
• QBdaqBrdDacCtrl%(mode%,

retransmit%)
• QBdaqBrdDacClockSrc%(source%)
• QBdaqBrdDacSetTimeBase%(frequency

%)
• QBdaqAdcConfCntr0%(config%)
• QBdaqAdcWtCntr0%(cntr0%)
• QBdaqBrdDacWriteFIFO%(samples%,

storage%())

Note: This example uses the high-speed DAC
FIFO to generate waveforms and can only be
used with the DaqBoard product line.

We first define a constant for the waveform’s
size and then dimension an array to build a
waveform in.

CONST WavePoints = 512
DIM i%, point%,
waveBuf%(WavePoints)

The first steps are to reset the FIFO. This clears
any previous samples from the FIFO.

Ret% = QBdaqBrdDacResetFIFO%

Set the DAC FIFO to the DaqBook compatible
(or FIFO bypass) mode. Note: This step is not
required, it is only shown here as a
demonstration of how to put the DACs in the
DaqBook compatible mode.

Ret% =
QBdaqBrdDacCtrl%(DacFIFOBypass%
, 0)

And turn off the DAC FIFO’s pacer clock.

Ret% = QBdaqBrdDacClockSrc%(DacPcrStop%)

The next series of statements build the waveforms that will be output on DAC channels 0 and 1. The
waveform on channel 1 will ramp from the low-voltage reference level to the high-voltage reference
level. The waveform on channel 0 will ramp from the high-voltage reference level down to the low-
voltage reference level. The waveform samples are interleaved in the buffer with channel 1 samples in
the first buffer and channel 0 samples in the second buffer. Note: The voltage references depend on the
hardware configuration. (See sections of the manual on your hardware configuration for more
information.)

FOR x = 0 to WavePoints% - 1 STEP 2
 waveBuf%(x) = point%
 waveBuf%(x+1) = &Hfff - point%
 point% = point% + &H10
NEXT x

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-17

The next line loads the buffer we have built into the DAC FIFO hardware.

Ret% = QBdaqBrdDacWriteFIFO%(WavePoints%, waveBuf%(0))

The next line specifies that the waveform samples are interleaved in the FIFO and that the samples
should be re-transmitted when the end of the FIFO is reached.

Ret% = QBdaqBrdDacCtrl%(DacFIFOInterleave%, 1)

Next we will set the main time base for the DAC pacer clock to 5 MHz; and then, we will configure
counter 0 of the 8254 (which the DAC pacer clock passes through) to be a divide by 10 counter. This
will give us a update rate of 500 kHz per sample. Since the samples are interleaved in the FIFO, each
waveform will be updated at a rate of 250 kHz.

Ret% = QBdaqBrdDacSetTimeBase%(TB5Mhz%)
Ret% = QBdaqAdcConfCntr0%(Dc0cDivByNCtr%)
Ret% = QBdaqAdcWtCntr0%(10)

To start the waveforms, we will turn on the DAC pacer clock and tell the hardware to use the internal
time base for this clock. After the user is prompted to stop the waveforms by pressing a key on the
computer, the next line stops all the waveforms that have been set up by stopping the clock pulses to
the DAC FIFO and clearing the FIFO with the QBdaqBrdDacResetFIFO command. Issuing either
command is enough to stop the waveform generation.

PRINT “The wafeforms are being outputted on DACs 0 and 1.”
PRINT “Press a key to stop the waveforms and end the program.”
WHILE INKEY$=“”:WEND:PRINT
Ret% = QBdaqBrdDacClockSrc%(DacPcrStop%)
Ret% = QBdaqBrdDacResetFIFO%

Standard API Programming Models Chapter 4

4-18 Programmer’s Manual

Background Counter Acquisition Using Interrupts
This program (CTREX2.BAS) sets up a
counting acquisition that counts events in the
background. First, a signal is generated on
the fout pin of P3 and must be physically
connected to the interrupt input. After
configuring and arming the counter for
background acquisition, the program
continues in the foreground. The foreground
program can poll the background acquisition
to determine its status. A 10 Hz square wave
will be placed on the oscillator output. Use it
to trigger the External Interrupt. Note: these
counters are only available on the
DaqBook/100/200 and
DaqBoard/100A/200A. Functions used
include:

• QBdaqCtrSetCtrMode%(ctrNum%,
gateCtrl%, cntEdge%, cntSource%,
specGate%, reload%, cntRepeat%,
cntType%, cntDir%, outputCtl%)

• QBdaqCtrSetLoad%(ctrNum%,
ctrVal%)

• QBdaqCtrSetHold%(ctrNum%,
ctrVal%)

• QBdaqCtrMultCtrl%(ctrCommand%,
ctr1%, ctr2%, ctr3%, ctr4%, ctr5%)

• QBdaqCtrRdNlctrValck%(ctr1Buf%(),
ctr2Buf%(), ctr3Buf%(), ctr4Buf%(),
ctr5Buf%(), count%, startIP0%,
cycle%)

• QBdaqCtrGetBackStat%(active%,
count%)

DIM active%, count%, &, ret%
DIM ctr1Buf%(1000),
ctr2Buf%(10), ctr3Buf%(10),
ctr4Buf%(10), ctr5Buf%(10)

The QBdaqCtrSetMasterMode function will
be used to generate a 10 Hz pulse train on the fout signal located on connector P3. The F5 internal
clock of 100 Hz is used as the source for fout, and the divisor is 10. Fout has to be physically
connected to the interrupt input with IR Enable enabled (see figure).

ret% = QBdaqCtrSetMasterMode%(10,
DcsF5%, 0, 0, DtodDisabled%)

The QBdaqCtrSetCtrMode function is used to
configure counter 1 as an up-counter with a
source of F3, the internal 10 kHz clock.

ret% = QBdaqCtrSetCtrMode%(1,
DgcNoGating%, 1, DcsF3%, 0, 0,
1, 0, 1, DocTCToggled%)

When the counter is triggered, it will load itself
with the contents of the load register, set to 0 by
the QBdaqCtrSetLoad.

ret% = QBdaqCtrSetLoad%(1, 0)

The Hold Register is reset to zero.

P3 Pin Numbers and Signal Labels

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-19

ret% = QBdaqCtrSetHold%(1, 0)

The next function loads and arms counter 1, which will start it at zero and prepare it to start counting.

ret% = QBdaqCtrMultCtrl%(DmccLoadArm%, 1, 0, 0, 0, 0)

Read the counters in the background using interrupts count: 10, startIP0: immediate(0), cycle: no(0).
QBdaqCtrRdNBack will set up a read of the values of the specified counters in the background and
place the 16-bit count values in the supplied arrays. The count argument specifies how many values to
store in the arrays. Counter 1 counts at 10 kHz. Readings (samples) are taken every 10 Hz, so the
counter is incremented by 1000 each time it is read.

ret% = QBdaqCtrRdNBack%(ctr1Buf%(), ctr2Buf%(), ctr3Buf%(), ctr4Buf%(),
ctr5Buf%(), 10, 0, 0)

After the background read command is called, the program continues on the next line of execution. In
our program, we immediately go into a polling loop to check the status of the background operation.

DO
ret% = QBdaqCtrGetBackStat%(active%, count%)
LOCATE 6, 1
PRINT “Transfer in progress. ”; count%; “ samples acquired”

LOOP WHILE active% <>0
PRINT “Acquisition complete.”: PRINT

QuickBASIC’s integer values are signed, ranging from -32766 to +32767. The values returned from
the 16-bit counters are not signed, ranging from 0 to 65,535. The integer values must be converted to
long integers to be properly interpreted.

FOR x = 0 TO 9
longBuf&(x) = ctr1Buf%(x)
If longBuf&(x) < 0 Then longBuf&(x) = longBuf&(x) + 65536

NEXT
PRINT “data: ”
FOR x = 0 TO 9
PRINT USING “## ######”; x + 1; longBuf&(x)
NEXT

Next, stop and disarm all of the counters.

ret% = QBdaqCtrMultCtrl%(DmccDisarm%, 1, 0, 0, 0, 0)

Standard API Programming Models Chapter 4

4-20 Programmer’s Manual

Variable Rate, Variable Duty-Cycle Square-Wave Output
This program (CTREX1.BAS) demonstrates the
use of the counter/timer section of a
DaqBook/100/200 or DaqBoard/100A/200A
with the P3 port. After configuring the counter
and setting the load and hold registers, the
counter is armed. At this point, program
execution continues while the counter outputs the
signal. This example generates a variable rate,
variable duty-cycle square wave. Functions used
include:

• QBdaqCtrSetMasterMode%(foutDiv%,
foutSource%, comp1%, comp2%, tod%)

• QBdaqCtrSetCtrMode%(ctrNum%,
gateCtrl%, cntEdge%, cntSource%,
specGate%, reload%, cntRepeat%,
cntType%, cntDir%, outputCtl%)

• QBdaqCtrSetHold%(ctrNum%, ctrVal%)
• QBdaqCtrSetLoad%(ctrNum%, ctrVal%)
• QBdaqCtrMultCtrl%(ctrCommand%,

ctr1%, ctr2%, ctr3%, ctr4%, ctr5%)

Initialize the 9513 master mode register fout
divider: 10, fout source: DcsF2 (100 kHz),
compare1: no, compare 2: no, time of day
disabled. This will place a 10 kHz pulse on the
oscillator output. The QBdaqCtrSetMasterMode
function will initialize the counter/timer section
and configure several of its parameters. This is a
system-wide function which affects all 5 counter
timers. Note: for a complete understanding of counter/timer operation, read the data book on the 9513
chip supplied by AMD. Aside from initializing the counter/timer section, this application does not use
most of the capabilities of the QBdaqCtrSetMasterMode function. The first two arguments in this
function select a clock source for the fout signal found on connector P3, then select a divider for that
signal. F2 in this application is a fixed, internal frequency source of 100 kHz. Our example divides
this fixed frequency by 10 yielding a signal on fout of 10 kHz.

ret% = QBdaqCtrSetMasterMode%(10, DcsF2%, 0, 0, DtodDisabled%)

The QBdaqCtrSetCtrMode function configures an individual counter in the 9513. The first argument
specifies the counter to be configured, the second specifies the internal operation of the gate control.
Our application does not use the gate, so it is disabled. The fixed 100 kHz internal clock (F1) is used
as the source. By setting the reload parameter to 1, the counter will use the ’load’ register and the
’hold’ register to generate the pulse train. When the counter is armed, the ’load’ register value is
loaded then decremented on every edge of the F1 clock. The output signal will be high during this
phase. When the terminal count is reached, the ’hold’ register is loaded then decremented on every
edge of the F1 clock. The output signal is low during this phase. If the reload argument is set to 0,
only the ’load’ register is used, always yielding a 50% duty-cycle pulse train. The cntRepeat argument
specifies whether the pulse train should execute once or repeat continuously. The counter interprets the
load and load register as either binary or BCD depending on the value of the cntType argument. The
cntDir specifies whether the internal counter should count up or down to reach the terminal count. A
value of 5 counted down has the same effect as a value of 65,530 counted up.

ret% = QBdaqCtrSetCtrMode%(1, DgcNoGating%, 1, DcsF1%, 0, 1, 1, 0, 0,
DocTCToggled%)

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and
(with 100 total counts to count down) a frequency of 10 kHz.

ret% = QBdaqCtrSetLoad%(1, 75)

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-21

ret% = QBdaqCtrSetHold%(1, 25)

The QBdaqCtrMultCtrl function will arm counter 1.

ret% = QBdaqCtrMulCtrl% (DmccDisarm%, 1, 0, 0, 0, 0)
ret% = QBdaqCtrSetMasterMode% (0, 0, 0, 0, DtodDisabled%)
Print “Outputs disabled.”

Continue the pulse train until a key is pressed.

PRINT “A 10 kHz 25% duty-cycle square wave is on the counter 1 output.”
PRINT “press any key to halt counter 1 output.”
WHILE INKEY$ = “”: WEND

QBdaqCtrMultCtrl will stop the pulse train.

ret% = QBdaqCtrMultCtrl%(DmccDisarm%, 1, 0, 0, 0, 0)

Standard API Programming Models Chapter 4

4-22 Programmer’s Manual

Single Square-Wave Output
This program (ADCEX5.BAS) demonstrates the use of
the 8254’s counter 0 (accessible via the
DaqBook/DaqBoard P1 connector—not available via
Daq PCMCIA). After configuring the control register
and loading the down-count register of the counter, the
trigger is defined and armed. At this point, program
execution continues while the counter outputs the
signal. This program will initialize the Daq* hardware,
then generate a 50 kHz pulse train on the counter 0
signal of P1. Functions used include:

• QbdaqAdcConfCntr0%(config%)
• QbdaqAdcWtCntr0%(cntr0%)
• QBdaqAdcSetTrig%(source%, oneShot%,

level%, ctr0Mode%, pacerMode%)

To operate the counter, it must first be configured by the QBdaqAdcConfCntr function. In this
program, the counter is configured to generate a square wave.

ret% = QBdaqAdcConfCntr0%(Dc0cSquareWave%)

This counter contains a down-counter which effectively divides the counter source by the loaded count.
The next line loads the count-down register with a 2, which divides the source count (100 kHz) by 2 to
equal a pulse train of 50 kHz.

ret% = QBdaqAdcWtCntr0%(2)

To start the pulse train, it must be armed and triggered by the QBdaqAdcSetTrig function. This
function also arms an analog input acquisition, if configured, which will be synchronized with the start
of this pulse train. With a trigger source of the internal pacer clock, the pulse train will start
immediately.

ret% = QBdaqAdcSetTrig%(DtsPacerClock%, 0, 0, 1, 0)

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-23

Digital I/O on P2
This program (DIGEX1.BAS) demonstrates the
functions controlling digital I/O on connector P2 of the
DaqBook/100/200 and DaqBoard/100A/200A. First,
the 3 digital ports on the 8255 are configured as input,
output (or both in the case of port C); then, appropriate
I/O commands are issued. Functions used include:

• QBdaqDigConf%(port%, config%)
• QBdaqDigWtByte%(port%, byteVal%)
• QBdaqDigRdByte%(port%, byteVal%)
• QBdaqDigWtBit%(port%, bitNum%, bitVal%)
• QBdaqDigRdBit%(port%, bitNum%, bitVal%)

DIM byteVal%, bitVal%
ret% = QBdaqDigGetConf% (0,1,0,1,
config%)

The function QBdaqDigGetConf returns the appropriate
configuration value to use inQBdaqDigConfig. The
QBdaqDigConf function tells the Daq* whether the
digital I/O is located in the base unit, or on an expansion
card. The second argument is the byte to be sent to the
8255’s control register.

ret% = QBdaqDigConf%(DdcLocal%, configure)

Write hex 55 to port A on the Daq*’s base unit.

ret% = QBdaqDigWtByte%(DdpLocalA%, &H55)

Read port B and put the value into the variable byteVal%.

ret% = QBdaqDigRdByte%(DdpLocalB%, byteVal%)
PRINT “The value on digital port B : &H”; HEX$(byteVal%): PRINT

The following lines write to individual bits on the base unit’s port C.

ret% = QBdaqDigWtBit%(DdpLocalCHigh%, 0, 1)
ret% = QBdaqDigWtBit%(DdpLocalCHigh%, 1, 0
ret% = QBdaqDigWtBit%(DdpLocalCHigh%, 2, 1)
ret% = QBdaqDigWtBit%(DdpLocalCHigh%, 3, 0)
PRINT “The high nibble of digital port C set to : 0101": PRINT

The next lines read the low nibble of port C on the base unit.

FOR x% = 0 TO 3
ret% = QBdaqDigRdBit%(DdpLocalCLow%, x%, bitVal%)

PRINT “The value on bit ”; x%; “ of digital port C : &H”; HEX$(bitVal%)
NEXT x%

Standard API Programming Models Chapter 4

4-24 Programmer’s Manual

Temperature Measurements Using Single TC Type on a Single DBK19 Card
The 4 examples follow the same command sequence
except for their arguments or program code for data
output:

• Example 1 demonstrates repeated
measurements of TC inputs.

• Example 2 demonstrates block averaging of
the same TC inputs as example one. This
example performs each reading 5 times and
averages them together.

• Example 3 uses the same data as example 2,
but rather than averaging the 5 scans, it
outputs each of them to the screen.

• Example 4 gather the same data as the
previous examples but applies a moving
average to that data.

DBK19 Example 1: Type J
Thermocouples
In this example, we wish to repeatedly measure the
temperatures sensed by 2 type J thermocouples
attached to channels 18 and 19 through a DBK19
card. The DBK19 CJC signal is always the first
signal on the card and the shorted channel (used for
zero compensation) is always the second signal on
the card. In this case, they are on channels 16 and
17. First we list the configuration (see table).

Now we must specify the scan, the sequence of channel numbers
and gains that are to be gathered as one burst of readings. In this
example, we are only interested in the temperature channels; the
scan must first include the CJC zero, thermocouple zero and CJC,
and then the temperature channels (see table). The thermocouples
need not be scanned in any particular order. We might have
specified channel 18 before channel 17, but keeping things in
order will make the calibration easier.

For each scan position, we must specify the
PGA gain code. Assuming the Daq* is
configured for bipolar operation (to allow
measurement of temperatures below the
temperature at the DBK19 card), we choose
the gain codes from the table and add them to
the scan description.

Card Channel Channel Type
DBK19 16

17
18
19

CJC
Shorted (zero)
Type J
Type J

Local 0
1-15

Used for DBK19
Free for other uses

Scan
Position

Channel
Type Channel

0 CJC Zero 17
1 Type J Zero 17
2 CJC 16
3 Type J 18
4 Type J 19

Scan
Position

Channel
Type Channel Gain Code

0 CJC Zero 17 Dbk19BiCJC
1 Type J Zero 17 Dbk19BiTypeJ
2 CJC 16 Dbk19BiCJC
3 Type J 18 Dbk19BiTypeJ
4 Type J 19 Dbk19BiTypeJ

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-25

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement 0 1 2 3 4
1 CJC Zero Type J Zero CJC Type J Type J
2 CJC Zero Type J Zero CJC Type J Type J
3 CJC Zero Type J Zero CJC Type J Type J
...
10 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

Now we can configure the Daq* with this information:

DIM chans%(5), gains%(5), buf%(5), temp%(2)

' read calibration file
ret% = QBdaqReadCalFile%("daqbook.cal")

' Set array of channels and gains
chans%(0) = 17
gains%(0) = Dbk19BiCJC%
chans%(1) = 17
gains%(1) = Dbk19BiTypeJ%
chans%(2) = 16
gains%(2) = Dbk19BiCJC%
chans%(3) = 18
gains%(3) = Dbk19BiTypeJ%
chans%(4) = 19
gains%(4) = Dbk19BiTypeJ%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 5)

' Temperature measurements require 16-bit data
ret% = QBdaqAdcSetTag%(1)

' Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbk19TCTypeJ%, 1, 1)

FOR i = 1 TO 10
' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 1, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 1)

' Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf%(), 1)

' Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
18, 1, 1, buf%(), 1)

Standard API Programming Models Chapter 4

4-26 Programmer’s Manual

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCConvert%(buf%(), 1, temp%(), 2)

'Display the temperatures
PRINT "Channel 18: "; .01 * temp%(0); " Channel 19: "; .01 * temp%(1)

NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

DBK19 Example 2: Block Averaged TC readings
In this example, we want to acquire the same information as in example 1, except we wish to use the
Daq*’s high speed to reduce the noise by taking each reading 5 times and averaging them together.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

Assuming we are using the same thermocouples connected in the same way, the scan configuration is
like example 1:

DIM chans%(5), gains%(5), buf%(25), temp%(2)

' read calibration file
ret% = QBdaqReadCalFile%("daqbook.cal")

' Set array of channels and gains
chans%(0) = 17
gains%(0) = Dbk19BiCJC%
chans%(1) = 17
gains%(1) = Dbk19BiTypeJ%
chans%(2) = 16
gains%(2) = Dbk19BiCJC%
chans%(3) = 18
gains%(3) = Dbk19BiTypeJ%
chans%(4) = 19
gains%(4) = Dbk19BiTypeJ%

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-27

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 5)

' Temperature measurements require 16-bit data
ret% = QBdaqAdcSetTag%(1)

' Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbk19TCTypeJ%, 1, 0)

FOR i = 1 TO 10
' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, counts%(), 5)

' Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
18, 1, 1, buf%(), 5)

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCConvert%(buf%(), 5, temp%(), 2)

'Display the temperatures
PRINT "Channel 18: "; .01 * temp%(0); " Channel 19: "; .01 * temp%(1)

NEXT i

' Close DaqBook/100 and end program
ret% = QBdaqClose%
END

ErrorHandler:
PRINT "ERROR! Program aborted"
PRINT "BASIC Error :"; ERR
IF ERR = 100 THEN PRINT "DaqBook/100 Error : "; HEX$(daqErrno%)
END

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-28 Programmer’s Manual

DBK19 Example 3: Multiple Sequential Measurement
In this example, we wish to collect the same data as in example 2; but instead of averaging the groups
of 5 consecutive scans, we want to convert each scan’s measurements into individual temperature
values.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement Scan 0 1
1 1 Temp °C Temp °C
1 2 Temp °C Temp °C
1 3 Temp °C Temp °C
1 4 Temp °C Temp °C
1 5 Temp °C Temp °C
2 1 Temp °C Temp °C
2 2 Temp °C Temp °C
...
10 5 Temp °C Temp °C

The scan setup is the same as in examples 1 and 2 and is omitted here for brevity. We again configure
for the conversion to temperatures, this time (as in example 1) specifying no averaging:

DIM chans%(5), gains%(5), buf%(25), temp%(5, 2)
CLS
PRINT "DBK19_3": PRINT

'Set error handler and initialize DaqBook/100
ret% = QBdaqSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBdaqInit%(LPT1%, 7)

' read calibration file
ret% = QBdaqReadCalFile%("daqbook.cal")

' Set array of channels and gains
chans%(0) = 17
gains%(0) = Dbk19BiCJC%
chans%(1) = 17
gains%(1) = Dbk19BiTypeJ%
chans%(2) = 16
gains%(2) = Dbk19BiCJC%
chans%(3) = 18
gains%(3) = Dbk19BiTypeJ%
chans%(4) = 19
gains%(4) = Dbk19BiTypeJ%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 5)

' Temperature measurements require 16-bit data
ret% = QBdaqAdcSetTag%(1)

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-29

' Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbk19TCTypeJ%, 1, 1)

FOR i = 1 TO 10
' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf%(), 5)

' Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
18, 1, 1, buf%(), 5)

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCConvert%(buf%(), 5, temp%(), 10)

FOR j = 1 TO 5
'Display the temperatures
PRINT "Channel 18: "; .01 * temp%(j, 0); " Channel 19: "; .01 *

temp%(j, 1)
NEXT j

NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
 'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-30 Programmer’s Manual

DBK19 Example 4: Moving Averaged Measurements
In this example, we wish to collect the same data as in example 3; but to reduce noise, we will use a
moving average to average consecutive triplets of scans.

The following tables show the raw data input and the resulting temperature data output for this sample
program.

Raw Data Input
Readings

Measurement Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
...
10 5 CJC Zero Type J Zero CJC Type J Type J

Results After daqTCConvert
Results

Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
...
10 Temp °C Temp °C

The scan setup is the same as in the previous examples and is omitted here for brevity. We again
configure for the conversion to temperatures, this time (as in example 1) specifying moving averaging
of 3 scans.

DECLARE FUNCTION IntToUint! (IntVal AS INTEGER)
' DBK19_4.BAS
' In this example we will collect the same data as example three but we
' will use a moving average to average consecutive triplets of scans.
'$INCLUDE: 'daqbook.bi'
DIM chans%(5), gains%(5), buf%(25), temp%(5, 2)
CLS
PRINT "DBK19_4": PRINT

'Set error handler and initialize DaqBook/100
ret% = QBdaqSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBdaqInit%(LPT1%, 7)

' read calibration file
ret% = QBdaqReadCalFile%("daqbook.cal")

' Set array of channels and gains
chans%(0) = 17
gains%(0) = Dbk19BiCJC%
chans%(1) = 17
gains%(1) = Dbk19BiTypeJ%
chans%(2) = 16
gains%(2) = Dbk19BiCJC%
chans%(3) = 18
gains%(3) = Dbk19BiTypeJ%
chans%(4) = 19
gains%(4) = Dbk19BiTypeJ%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 5)

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-31

' Temperature measurements require 16-bit data
ret% = QBdaqAdcSetTag%(1)

' Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbk19TCTypeJ%, 1, 3)

FOR i = 1 TO 10
' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf%(), 5)

' Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
18, 1, 1, buf%(), 5)

' Convert 'scans' scans of buf to two temperatures
ret% = QBdaqTCConvert%(buf%(), 5, temp%(), 10)

FOR j = 1 TO 5
'Display the temperatures
PRINT "Channel 18: "; .01 * temp%(j, 0); " Channel 19: "; .01 *

temp%(j, 1)
NEXT j

NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-32 Programmer’s Manual

Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards
This program demonstrates temperature
acquisitions using multiple TC types and
multiple DBK19 cards. The two commands
daqTCSetup and daqTCConvert have been
combined into the one daqTCSetupConvert
command. The sequence of the last 3 blocks
on the flow chart must be used multiple times,
once for each card, and if there is multiple TC
types on a card, once for each TC type on that
card.

In this example, we wish to repeatedly
measure the temperatures sensed by 2 Type J
and 2 Type K thermocouples attached through
1 DBK19 card and 2 more Type J
thermocouples attached through another
DBK19. The DBK19 CJC signal is always
the first signal on the card, and the shorted
channel (used for zero compensation) is
always the second channel on the card. First
we list the configuration:

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; and so, the scan must
first include the CJC and then immediately the
temperature channels (see table).

The thermocouples are separated in the
scan by type. The readings from each type
are consecutive and immediately preceded
by their CJC Zero, thermocouple zero, and
CJC readings for calculation reference. It
is not appropriate to consolidate the 4 Type
J thermocouples because they are
connected through 2 different DBK19s.
Each DBK19 has its own CJC and offset
errors as a reference for thermocouples
attached to that DBK19.

For each scan position, we must specify the PGA gain. Assuming the Daq* is configured for bipolar
operation (to allow measurement of temperatures below the temperature at the DBK19 cards), we
choose the gain codes from the table above and add them to the scan description.

Scan
Position Channel Type Channel Gain Code

0
1
2
3
4

CJC Zero
Type J Zero
CJC
Type J
Type J

17
17
16
18
19

Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiTypeJ

5
6
7
8
9

CJC Zero
Type K
ZeroCJC
Type K
Type K

17
17
16
20
21

Dbk19BiCJC
Dbk19BiTypeK
Dbk19BiCJC
Dbk19BiTypeK
Dbk19BiTypeK

10
11
12
13
14

CJC Zero
Type J Zero
CJC
Type J
Type J

33
33
32
34
35

Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiCJC
Dbk19BiTypeJ
Dbk19BiTypeJ

Card Channel Channel Type
DBK19 16

17
18
19
20
21

CJC
Shorted (zero)
Type J
Type J
Type K
Type K

DBK19 32
33
34
35

CJC
Shorted (zero)
Type J
Type J

Local 0-1
2-15

Used for DBK19
Free for other uses

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-33

The following tables show the raw data input and the resulting temperature data output for this sample program.Raw Data Input
Readings

Measure-
ment

Scan 0 1 2 3 4 5 6 7 8 9 10 (1-3) 14

1 1 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 2 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 3 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 4 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

1 5 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

2 1 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

2 2 CJC
Zero

Type J
Zero

CJC Type
J

Type
J

CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

...
10 5 CJC

Zero
Type J

Zero
CJC Type

J
Type

J
CJC
Zero

Type K
Zero

CJC Type
K

Type
K

CJC
Zero

... Type
J

Results After daqTCConvert
Results

Measurement 0 1 2 3 4 5
1 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C
2 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C
...
10 Temp °C Temp °C Temp °C Temp °C Temp °C Temp °C

Now we can configure the DaqBook/DaqBoard with this information:

DIM chans%(15), gains%(15), buf%(75), temp1%(2), temp2%(2), temp3%(2)
' read calibration file
ret% = QBdaqReadCalFile%("daqbook.cal")
' Set array of channels and gains
chans%(0) = 17: gains%(0) = Dbk19BiCJC%
chans%(1) = 17: gains%(1) = Dbk19BiTypeJ%
chans%(2) = 16: gains%(2) = Dbk19BiCJC%
chans%(3) = 18: gains%(3) = Dbk19BiTypeJ%
chans%(4) = 19: gains%(4) = Dbk19BiTypeJ%
chans%(5) = 17: gains%(5) = Dbk19BiCJC%
chans%(6) = 17: gains%(6) = Dbk19BiTypeK%
chans%(7) = 16: gains%(7) = Dbk19BiCJC%
chans%(8) = 20: gains%(8) = Dbk19BiTypeK%
chans%(9) = 21: gains%(9) = Dbk19BiTypeK%
chans%(10) = 33: gains%(10) = Dbk19BiCJC%
chans%(11) = 33: gains%(11) = Dbk19BiTypeJ%
chans%(12) = 32: gains%(12) = Dbk19BiCJC%
chans%(13) = 34: gains%(13) = Dbk19BiTypeJ%
chans%(14) = 35: gains%(14) = Dbk19BiTypeJ%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 15)
' Temperature measurements require 16-bit data
ret% = QBdaqAdcSetTag%(1)
FOR i = 1 TO 10
' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)
' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Calibrate the CJC -1 channel starting at position 2

Standard API Programming Models Chapter 4

4-34 Programmer’s Manual

ret% = QBdaqCalSetupConvert%(15, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf%(), 15)

' Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(15, 3, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
18, 1, 1, buf%(), 15)

' Calibrate the TCs -1 channel starting at position 7
ret% = QBdaqCalSetupConvert%(15, 7, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf%(), 15)

' Calibrate the TCs -2 channel starting at position 8
ret% = QBdaqCalSetupConvert%(15, 8, 2, DcalTypeDefault%, Dbk19BiTypeK%,
20, 1, 1, buf%(), 15)

' Calibrate the CJC -1 channel starting at position 12
ret% = QBdaqCalSetupConvert%(15, 12, 1, DcalTypeCJC%, Dbk19BiCJC%, 32,
1, 1, buf%(), 15)

' Calibrate the TCs -2 channel starting at position 13
ret% = QBdaqCalSetupConvert%(15, 13, 2, DcalTypeDefault%, Dbk19BiTypeJ%,
34, 1, 1, buf%(), 15)

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCSetupConvert%(15, 2, 2, Dbk19TCTypeJ%, 1, 0, buf%(), 15,
temp1%(), 2)

'Display the temperatures
PRINT "Channel 18: "; .01 * temp1%(0); " Channel 19: "; .01 *
temp1%(1)

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCSetupConvert%(15, 3, 2, Dbk19TCTypeK%, 1, 0, buf%(), 15,
temp2%(), 2)

'Display the temperatures
PRINT "Channel 20: "; .01 * temp2%(0); " Channel 21: "; .01 *
temp2%(1)

' Convert 'scans' scans of counts to two temperatures
ret% = QBdaqTCSetupConvert%(15, 6, 2, Dbk19TCTypeJ%, 1, 0, buf%(), 15,
temp3%(), 2)

'Display the temperatures
PRINT "Channel 34: "; .01 * temp3%(0); " Channel 35: "; .01 *
temp3%(1)

NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1
'Convert negative values to positive

END IF
END FUNCTION

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-35

Temperature Measurements Using Multiple RTDs on a Single DBK9 Card
This program demonstrates temperature
acquisitions using multiple RTD types and a single
DBK9 card. After this program configures and
arms the DBK card, it begins acquiring data in the
foreground acquisition mode. At this point,
program execution is suspended until all the data is
gathered. The program demonstrates the
conversion of data as both a two-step process and a
single-step process. Note the conversion routines
need to be called for each type of RTD in the scan.
The temperature at the RTD is derived from 4
voltage values.

In this example, we wish to acquire some
temperature readings from 3 RTDs. There are two
100-ohm RTDs attached to channels 16 and 17 of
the DBK9 and one 1000-ohm RTD attached to
channel 18. The configuration looks like this:

First we must specify the scan sequence of channel
numbers and gains that are to be gathered as one
burst of readings. In this example, we are only
interested in the RTD channels. The scan must
include the 4 voltage readings in the correct order
for each channel (see table).

Note that the RTDs need not be scanned in any
particular order but the 4 readings for each RTD
must be placed in the scan sequentially. We might
have specified channel 17 before channel 16. It is best
to group all the RTD reading groups of the same value
together because this makes using the temperature
conversion functions easier.

Now we can configure the Daq* with this information.
First we will define some constants that will make the
program easier to modify.

RdsPerRtd = 4
NRtds = 3
FirstRtdChanNo = 16
Nscans% = 10
ReadingsPerScan% = NRtds * RdsPerRtd
BufSize = Nscans% * ReadingsPerScan%
VaOffset = 0
VbOffset = 1
VcOffset = 2
VdOffset = 3

DIM chans%(ReadingsPerScan%), gains%(ReadingsPerScan%), buf%(BufSize),
temp1%(Nscans% * 2), temp2%(Nscans%)

Scan
Position

Channel
Number

*Channel Gain

0 16 Dbk9VoltageA
1 16 Dbk9VoltageB
2 16 Dbk9VoltageD
3 16 Dbk9VoltageD
4 17 Dbk9VoltageA
5 17 Dbk9VoltageB
6 17 Dbk9VoltageD
7 17 Dbk9VoltageD
8 18 Dbk9VoltageA
9 18 Dbk9VoltageB
10 18 Dbk9VoltageD
11 18 Dbk9VoltageD

* These are not actual gains. They are used to
select voltages A-D for each RTD channel.

Card Channel Channel Type
DBK9 16

17
18

100 ohm RTD
100 ohm RTD
1000 ohm RTD

Local 0
1-15

Used for DBK9
Free for other uses

Standard API Programming Models Chapter 4

4-36 Programmer’s Manual

' Set array of channels and gains
FOR RTD% = 0 TO NRtds - 1
 FOR j% = 0 TO RdsPerRtd
 chans%(RTD% * RdsPerRtd + j) = RTD% + FirstRtdChanNo

 NEXT j%
 gains%(RTD% * RdsPerRtd + VaOffset) = Dbk9VoltageA%
 gains%(RTD% * RdsPerRtd + VbOffset) = Dbk9VoltageB%
 gains%(RTD% * RdsPerRtd + VcOffset) = Dbk9VoltageD%
 gains%(RTD% * RdsPerRtd + VdOffset) = Dbk9VoltageD%
NEXT RTD%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), ReadingsPerScan%)

' Set sampling freq.
ret% = QBdaqAdcSetFreq%(10000)

' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 0)

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), Nscans%)

' Setup the conversion for the first two RTDs
ret% = QBdaqRtdSetup%(ReadingsPerScan%, 0, 2, Dbk9RtdType100%, 1)

' Convert the data for the first two RTDs
ret% = QBdaqRtdConvert%(buf%(), Nscans%, temp1%(), Nscans% * 2)

' Setup and convert the data for the 1000 ohm RTD in one step
ret% = QBdaqRtdSetupConvert%(ReadingsPerScan%, 8, 1, Dbk9RtdType1K%, 1,
buf%(), Nscans%, temp2%(), Nscans%)

'Display the temperatures for the 100 ohm RTDs
FOR scan = 0 TO Nscans%
 PRINT "Scan: "; scan
 FOR x = 0 TO 2
 tmptemperature! = (temp1%(scan * 1 + x)) / 10
 PRINT tmptemperature!; " ";

 NEXT x
 PRINT
 NEXT scan

'Display the temperatures for the 1000 ohm RTDs
FOR scan = 0 TO Nscans%
 PRINT "Scan: "; scan
 tmptemperature! = (temp1%(scan * 1 + x)) / 10
 PRINT tmptemperature!; " "
 NEXT scan
' Close DaqBook/100 and end program

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-37

Using DBK Card Calibration Files
Software calibration functions are designed to adjust
Daq* readings to compensate for gain and offset
errors. Calibration constants are calculated at the
factory by measuring the gain and offset errors of a
card at each programmable gain setting. These
constants are stored in a calibration text file which
can be read by a program at runtime. This allows
new boards to be configured for calibration by
updating this calibration file rather than recompiling
the program. Calibration constants and instructions
are shipped with the related DBK boards. Programs
like DaqView support this calibration and use the
same constants.

The calibration operation removes static gain and
offset errors that are inherent in the hardware. The
calibration constants are measured at the factory and
do not change during the execution of a program but
are different for each card and programmable-gain
setting. They may even be different for each channel
depending on the design of the expansion card.
Note: the DBK19 is shipped with calibration
constants. Other cards use on-board potentiometers
to perform hardware calibration.

The calibration process has 3 steps:
• Initialization consists of reading the calibration file.
• Setup describes the characteristics of the data to be calibrated.
• Conversion does the actual calibration of the data.

Function prototypes, return error codes, and parameter definitions are located in the DAQBOOK.H
header file for C (or similar files for other languages).

Cards that support the calibration functions are shipped with a floppy disk containing a calibration
constants file. The name of the file will be the serial number of the card shipped with it. This file
holds the calibration constants for each programmable-gain setting of that card. These constants should
be copied to a calibration text file (DAQBOOK.CAL) located in the same directory as the program
performing the calibration.

To set up the calibration file, perform the following steps:
1. Locate the floppy disk containing the calibration constants file.
2. Configure the card according to the hardware configuration section of the DBK chapter.
3. Edit the calibration file, DAQBOOK.CAL, using a text editor.
4. Add the card number information within brackets, as listed in the calibration file.
5. Add the calibration constants immediately after the card number. (These should

be entered in the order given in the calibration file.)
6. Repeat steps 4 and 5 for each card.
7. Verify that no two cards are configured with the same card/channel number.

The table shows an example of a calibration file for configuring the main Daq* unit
and two DBK19 cards connected to Daq* expansion channels 3 and 5.

The initialization function for reading-in the calibration constants from the calibration
text file is daqReadCalFile. The C language version of daqReadCalFile is similar to
other languages and works as follows:

The filename with optional path information of the calibration file. If calfile is NULL
or empty (“”), the default calibration file DAQBOOK.CAL will be read. This function
is usually called once at the beginning of a program and will read all the calibration
constants from the specified file. If calibration constants for a specific channel

[MAIN]
32760,32769
32801,32750
32740,32777
32810,32768

[EXP3]
32780,32779
32800,32756
32768,32780
32750,32742

[EXP5]
32752,32764
32783,32757
32749,32767
32777,32730

Standard API Programming Models Chapter 4

4-38 Programmer’s Manual

number and gain setting are not contained in the file, ideal calibration constants will be used
(essentially not calibrating that channel). If an error occurs while trying to open the calibration file,
ideal calibration constants will be used for all channels and a non-zero error code will be returned by
the daqReadCalFile function.

Once the calibration constants have been read from the cal file, they can be used by the daqCalSetup
and daqCalConvert functions. The daqCalSetup function will configure the order and type of data to
be calibrated. This function requires data to be from consecutive channels configured for the same
gain, polarity, and channel type. The calibration can be configured to use only the gain calibration
constant and not the offset constant. This allows the offset to be removed at runtime using the zero
compensation functions described later in this section.

In this example, several Daq* channels will be read and calibrated. This example assumes the
calibration file has been created according to the initializing calibration constants section of this
chapter. Expansion cards could perform the same type of calibration if the calibration constants are
available for the card and a specified channel number. First list the configuration:

Now specify the scan (the sequence of channel
numbers and gains that are to be gathered as
one burst of readings). In this example, all the
channels at each gain will be read together in
consecutive order to make the calibration
easier.

Now configure the Daq* with this information, and read 5 scans of
data:

DIM chans%(4), gains%(4), buf%(20)

ret% = QBdaqInit%(LPT1%, 7)

' Set array of channels and gains
chans%(0) = 0
gains%(0) = DgainX1%
chans%(1) = 1
gains%(1) = DgainX2%
chans%(2) = 2
gains%(2) = DgainX2%
chans%(3) = 3
gains%(3) = DgainX2%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 4)

' Set Clock
ret% = QBdaqAdcFreq%(10)

' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Print the first scan of unconverted data
PRINT "Before Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

'Perform zero compensation on readings sampled at x1 gain

Scan
Position Channel Type Channel

Gain
Code

0 Voltage1 @ X1 gain 0 DgainX1
1 Voltage2 @ X2 gain 1 DgainX2
2 Voltage3 @ X2 gain 2 DgainX2
3 Voltage4 @ X2 gain 3 DgainX2

Channel Channel Type
0 Voltage1 @ X1 gain
1 Voltage2 @ X2 gain
2 Voltage3 @ X2 gain
3 Voltage4 @ X2 gain

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-39

ret% = QBdaqCalSetupConvert%(4, 0, 1, 0, DgainX1%, 0, 1, 0, buf%(), 5)

'Perform zero compensation on readings sampled at x2 gain
ret% = QBdaqCalSetupConvert%(4, 1, 3, 0, DgainX2%, 1, 1, 0, buf%(), 5)

' Print the first scan of converted data
PRINT "After Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(0)
PRINT "Channel 1 at x2 gain: "; buf%(1)
PRINT "Channel 2 at x2 gain: "; buf%(2)
PRINT "Channel 3 at x2 gain: "; buf%(3)

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-40 Programmer’s Manual

Zero Compensation
Zero compensation removes offset errors while a
program is running. This is useful in systems
where the offset of a channel may change due to
temperature changes, long-term drift, or
hardware calibration changes. Reading a shorted
channel on the same card at the same gain as the
desired channel removes the offset at run-time.

Note: Zero compensation is not available for all
expansion cards. The DBK19 has channel 1
permanently shorted for zero compensation;
other cards require a channel to be shorted
manually.

The zero-compensation functions require a
shorted channel and a number of other channels
to be sampled from the same card at the same
gain as the shorted channel. These functions will
work with cards that have one analog path from
the input to the A/D converter such as the
DBK12, DBK13, and DBK19. Other cards do
not support the zero compensation functions
because they have offset errors unique to each
channel. The DBK19 is designed with channel 1
already shorted for performing zero compensation.

The daqZeroSetup function configures the location of the shorted channel and the channels to be
zeroed within a scan, the size of the scan, and the number of readings to zero compensate. (This
function does not do the conversion.) A non-zero return value indicates an invalid parameter error.

In this example, several Daq* channels will be read using various
gains and zero-compensated to remove any offset errors. This
example assumes that channel 0 of the Daq* has been manually
shorted. Expansion cards could perform the same type of zero
compensation as this example by shorting a channel on the expansion
card and specifying card channel numbers. First list the
configuration:

Now specify the scan, the sequence of
channel numbers, and gains that are to be
gathered as one burst of readings. In this
example, we will first read the shorted
channel at each gain that we plan on using,
in this case ×1 and ×2. All the channels at
each gain will be read together to make the
actual zero compensation easier.

DIM chans%(6), gains%(6), buf%(30)

ret% = QBdaqInit%(LPT1%, 7)
' Set array of channels and gains
chans%(0) = 0
gains%(0) = DgainX1%
chans%(1) = 0
gains%(1) = DgainX2%
chans%(2) = 1
gains%(2) = DgainX1%
chans%(3) = 2
gains%(3) = DgainX2%
chans%(4) = 3
gains%(4) = DgainX2%

Channel Channel Type
0 Shorted Channel
1 Voltage1 @ X1 gain
2 Voltage2 @ X2 gain
3 Voltage3 @ X2 gain
4 Voltage4 @ X2 gain

Scan
Position Channel Type Channel

Gain
Code

0 Shorted Channel @ X1 0 DgainX1
1 Shorted Channel @ X2 0 DgainX2
2 Voltage1 @ X1 gain 1 DgainX1
3 Voltage2 @ X2 gain 2 DgainX2
4 Voltage3 @ X2 gain 3 DgainX2
5 Voltage4 @ X2 gain 4 DgainX2

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-41

chans%(5) = 4
gains%(5) = DgainX2%

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 6)

' Set Clock
ret% = QBdaqAdcFreq%(10)

' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsSoftware%, 0, 0, 0, 0)

' Trigger
ret% = QBdaqAdcSoftTrig%

' Read the data
ret% = QBdaqAdcRdNFore%(buf%(), 5)

' Print the first scan of unconverted data
PRINT "Before Zero Compensation:"
PRINT "Channel 1 at x1 gain: "; buf%(2)
PRINT "Channel 2 at x2 gain: "; buf%(3)
PRINT "Channel 3 at x2 gain: "; buf%(4)
PRINT "Channel 4 at x2 gain: "; buf%(5)

'Perform zero compensation on readings sampled at x1 gain
ret% = QBdaqZeroSetupConvert%(5, 0, 2, 1, buf%(), 5)

'Perform zero compensation on readings sampled at x2 gain
ret% = QBdaqZeroSetupConvert%(5, 1, 3, 3, buf%(), 5)

' Print the first scan of converted data
PRINT "After Calibration:"
PRINT "Channel 0 at x1 gain: "; buf%(2)
PRINT "Channel 1 at x2 gain: "; buf%(3)
PRINT "Channel 2 at x2 gain: "; buf%(4)
PRINT "Channel 3 at x2 gain: "; buf%(5)

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1 'Convert negative values to
'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-42 Programmer’s Manual

Linear Conversion
Several DBKs use conversions from A/D
readings to corresponding values that are a
linear (straight-line) relationship. (Non-linear
relationships for RTDs and thermocouples
require special conversion functions—refer to
the Thermocouple and RTD Linearization
section later in this chapter.) The linear
conversion functions are built into the API.

Six parameters are used to specify a linear
relationship: the A/D input range (minimum
and maximum values), and the transducer
input signal level and output voltage at two
points in the range.

Three functions are used to perform linear
conversions: daqLinearSetup,
daqLinearConvert, and
daqLinearSetupConvert. These functions
are defined in the following pages. After their
definitions, parameter examples and a
program example show how they work.

DBK7 programmed for 50 to 60 Hz:

The DBK7 output range is from -5 V to +5 V,
and the Daq* must be configured for bipolar
operation at a gain of ×1 for the DBK7
channels. Thus, the input range -5 V to +5 V
corresponds to the ADmin and ADmax
settings. When a DBK7 programmed for a 50
to 60 Hz range measures a 50 Hz input signal,
it outputs -5 V. With a 60 Hz input signal, it
outputs +5 V. Thus, signal1 is 50, voltage1 is -5, signal2 is 60,
and voltage2 is 5.

Pressure-transducer:

Assume that a pressure transducer outputs 1 to 4 mV to represent
0 to 1000 psi, and that a DBK13 with a gain of ×1000 is used
with a Daq in bipolar mode to measure the signal. In bipolar
mode, at a gain of 1000, the analog signal input range is 0 to 5 mV. Thus ADmin should be set to
0.000, and ADmax should be set to 0.005. A pressure of 0 psi generates an output of 1 mV, and 1000
psi generates 4 mV. Thus signal1 is 0, voltage1 is 0.001, signal2 is 1000 and voltage2 is 0.004.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-
to-voltage card and a DBK13 voltage input card with a pressure transducer to actual frequencies (Hz)
and pressures (psi).

DIM buffer1%(80), buf%(80), chans%(3), gains%(3), hz!(20), psi!(10)

'Set Channel 16 to be a DBK7, this will configure and auto calibrate all
'channels on the DBK7 which includes channels 16,17,18 and 19. (4 ch.
card)

'This step not required by DBK13.
ret% = QBdaqAdcSetBank%(16, bankDBK7)

'Set channel option common to both channels.
'This step not required by DBK13.
FOR chan% = 16 TO 19
 ret% = QBdaqDbkSetChanOption%(chan%, DcotSlope, 1)

Measurement Signal Voltage
1 50 Hz -5 V
2 60 Hz +5 V

Measurement Signal Voltage
1 0 psi 1 mV
2 1000 psi 4 mV

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-43

 ret% = QBdaqDbkSetChanOption%(chan%, DcotDebounceTime,
DcovDebounceNone)
 ret% = QBdaqDbkSetChanOption%(chan%, DcotMinFreq, 50!)
 ret% = QBdaqDbkSetChanOption%(chan%, DcotMaxFreq, 60!)

NEXT chan%

'Configure the scan sequence
chans%(0) = 16 'DBK7 channel 0
gains%(0) = DBK7X1 'X1 gain
chans%(1) = 17 'DBK7 channel 1
gains%(1) = DBK7X1 'X1 gain
chans%(2) = 32 'DBK7 channel 0
gains%(2) = DBK13X2000 'X1000 gain

' Load scan sequence FIFO :
ret% = QBdaqAdcSetScan%(chans%(), gains%(), 3)

' Set Clock : 1 Hz - xtal set to 1MHz
ret% = QBdaqAdcSetFreq%(1000)

' Define and arm trigger :
ret% = QBdaqAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 0)

' Read data in the foreground
ret% = QBdaqAdcRdNFore%(buffer1%(), 10)

'convert channels 16 and 17 to Hz where -5 volts corresponds to 50 Hz
'and 5 volts corresponds to 60 Hz
ret% = QBdaqLinearSetupConvert(3, 0, 2, -5!, 5, 50!, -5!, 60!, 5!, 1,
buf%(), 10, hz!(), 20)

'convert channel 32 to PSI where 1 mV corresponds to 0 PSI
'and 4 millivolts corresponds to 1000 PSI
ret% = QBdaqLinearSetupConvert(3, 2, 1, -.005, .005, 0, .001, 1000!,
.004, 1, buf%(), 10, psi!(), 10)

'Print results
PRINT "Results:"
FOR x = 0 TO 9
PRINT "Scan "; x; " "; hz!(x * 2); " Hz "; hz!((x * 2) + 1); " Hz ";
psi!(x); " psi"

NEXT x

FUNCTION IntToUint (IntVal AS INTEGER)
'Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal 'Return positive values with no change
ELSE

IntToUint = 65535 + CLNG(IntVal) + 1
'Convert negative values to 'positive

END IF
END FUNCTION

Standard API Programming Models Chapter 4

4-44 Programmer’s Manual

 Summary Guide of Selected Standard API Functions
The following table organizes the standard API functions by type including notes on when to use them.

Simple Foreground Routines
For single gain, consecutive channel, foreground transfers, use the following functions:
Foreground Operation Single Scan Multiple Scans
Single Channel daqAdcRd daqAdcRdN
Consecutive Multiple Channels daqAdcRdScan daqAdcRdScanN

Complex Scan Routines
For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan

functions.
daqAdcSetScan Set scan sequence using arrays of channel and gain values.
daq200SetScan Set scan sequence using arrays of channel, gain, and polarity values.

Trigger Options
After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.
• In one-shot mode, a trigger is required to start each A/D scan.
• In continuous mode, a single trigger starts the scans and the pacer clock determines the rate between scans.
Note: If the trigger source is analog, the trigger level is also required.
daqAdcSetTrig Set the trigger using source, one-shot, and level parameters. Also sets the pacer clock gate source

and Counter 0 clock source.
daqAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the

analog trigger source and value.
If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing
If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the

following functions:
daqAdcSetClk Set the pacer clock with the given frequency scalers.
daqAdcSetFreq Set the pacer clock to the given frequency.

Data Transfer
After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:
daqAdcRdFore Read single sample from the A/D FIFO.
daqAdcRdNFore Read multiple scans from the A/D FIFO.
daqAdcRdNBack Inform acquisition routine where to store multiple scans. Also indicates whether the buffer should be

recycled when it is full.
To find out whether a background A/D transfer is complete or to stop transfers, use the following functions:
daqAdcGetBackStat Return whether the background transfers are in progress and the number of valid scans in the buffer.
daqAdcStopBack Stop the background A/D transfers.

D/A Conversions
The 2 D/A outputs are multiplying DACs. The voltage output is a fraction of the voltage reference. This fraction is the digital value

sent to the DAC divided by 4096. Using the internal -5 V reference, any voltage between 0 and 4.9988 V can be set. Two
routines are used to set the D/A outputs:

daqDacWt Set a single DAC.
daqDacWtBoth Set both DACs.
DAC1 is also set by any A/D routine which uses analog triggering. This DAC is used to set the comparison level.

Digital Functions
Several routines read and write the digital inputs and outputs. The first routine to call is the configure routine:
daqDigGetConf Using the 4 port input/output direction selections, return a configuration byte.
daqDigConf Set the input/output configuration of a local or expansion port group.
After the digital group is configured, the ports can be read or written a byte at a time. (Port C low/high and P1 digital I/O are

accessed a nibble at a time.) A single bit of a digital channel can be read or written using the following routines:
daqDigRdBit Return indicated bit from selected channel.
daqDigWrBit Send indicated bit to selected channel.

Counter Functions
Three counter/timer elements are in a DaqBook/112, and 9 counter/timer elements are in a DaqBook/100/200. Two counters are

the ADC pacer clock. The FOUT counter element is a simple square-wave generator. Counter 0 is capable of more complex
waveform and counter operations. Counters 1 through 5 are full-fledged counter/timer elements with many operating modes.

Counter 0 Functions
Counter 0 is a binary/BCD down-counter capable of 5 modes: event counter, pulse generator, rate generator, square-wave

generator, software and hardware triggered strobes. Use the following commands with Counter 0:
daqAdcConfCntr0 Set up counter 0 in the indicated mode.
daqAdcRdCntr0 Read the contents of counter 0.
daqAdcWtCntr0 Set counter 0 countdown register.
daqAdcSetTrig Sets Counter 0 clock source. Also sets the A/D scan trigger source and pacer clock gate source.

Chapter 4 Standard API Programming Models

Programmer’s Manual 4-45

Counter 1 - Counter 5 Functions - For the DaqBook/100/200 Only
Counters 1 through 5 are binary/BCD, up/down 16-bit counters that can be internally cascaded. Each counter is capable of 24

modes including: hardware and software triggered strobes, rate generator, retriggerable and non-retriggerable one-shots,
software- and hardware-triggered delayed one-shots, variable duty-cycle rate generator, rate generator with sync, frequency-shift
keying, and hardware save. Most modes can be gated. Counters 1 and 2 can be set up as a time-of-day counter, with 100 Hz
resolution. Counters 1 and 2 are also capable of alarm outputs. In the alarm mode, whenever the counter value equals the
alarm value, the counter output is set. This can be used with the time-of-day mode to cause an alarm at a particular time of day.
To use counters 1 through 5 or the FOUT square-wave generator, the master mode register must be set:

daqCtrSetMasterMode Set FOUT source and scaler. Also set the counters 1 and 2 alarm mode and time-of-day mode.
daqCtrSetAlarm Set the alarm comparison value for counter 1 or 2.

High-Level Counter Functions
The high-level counter functions simplify programming of a given counter task by eliminating many complex options available

through low-level functions. After setting the Master Mode, counters 1 through 5 can be programmed using the following
command:

daqCtrRdFreq Read the frequency on a SRC or GATE line. This command uses counter 4 as a gate source and
counter 5 for counting.

Low-Level Counter Functions
The low-level counter functions allow custom-programming of the counters. After setting the Master Mode, counters 1 through 5

can be programmed using the following commands:
daqCtrSetCtrMode Set counter to given mode.
daqCtrSetLoad Set counter load register.
daqCtrSetHold Set counter hold register.
To read back a given counter, use one or both of:
daqCtrMultCtrl Issue a command to the indicated counters. To read the current contents of a counter, issue the

DmccSave command, and read the hold register.
daqCtrGetHold Read a given hold register.

Counter Interrupt Save And Transfer
When an application program needs to read counters based on an external interrupt, the daqCtrRd functions are used.

Whenever the interrupt on P3 is asserted, the programmed counters are saved in an application buffer.
daqCtrRdNFore Read counters on interrupt and transfer data in foreground.
daqCtrRdNBack Read counters on interrupt and transfer data in background.
daqCtrGetBackStat Return whether the background transfers are in progress and the number of valid scans in the buffer.
daqCtrStopBack Stop the background counter saves and transfers.

Standard API Programming Models Chapter 4

4-46 Programmer’s Manual

- Notes

Daq* Command Reference (Standard API) 5

Programmer’s Manual 5-1

Overview
The first part of the chapter describes the Daq* driver commands for DOS, Windows 3.1, Windows for
Workgroups (not NT), and the 16-bit mode of Windows95 (this is the standard API and is not to be
confused with the enhanced API). The first table lists the commands by their function types and
provides a page index. Included at the end of the chapter are several tables that define A/D Channel
Descriptions, Thermocouple Types, A/D Trigger Software Definitions, A/D Gain Definitions, Digital
I/O Port Connection, and the API Error Codes.

Function Description Page

High and Low-Level A/D Functions-
daqAdcCalcTrig Calculate the trigger level and trigger source for an analog trigger 5-3
daqAdcConfCntr0 Configure the counter 0 mode 5-4
daqAdcConvertTagged Convert array that contains channel tags into two separate arrays 5-5
daqAdcExpToChan Calculate a channel number that can be used with all other A/D functions 5-5
daqAdcGetBackStat Read the status of a background A/D transfer 5-6
daqAdcGetFreq Read the current pacer clock frequency 5-6
daqAdcGetScan Read the current scan configuration 5-7
daqAdcRd Configure an A/D acquisition and read one sample from a channel 5-7
daqAdcRdCntr0 Read the current value of the counter 0 5-8
daqAdcRdFore Read a single A/D sample and increment the channel mux 5-8
daqAdcRdN Configure an A/D acquisition and read multiple scans from a channel 5-9
daqAdcRdNBack Read count A/D scans in the background using interrupts 5-10
daqAdcRdNBackPreT Read multiple A/D scans, initiated by daqAdcSetrigPreT, in the background 5-11
daqAdcRdNFore Read count A/D samples in the foreground (polled mode) 5-12
daqAdcRdNForePreT Read multiple A/D scans, initiated by daqAdcSetTrigPretT, in the foreground 5-12
daqAdcRdNForePreTWait Read multiple A/D scans, initiated by daqAdcSetTrigPretT, in the foreground without

returning until the acquisition completes
5-13

daqAdcRdScan Configure an A/D acquisition and read one scan 5-14
daqAdcRdScanN Configure an A/D acquisition and read multiple scans 5-14
daqAdcSetBank Sets which channels are DBK50 to allow programming of gains prior to the acquisition. 5-15
daqAdcSetClk Set the pacer clock counters 5-15
daqAdcSetFreq Configure the pacer clock frequency in Hz 5-16
daqAdcSetMux Configure a scan specifying start and end channels 5-16
daqAdcSetScan Configure up to 256 channels making up an A/D or HS digital input scan 5-17
daqAdcSetTag Configure whether A/D data contains channel tags 5-17
daqAdcSetTrig Configure an A/D trigger 5-18
daqAdcSetTrigPreT Set the trigger of analog level triggering & initiates the collection of pre-trigger data

acquisition
5-19

daqAdcSoftTrig Save a software trigger command to the DaqBook/DaqBoard 5-20
daqAdcStopBack Stop a background A/D transfer 5-20
daqAdcWtCntr0 Write a value to counter 0 5-21

Counter/Timer Functions
daqCtrGetBackStat Read the status of a background counter transfer 5-31
daqCtrGetHold Read the hold register of the specified counter 5-31
daqCtrMultCtrl Simultaneously configure multiple counters 5-32
daqCtrRdFreq Read up to 9 frequency inputs 5-33
daqCtrRdNBack Read count values from up to 5 counters using interrupts 5-34
daqCtrRdNFore Read count values from up to 5 counters in the foreground 5-35
daqCtrSetAlarm Set the specified alarm register 5-35
daqCtrSetCtrMode Set the 9513’s mode register for the specified counter 5-36
daqCtrSetHold Output a value to the counter hold register 5-39
daqCtrSetLoad Output a value to the counter load register 5-39
daqCtrSetMasterMode Initialize various counter/timer values 5-40
daqCtrStopBack Stop a background counter transfer 5-42

D/A Functions
daqDacWt Output a D/A value 5-42
daqDacWtBoth Output D/A values to both DACs 5-43
daqDacWtMany Output D/A values to several DACs 5-43

Daq* Command Reference (Standard API) Chapter 5

5-2 Programmer’s Manual

Digital I/O Functions
daqDigConf Configure the mode of the 8255 digital I/O ports 5-44
daqDigGetConf Execute an interrupt handler on an external digital I/O interrupts 5-45
daqDigRdBit a bit on a digital input port 5-45
daqDigRdByte Read a byte from a digital input port 5-46
daqDigWtBit Program a bit on a digital output port 5-46
daqDigWtByte Output a byte to a digital output port 5-47

Thermocouple Functions
daqRtdConvert Converts raw A/D readings from RTDs to temperature readings 5-51
daqRtdSetup Set up parameters for subsequent RTD temperature conversions 5-52
daqRtdSetupConvert Set up and convert raw A/D readings from RTDs into temperature readings 5-53
daqTCConvert Convert raw A/D readings from thermocouples to temperature readings 5-57
daqTCSetup Set up parameters for subsequent thermocouple temperature conversions 5-59
daqTCSetupConvert Set up and convert raw A/D readings from thermocouples into temperature readings 5-60

DaqBook/200 Functions
daq200GetScan Retrieves a scan sequence, similar to daqAdcGetScan 5-63
daq200SetMode Program the gain amp and set the default polarity 5-63
daq200SetScan Configure a scan sequence with polarity mode per channel 5-64

DaqBoard Functions
daqBrdAdcSetTimeBase Set the timebase for the ADC pacer clock 5-21
daqBrdDacClockSrc Select the source for DAC FIFO pacer clock 5-22
daqBrdDacCtrl Set the mode of the DAC FIFO 5-23
daqBrdDacPredefWave Build a waveform and assign to a DAC channel 5-24
daqBrdDacRestFIFO Reset DAC FIFO and its pointers 5-25
daqBrdDacSetMode Set the mode of DAC FIFO, the cycling mode of FIFO and update rate per sample 5-25
daqBrdDacSetTimeBase Set the time base for the DAC FIFO pacer clock 5-26
daqBrdDacStart Start the waveforms 5-26
daqBrdDacStop Stop the waveforms 5-27
daqBrdDacUserWave Assign a user defined waveform to a DAC channel 5-27
daqBrdDacWriteFIFO Load sample data directly into DAC FIFO 5-28
daqBrdSetDmaMode Set the direction for DMA transfers 5-28

Software Calibration and Zero Compensation Functions
daqCalConvert Perform the actual calibration of one or more scans 5-29
daqCalSetup Configure the order and type of data to be calibrated 5-29
daqCalSetupConvert Perform both the setup and convert steps with one call 5-30
daqReadCalFile Read all the calibration constants from the specified file 5-50
daqZeroConvert Perform zero compensation on one or more scans 5-61
daqZeroDbk19 Configure thermocouple linearization functions for automatic zero compensation 5-61
daqZeroSetup Configure data for zero compensation 5-62
daqZeroSetupConvert Perform both the setup and convert steps with one call 5-62

Linear Conversion Functions
daqLinearConvert Convert ADC readings into floating point numbers 5-49
daqLinearSetup Save data required for daqLinearConvert 5-49
daqLinearSetupConvert Combine setup and conversion into one function 5-50

General Functions
daqClose End communication with the DaqBook/DaqBoard 5-30
daqGetProtocol Return the current parallel port communications protocol 5-47
daqInit Initialize a single DaqBook/DaqBoard 5-48
daqSelectPort Select an initialized DaqBook/DaqBoard as the current DaqBook/DaqBoard 5-54
daqSetErrHandler Specify a user-defined routine to call when an error occurs in any command 5-55
daqSetProtocol Specify the type of parallel-port implementation and protocol available on the computer 5-56
daqVersion Return the hardware version 5-61

Commands in Alphabetical Order
The following pages give the details for each API command. Listed in alphabetical order, each section
starts with a table that summarizes the main features of the command (language prototypes for C,
QuickBASIC, and Turbo Pascal, and the related parameters). An explanation follows with related
information and in some cases a programming example. Typographic note: Commands, parameters,
values, and code use a bold, mono-spaced Courier font to distinguish characters that can be
ambiguous in other fonts.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-3

daqAdcCalcTrig
DLL Function daqAdcCalcTrig(uchar bipolar, uint gain, float vset, uchar rising, float vref,

uint *level, uchar *source);
C daqAdcCalcTrig(uchar bipolar, uint gain, float vset, uchar rising, float vref,

uint far *level, uchar far *source)
QuickBASIC QBdaqAdcCalcTrig%(bipolar%, gain%, vset!, rising%, vref!, level%, source%)

Turbo Pascal daqAdcCalcTrig(bipolar:byte; gain:word; vset:real; rising:byte; vref:real;
level:WordP);

Parameters
uchar bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar
uint gain A gain value of the trigger channel
float vset The analog trigger setpoint
uchar rising A flag that if non-zero will calculate a rising analog trigger, otherwise calculates a falling analog trigger
float vref The external reference voltage of D/A channel 1

Valid values: 0 >vref > -10
uint _far *level The trigger level to be passed to the daqAdcSetTrig command
uchar _far
*source

The trigger source to be passed to the daqAdcSetTrig command

Returns DerrInvDacLevel - vset or vref out of valid range
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcSetTrig, daqAdcSetMux, daqAdcSetScan, daq200SetScan

Program References None
Used With

daqAdcCalcTrig calculates the trigger level and source for an analog trigger. The level and source
parameters can be passed to the daqAdcSetTrig function to configure the analog trigger.

The source and trigger parameters are calculated from the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. The trigger channel is the first channel in the current A/D scan group.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the trigger
channel. This parameter is jumper selectable when using a DaqBook/100/112 and
DaqBoard/100A/112A and software-programmable when using the DaqBook/200/200A.

The gain value sent to the daqAdcCalcTrig should be the actual gain of the trigger channel, not
the gain definition used by the rest of the DaqBook/DaqBoard A/D functions. For example, if the
trigger channel uses the gain definition DgainX8, the gain parameter of daqAdcCalcTrig should
be 8.

The vset and rising parameters define the analog voltage at which the Daq* will trigger and
whether the analog signal must be rising or falling through this setpoint. The setpoint must be within
the valid input range of the trigger channel. For example, the setpoint range for a bipolar channel with
unity gain would be 0 to 10 V (for ×8 gain, the range would be 0 to 1.25 V) for a DaqBook or a
DaqBoard.

The vref parameter is the external reference voltage of D/A channel 1. This reference must be
negative for analog triggers to work. The value -5 should be passed if the internal reference is used.

When using the Daq PCMCIA, the external reference (float vref) and polarity (uchar
bipolar) parameters are ignored.

Daq* Command Reference (Standard API) Chapter 5

5-4 Programmer’s Manual

daqAdcConfCntr0
DLL Function daqAdcConfCntr0(uchar config);

C daqAdcConfCntr0(int conf)

QuickBASIC QBdaqAdcConfCntr0%(config%)

Turbo Pascal daqAdcConfCntr0(config:byte) :integer;

Parameters
uchar config The configuration of Counter 0 (See table below for definitions.)
Counter 0 Configuration Definitions
Description Value Note
Dc0cHighTermCnt 30h High on terminal count
Dc0cOneShot 32h Hardware retriggerable one-shot
Dc0cRateGen 34h Rate Generator
Dc0cSquareWave 36h Square wave
Dc0cSoftTrigStrobe 38h Software triggered strobe
Dc0cHardTrigStrobe 3Ah Hardware triggered strobe
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also daqAdcWtCntr0, daqAdcRdCntr0, daqAdcSetTrig

Program References ADC5 (All Languages)
Used With Does not apply to DaqPCMCIA models

daqAdcConfCntr0 programs the control register of Counter 0 in 1 of 6 modes. Counter 0 is a
general purpose counter with input, gate and output lines. The input of counter 0 can be configured
using the ctr0mode parameters of the daqAdcSetTrig command.

The 6 modes are:
• 0, high on terminal count, is typically used to count events. After the initial count value (see

daqAdcWtCntr0) is set, the counter will decrement on each pulse of the Counter 0 input (pin
21 of P1). The count value at any time can be read using daqAdcRdCntr0. Counter 0 output
(pin 2 of P1), which is initially low, will go high when the counter decrements to 0.

• 1, hardware retriggerable 1-shot, is used to generate a pulse following the occurrence of a rising
edge of the Counter 0 gate (pin 24 of P1). The output, which is initially high, will go low after
the hardware trigger is received until the count decrements to 0.

• 2, rate generator, a divide-by-N counter. The output will be high until the counter value
decrements to 1, when the output goes low for 1 clock pulse before going high again.

• 3, square wave generator, is similar to mode 2 except for the duty-cycle. The output will be high
for half of the count value, and low for the other half. If the count value is odd, the output will
remain high for the extra clock pulse.

• 4, software triggered strobe, will strobe each time the count value is loaded. The output is
initially high. After the count value is written and has decremented to 1, the output will go low
for one clock pulse before going high again.

• 5, hardware triggered strobe, is similar to mode 4 except the strobe is initiated by a hardware
trigger (rising edge of Counter 0 gate).

Note: Using counter 0 requires the JP2 jumpers to be in the -OCTOUT and -OCLKIN positions.

Counter 0 Block Diagram

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-5

daqAdcConvertTagged
DLL Function daqAdcConvertTagged(uint *taggedData, uint *buf, uchar *tags, uint count);

C daqAdcConvertTagged(int *taggedData, int *buf, int *tags, int count)

QuickBASIC QBdaqAdcConvertTagged%(taggedData%(), buf%(), tags%(), count%

Turbo Pascal daqAdcConvertTagged (taggedData:DataP; buf:DataP; tags:ByteP; count:word)
:integer;

Parameters
uint *taggedData An array containing the raw tagged A/D scans
uint *buf An array where the A/D scans will be returned or (unit *) 0 if the A/D data is not desired.

Valid values: 0 - 4095
uchar*tags An array where the channel tags will be returned or (uchar *) 0 if the channel tags are not desired.

Valid values: 0 - 15
uint count The number of scans in the taggedData array to convert
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetTag

Program References ADC1, ADC2, ADC4 (All Languages)
Used With Does not apply to Daq PCMCIA models

daqAdcConvertTagged converts 16-bit channel-tagged data into an array of 4-bit channel tags and
an array of 12-bit A/D scans. The A/D converter of the DaqBook/DaqBoard returns the data in a 16-bit
tagged format which consists of the 12-bit A/D reading in the upper 12 bits of the data and a channel
number in the lower 4 bits. This function strips the channel tags and A/D scans into separate buffers
and shifts the A/D data right by 4 bits. If an expansion card is used, the jumper setting of the expansion
card will be returned in the channel tag location. This function is not necessary if data was collected
after disabling channel tags with daqAdcSetTag. (taggedData and buf can be the same array.)
Note: daqAdcConvertTagged should not be used on data from the high-speed digital I/O port.
The data from this port will be stripped and shifted along with the rest of the A/D data.

daqAdcExpToChan
DLL Function daqAdcExpToChan(uint expCard, uint expChan, uint *chan);

C daqAdcExpChan(int expCard, int expChan, int *chan)

QuickBASIC QBdaqAdcExpChan%(expCard%, expChan%, chan%)

Turbo Pascal daqAdcExpToChan(expCard:byte; expChan:byte; chan:DataP) :integer;

Parameters
uint expCard The expansion card number

Valid values: 0 - 15
uint expChan The channel number on the expansion card

Valid values: 0 -15
uint *chan A variable to hold the channel number
Returns DerrInvChan - Invalid analog input channel

DerrNoError - No errors (also, refer to API Error Codes on page 5-68)
See Also
Program References None
Used With

daqAdcExpToChan is used to calculate a channel number that can be used with all other A/D
functions from an expansion card number and an expansion card channel.

Daq* Command Reference (Standard API) Chapter 5

5-6 Programmer’s Manual

daqAdcGetBackStat
DLL Function daqAdcGetBackStat(uchar *active, ulong *count);

C daqAdcGetBackStat(int *active, int *count)

QuickBASIC QBdaqAdcGetBackStat%(active%, count%)

Turbo Pascal daqAdcGetBackStat(active: ByteP; count:LongP):integer;

Parameters
uchar *active A flag which will be returned non-zero if a background transfer is in progress, or 0 if not
ulong *count The number of scans acquired by the last or current background transfer
Returns DerrOverrun - Internal data buffer overrun

DerrFIFOFull - ADC FIFO Overrun
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcRdNBack, daqAdcStopBack

Program References ADC4 (All Languages)
Used With

daqAdcGetBackStat determines if a background operation is still in progress. It also reads the
number of bytes acquired by the last or current background operation initiated by the
daqAdcRdNBack function.

daqAdcGetBackStat can return two possible error codes:

• DerrFIFOFull is returned if the data FIFO in the DaqBook/DaqBoard is filled before the data
can be read. The data read may be invalid.

• DerrOverrun is returned if the daqAdcRdNBack is called with the cycle flag enabled. The
software is just fast enough to read one buffer of data. If this error occurs, the amount of data
available (specified by count) is valid, but the transfer was stopped.

daqAdcGetFreq
DLL Function daqAdcGetFreq(float *freq);
C daqAdcGetFreq(float *freq)

QuickBASIC QBdaqAdcGetFreq%(freq!)

Turbo Pascal daqAdcGetFreq(freq:FloatP) :integer;

Parameters
float *freq A variable to hold the currently defined sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No errors (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetFreq, daqAdcSetClk

Program References None
Used With

daqAdcGetFreq reads the sampling frequency of the pacer clock.

Note: daqAdcGetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1
MHz.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-7

daqAdcGetScan
DLL Function daqAdcGetScan(uint *chans, uchar *gains, uint *count);

C daqAdcGetScan(int *buf)

QuickBASIC QBdaqAdcGetScan%(buf%())

Turbo Pascal daqAdcGetScan(chans:DataP; gains:ByteP; count:DataP) :integer;

Parameters
uint *chans An array to hold up to 512 channel numbers or 0 if the channel information is not desired.
uchar *gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired
uint count A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetScan, daqAdcSetMux

Program References None
Used With

daqAdcGetScan reads the current scan sequence consisting of up to 512 channels and gains.

daqAdcGetScan
DLL Function daqAdcRd(uint chan, uint *sample, uchar gain);

C daqAdcRd(int *sample, uchar gain)

QuickBASIC QBdaqAdcRd%(chan%, sample%)

Turbo Pascal daqAdcRd(chan:word; sample:DataP; gain:byte) :integer;

Parameters
uint chan A single channel number
unit *sample A pointer to a value where an A/D sample is stored. Valid values: (See daqAdcSetTag)
unchar gain The channel gain
Returns DerrFIFOFull - Buffer Overrun

DerrInvGain -Invalid gain
DerrInvChan - Invalid channel
DerrNoError -No Error (also, refer to API Error Codes on page 5-68)

See Also daqAdcRdN, daqAdcSetMux, daqAdcSetTrig, daqAdcSoftTrig, daqAdcRdFore

Program References ADC1 (All Languages)
Used With

daqAdcRd is used to take a single reading from the given local A/D channel. This function will use a
software trigger to immediately trigger and acquire one sample from the specified A/D channel.

Daq* Command Reference (Standard API) Chapter 5

5-8 Programmer’s Manual

daqAdcRdCntr0
DLL Function daqAdcRdCntr0(uint *cntr0, uchar<_>latch);

C daqAdcRdCntr0(uint *cntr0)

QuickBASIC QBdaqAdcRdCntr0%(cntr0%)

Turbo Pascal daqAdcRdCntr0(cntr0:DataP; mode:Byte):integer;

Parameters
uint *cntr0 The value read back from the Counter 0 hold register

Valid values: 0 -65535
uchar latch If latch is non-zero, the count register will be latched into the hold register before reading. If latch is

zero, the count register will be read directly. Direct reading should only be performed when no clock
pulses are present.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcConfCntr0, daqAdcWtCntr0

Program References None
Used With Does not apply to Daq PCMCIA models

daqAdcRdCntr0 reads the hold register of counter 0. This function is normally used with mode 0 of
counter 0 (see daqAdcConfCntr0) to read the current count value.

Note: Using counter 0 requires that the JP1 jumpers are in the -OCTOUT and -OCKLIN positions.

daqAdcRdFore
DLL Function daqAdcRdFore(uint *sample);

C daqAdcRdFore(int *sample)

QuickBASIC QBdaqAdcRdFore%(sample%)

Turbo Pascal daqAdcRdFore(sample:DataP) :integer;

Parameters
uint *sample A pointer to a value where an A/D sample is stored

Valid values: (See daqAdcSetTag)
Returns DerrFIFOFull - Buffer overrun

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also daqReadFIFO, daqAdcSetTag, adcSetClk, daqAdcSetTrig, daqAdcSetScan

Program References ADC2, ADC3 (All Languages)
Used With

daqAdcRdFore will read one sample from the A/D data FIFO. This function, unlike daqAdcRd,
will not configure the trigger source. It assumes that the A/D converter has already been configured to
acquire data.

Note: If the A/D converter has not been configured to acquire data, this function may wait indefinitely
and hang the computer.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-9

daqAdcRdN
DLL Function daqAdcRdN(uint chan, uint *buf, uint count, uchar trigger, uchar oneshot,

uint level, float freq, uchar gain);
C daqAdcRdN(int chan, int *buf, int count, int mode, int cycle, int trigger,

int level, float freq, uchar gain)
QuickBASIC QBdaqAdcRdN%(chan%, buf%(), count%, mode%, trigger%, oneshot%, level %,

freq!, gain%)
Turbo Pascal daqAdcRdN(chan:word; buf:DataP; count:word; trigger:byte;):integer;

Parameters
unit chan A single channel number
uint *buf An array where the A/D scans will be returned
uint count The number of scans to be taken

Valid values: 1 - 32767
uchar trigger The trigger source
uchar one shot A flag that if non-zero enables one-shot trigger mode, otherwise enables continuous mode.
uint level The trigger level if an analog trigger is specified

Valid values: 0 -4095
float freq The sampling frequency in Hz (100000.0 to 0.0002)
uchar gain The channel gain
Returns DerrFIFOFull - Buffer overrun

DerrInvGain -Invalid gain
DerrIncChan - Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid level
(also, refer to API Error Codes on page 5-68)

See Also daqAdcRd, daqAdcRdScan, daqAdcRdNScan, daqAdcRdNFore, daqAdcSetFreq,
daqAdcSetMux, daqAdcSetTag, daqAdcSetClk, daqAdcSetTrig

Program References ADC1(VB,C)
Used With

daqAdcRdN is used to take multiple scans from a single A/D channel. This function will:

• Configure the pacer clock
• Arm the trigger
• Acquire count scans from the specified A/D channel.

Daq* Command Reference (Standard API) Chapter 5

5-10 Programmer’s Manual

daqAdcRdNBack
DLL Function daqAdcRdNBack(uint *buf, uint count, uchar cycle, uchar update Single);

C daqAdcRdNBack(int *buf, int count, int cycle)

QuickBASIC QBdaqAdcRdNBack%(buf%(), count%, cycle%, update single %)

Turbo Pascal daqAdcRdNBack(buf:DataP; count:word; cycle:byte; updateSingle:byte):integer;

Parameters
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be taken Valid values: 1 - 32767
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it
uchar
updateSingle

One of three possible modes. See table below.

Modes
Mode Value Description
DusBlock 00h
DusSingle 01h
DusDMA 02h DMA transfers are valid for DaqBoard products only
Returns DerrMultBackXfer - Background read already in progress

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcGetBackStat, daqAdcStopBack, daqAdcSetTag, daqAdcSetClk, daqAdcSetTrig

Program References ADC4 (All Languages)
Used With

daqAdcRdNBack reads multiple A/D scans in the background using interrupts. This function will
return control back to the user’s program after initiating the background transfer. The user can then
monitor the status of the background transfer with the daqAdcGetBackStat function or stop the
transfer with the daqAdcStopBack function. Because the transfer occurs in the background, the
user can perform other tasks in the foreground. This function assumes the A/D acquisition has already
been setup.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning
of buf after count scans have been read. Thus large amounts of data can be read without calling
daqAdcRdNBack multiple times. As long as you monitor how much data is in the buffer and process
the data before it gets overwritten, the background transfer can run indefinitely. In this mode, you
should get the total number of scans written into buf using daqAdcGetBackStat and keep track of
the total number of scans processed in a variable. The difference between these two totals is the
number of unprocessed valid scans in buf that you can process.

The updateSingle flag allows you to control whether the Daq* updates buf 1 sample at a time or
in blocks of 256 samples. Enabling updateSingle allows the user to read A/D data during slow
acquisitions as each sample is acquired. Because the updateSingle flag is directly tied to the
number of interrupts generated on the computer, the flag should not be enabled if the acquisition rate is
greater than 500 scans per second (sampling rate times the number of channels). For example, an
acquisition running at 1 Hz might enable the updateSingle flag so that the data can be read each
second rather than waiting for 256 seconds. An acquisition running at 10,000 Hz would disable the
flag so that the computer does not hang.

If you are using a product that supports DMA, you can transfer scan readings to memory using DMA
by calling this function with updateSingle equal to DusDMA. This will enable DMA transfers in
the direction specified by the daqBrdSetDmaMode command.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-11

daqAdcRdNBackPreT
DLL Function daqAdcRdNBackPreT(uint *buf, uint count, uchar cycle);

C daqAdcRdNBackPreT(uint *buf, uint count, uchar cycle)

QuickBASIC QBdaqAdcRdNBackPreT%(buf%(), count%, cycle%)

Turbo Pascal daqAdcRdNBackPreT(buf:count:cycle):integer;

Parameters
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be taken (1-32767)
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it.
Returns DerrMultBackXfer - Background read already in progress

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcGetBackStat, daqAdcStopBack, daqAdcSetTag, daqAdcSetTrigPreT

Program References ADCPRET3.C
Used With

daqAdcRdNBackPreT reads multiple A/D scans, initiated by the daqAdcSetTrigPreT
command, in the background. This function will return control to the user’s program after initiating the
background transfer. The user can then monitor the status of the background transfer with the
daqAdcGetBackStat function or stop the transfer with the daqAdcStopBack function. Because
the transfer occurs in the background, the user can perform other tasks in the foreground. This function
assumes the pre-trigger acquisition has already been setup using daqAdcSetTrigPreT.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning
of buf after count scans have been read. Under this mode the background transfer will continue
until the acquisition completes. This allows the user to collect large amounts of data without calling
daqRdNBackPreT several times. As long as the user monitors how much data is in the buffer and
processes the data before it gets overwritten, the background transfer can run until the acquisition
completes. In this mode the user should get the total number of scans written into buf using the
daqAdcGetBackStat function and keep track of the total number of scans processed in a variable.
The difference between these two totals is the number of unprocessed valid scans in buf that the user
can process.

If, however, the cycle flag is false, the background transfer will only collect the number of scans
specified in count. If this is the case, then a number of daqAdcRdNBackPreT calls may be
necessary to read all the data collected during the pre-trigger mode acquisition.

Daq* Command Reference (Standard API) Chapter 5

5-12 Programmer’s Manual

daqAdcRdNFore
DLL Function daqAdcRdNFore(uint *buf, uint count);

C daqAdcRdNFore(int *buf, int count)

QuickBASIC QBdaqAdcRdNFore%(buf%(), count %)

Turbo Pascal daqAdcRdNFore(buf:DataP; count:word):integer;

Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken.

Valid values: 1 -32767
Returns DerrFIFOFull - Buffer overrun

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetTag, daqAdcSetClk, daqAdcSetTrig

Program References ADC2, ADC3 (All Languages)
Used With

daqAdcRdNFore reads multiple A/D scans in the foreground. Unlike daqAdcRdNBack, this
function does not use interrupts and does not return control immediately to the program. It will return
only when count scans have been read. This function will not configure the A/D acquisition and
assumes that the A/D converter has already been configured to acquire data.

Note: If the A/D converter has not been configured to acquire data, this function may wait indefinitely,
hanging the computer.

daqAdcRdNForePreT
DLL Function daqAdcRdNForePreT(uint *buf, uint count, uint *retcount, uchar *active);

C daqAdcRdNForePreT(uint *buf, uint count, uint *retcount, uchar *active)

QuickBASIC QBdaqAdcRdNForePreT%(buf%(), count %, retcount%, active%)

Turbo Pascal daqAdcRdNForePreT(buf:count:retcount:active):integer;

Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken.

Valid values: 1 -32767
uint *retcount Pointer to an integer representing the number of scans actually taken
uchar *active Pointer to a flag indicating whether or not the pre-trigger acquisition is still active
Returns DerrFIFOFull - Buffer overrun

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetTrigPreT, daqAdcSetTag, daqAdcRdNForePreTWait, daqAdcRdNBackPreT

Program References ADCPRET1.C
Used With

daqAdcRdNForePreT reads multiple A/D scans, initiated by the daqAdcSetTrigPreT
command, in the foreground. Unlike the daqAdcRdNBackPreT command, this function does not
use interrupts and does not return control immediately to the application program. It will only return
when either the specified count has been satisfied or the acquisition completes. Note: If the A/D
converter has not been configured to acquire data, this function may wait indefinitely, hanging the
computer.

This function may be called subsequent to configuring a pre-trigger acquisition using the
daqAdcSetTrigPreT command. Once this command has been called, it will return only when one
of two possible conditions are met:

• The specified number of scans has been collected.
• The trigger has been detected and the acquisition has completed. The returned active flag will

be 0, and the number of scans actually collected will be returned in retcount.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-13

daqAdcRdNForePreTWait
DLL Function daqAdcRdNForePreTWait(uint *buf, uint count, uint *retcount);

C daqAdcRdNForePreTWait(uint *buf, uint count, uint *retcount)

QuickBASIC QBdaqAdcRdNForePreTWait% (buf%(), count %, retcount%)

Turbo Pascal daqAdcRdNForePreTWait(buf:count:retcount:active):integer;

Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken

Valid values: 1 - 32767
uint *retcount Pointer to an integer representing the number of scans actually taken
Returns DerrFIFOFull - Buffer overrun

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetTrigPreT, daqAdcSetTag, daqAdcRdNForePreT, daqAdcRdNBackPreT

Program References ADCPRET2.C
Used With

daqAdcRdNForePreTWait reads multiple A/D scans, initiated by the daqAdcSetTrigPreT
command, in the foreground. Unlike the daqAdcRdNForePreT command, this function will not
return until the acquisition completes. It will only return when the specified trigger event has occurred
and the specified post trigger count has been satisfied.

This function may be called subsequent to configuring a pre-trigger acquisition using the
daqAdcSetTrigPreT command. Once this command has been called, it will return only when the
trigger has been detected and the acquisition has completed. The amount in the count parameter
specifies the length of the supplied buffer in scans. Unlike daqAdcRdNForePreT, this command
will not return when count is satisfied; instead it will continue acquiring by wrapping the scans to the
beginning of the buffer until the final post-trigger scan is collected and the acquisition completes.

When the acquisition completes, control will be returned to the application program along with the
actual number of scans collected in the retcount parameter.

Note: If the A/D converter has not been configured to acquire data or the trigger event never occurs,
this function may wait indefinitely, hanging the computer.

Daq* Command Reference (Standard API) Chapter 5

5-14 Programmer’s Manual

daqAdcRdScan
DLL Function daqAdcRdScan(uint startChan, uint endChan, uint *buf, uchar gain);

C daqAdcRdScan(int startChan, int endChan, int *buf)

QuickBASIC QBdaqAdcRdScan%(startChan%, endChan%, buf%(), gain%)

Turbo Pascal daqAdcRdScan(startChan:word; endChan:word;buf:DataP; gain:byte):integer;

Parameters
uint startChan The starting channel of the scan group
uint endChan The ending channel of the scan group
uint *buf An array where the A/D scans will be placed
unchar gain The channel gain
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcRd, daqAdcRdN, daqAdcRdNScan, daqAdcSetMux, daqAdcRdFore, daqAdcSetTag,
daqAdcSetClk, daqAdcSetTrig

Program References ADC1 (All Languages)
Used With

daqAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel starting with startChan
and ending with endChan.

daqAdcRdScanN
DLL Function daqAdcRdScanN(uint startChan, uint endChan, uint *buf, uint count, uchar

trigger, uchar one Shot, uint level, float freq, uchar gain);
C daqAdcRdScanN(int startCan, int endChan, int *buf, int scans, int mode, int

cycle, int trigger, float freq)
QuickBASIC QBdaqAdcRdScanN%(startChan%, endChan%, buf%(), scan%, mode%, cycle%, trigger%,

freq!, gain%)
Turbo Pascal daqAdcRdScanN(startChan:word; endChan:word; buf:DataP; count:word;

trigger:byte; oneShot:byte;level:word; freq:real; gain:byte) :integer;
Parameters
uint startChan The starting channel of the scan group (see table at end of chapter)
uint endChan The ending channel of the scan group (see table at end of chapter)
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be read

Valid values: 1 - 65536
uchar trigger The trigger source (see table at end of chapter)
uchar one Shot A flag that if non-zero enables one-shot trigger mode
uint level The trigger level if an analog trigger is specified

Valid values: 0 -4095
float freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
uchar gain The channel gain (See tables at end of chapter).
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid Level
DerrFIFOFull -Buffer Overrun
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcRd, daqAdcRdN, daqAdcRdScan, daqAdcRdNFore, daqAdcSetTag, daqAdcSetClk,
daqAdcSetTrig

Program References ADC1 (VB, C)
Used With

daqAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure the
pacer clock, arm the trigger and acquire count scans consisting of each channel starting with
startChan and ending with endChan.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-15

daqAdcSetBank
DLL Function daqAdcSetBank (int chan, int type)

C daqAdcSetBank(unsigned int chan, unsigned int bankType);

QuickBASIC QBdaqAdcSetBank%(chan%, bankType%)

Turbo Pascal daqAdcSetBank(chan:word; bankType:word) : integer;

Parameters
int chan Channel number on the DBK card. Channel numbers are in groups of 16 channels per bank.
int type Type of channel bank.
Returns DerrInvChan - Invalid Channel Number (also, refer to API Error Codes on page 5-68)
See Also
Program References None
Used With

daqAdcSetBank internally programs intelligent DBK card channels so the Daq* gains may be set
just before the acquisition. A bank consists of 16 channels, but daqAdcSetBank must be called once
for each card in the bank. For example, if four 4-channel cards (such as a DBK7) are used in the first
expansion bank, you must call daqAdcSetBank 4 times with channels 16, 20, 24, and 28. With only
1 such card, you cannot fill the remainder of the bank with another type of device.

daqAdcSetClk
DLL Function daqAdcSetClk(uint ctr1, uint ctr2);

C daqAdcSetClk(uint ctr1, uint ctr2)

QuickBASIC QBdaqAdcSetClk%(ctr1%, ctr2%)

Turbo Pascal daqAdcSetClk(ctr1:word; ctr2:word):integer;

Parameters
uint ctr1 The value of the counter 1 divisor

Valid values: 0 - 65535
uint ctr2 The value of the counter 2 divisor

Valid values: 0 - 65535
Returns DerrInvClock - Invalid clock

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetFreq, daqAdcGetFreq

Program References ADC3(VB, C) ? ADC4(All Languages)
Used With

daqAdcSetClk sets the frequency of the pacer clock using the two specified counter values. The
pacer clock can be used to control the sampling rate of the A/D converter.

The pacer clock is primarily used in two ways:
• As an internal trigger source to acquire scan data at a constant frequency. The trigger source is

programmed as the PacerClock (daqAdcSetTrig()); and setting the scan frequency is done
using daqAdcSetClk() or daqAdcSetFreq(). When configured, scan data will be
acquired immediately at the frequency selected and without an external or software trigger.

• To control the frequency at which continuous mode acquisition is acquired. Here, the pacer
clock is not used as a trigger source to initiate an acquisition. Instead it is used to pace the
acquisition of data that has been initiated by another trigger source in continuous mode. The
pacer clock is configured using daqAdcSetClk() and daqAdcSetFreq() functions. The
trigger source, however, is something other than the pacer clock. When configured, the Daq*
will wait for the selected trigger. When the trigger is detected, the Daq* will collect scans at the
selected pacer-clock frequency.

The frequency is defined to be xtal / ctr1* ctr2) where xtal is the frequency of the board crystal (either 1
MHz or 10 MHz). For Daq PCMCIA, the following equation can be used to calculate frequency —xtal

can be 5 MHz, 1 MHz, 100 kHz, or Ext and is set by the daqBrdAdcSetTimeBase command.

frequency = xtal / [(ctr1 * 65536) + ctr2 + 1]

Daq* Command Reference (Standard API) Chapter 5

5-16 Programmer’s Manual

daqAdcSetFreq
DLL Function daqAdcSetFreq(float freq);

C daqAdcSetFreq(float freq)

QuickBASIC QBdaqAdcSetFreq%(freq!)

Turbo Pascal daqAdcSetFreq(freq:real) :integer;

Parameters
float freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcGetFreq, daqAdcSetClk

Program References None
Used With

daqAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency specified in
Hz. The frequency is converted to two counter values that control the frequency of the pacer clock (in
this conversion, some resolution of the frequency may be lost). daqAdcRdFreq can be used to read
the exact frequency setting of the pacer clock. daqAdcSetClk can be used to explicitly set the two
counter values of the pacer clock. The pacer clock can be used to control the sampling rate of the A/D
converter.

Note: The Daq PCMCIA may limit the maximum frequency settings when configured for differential
mode operation.

daqAdcSetMux
DLL Function daqAdcSetMux(uint startChan, uint endChan, uchar gain);

C daqAdcSetMux(uint startChan, uint endChan)

QuickBASIC QBdaqAdcSetMux%(startChan%, EndChan%)

Turbo Pascal daqAdcSetMux(startChan:word; endChan:word; gain:byte) :integer;

Parameters
uint startChan The starting channel of the scan group
uint endChan The ending channel of the scan group
uchar gain The gain value for all channels
Returns DerrInvGain - Invalid gain

DerrIncChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcSetScan, daqAdcGetScan, daq200GetScan, daq200SetScan

Program References ADC2 (All Languages)
Used With

daqAdcSetMux sets a simple scan sequence of local A/D channels from startChan to endChan
with the specified gain values. This command provides a simple alternative to daqAdcSetScan if
consecutive channels need to be acquired.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-17

daqAdcSetScan
DLL Function daqAdcSetScan(uint *chans, uchar *gains, uint count);

C daqAdcSetScan(uint *chans, uchar *gains, uint count)

QuickBASIC QBdaqAdcSetScan%(buf%())

Turbo Pascal daqAdcSetScan(chans:DataP; gains:ByteP; count:word) :integer;

Parameters
uint *chans An array of up to 512 channel numbers
uchar *gains An array of up to 512 gain values
uint count The number of values in the chans and gains arrays

Valid values: 1 -512
Returns DerrNotCapable - No high speed digital

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcGetScan, daqAdcSetMux, daq200SetScan

Program References ADC3, ADC4 (All Languages)
Used With

daqAdcSetScan configures a scan sequence consisting of multiple channels and corresponding
gains. As many as 512 entries can be made in the scan configuration. Any analog input channel at any
gain can be included in the scan including local channels and channels on an expansion card. Channels
can be entered multiple times at the same or different gain. The high-speed digital I/O port can be
included although its gain value will be ignored.

daqAdcSetTag
DLL Function daqAdcSetTag(uchar tag);

C daqAdcSetTag(int cycle, int tag)

QuickBASIC QBdaqAdcSetTag%(tag%)

Turbo Pascal daqAdcSetTag(tag:byte) :integer;

Parameters
uchar tag A flag which if non-zero will enable the channel tag in the A/D data, or if 0 will disable it
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcConvertTagged

Program References ADC1, ADC2 (All Languages)
ADC4 (VB, C)

Used With For Daq*100 series only

daqAdcSetTag enables/disables channel numbers or tags to be included in the A/D data. The A/D
converter of the Daq* returns data in a 16-bit tagged format which consists of the 12-bit A/D reading in
the upper 12 bits and a channel number in the lower 4 bits. Disabling channel tagging will cause all
A/D functions to strip the channel tags and shift the A/D data right by 4 bits before the data is returned
to the user. If an expansion card is used, the jumper setting of the expansion card will be returned in
the channel tag location. The daqAdcConvertTagged function can be used to convert data
acquired with channel tags into separate channel and data arrays. High-speed acquisitions should
enable channel tagging to increase throughput because no time is spent converting the data.

Note: The channel tag should not be disabled when reading data from the high-speed digital I/O port.
The data from this port will be stripped and shifted like A/D data.

Note: The Daq PCMCIA/112B does not support channel tagging. Enabling channel tagging with a
Daq/112B will simply cause the 12-bit data to be converted to 16-bit data. The least significant nibble
will be filled with 0H rather than a channel tag value. The remaining 12 bits will be shifted left 4
places.

Daq* Command Reference (Standard API) Chapter 5

5-18 Programmer’s Manual

daqAdcSetTrig
DLL Function daqAdcSetTrig(uchar trigger, uchar one shot, int level, uchar ctr0 mode, uchar

 pacer Mode);
C daqAdcSetTrig(int source, int slope, int level)

QuickBASIC QBdaqAdcSetTrig%(source%, slope%, level%)

Turbo Pascal daqAdcSetTrig(trigger:byte; oneShot:byte; level:word; ctr0Mode:byte;pacerMode:
byte):integer;

Parameters
uchar trigger The trigger source
uchar one Shot A flag that if non-zero enables 1-shot trigger mode, otherwise enables continuous mode
uint level The trigger level if an analog trigger is specified

Valid values: 0 -4095
ctr0mode A flag that if non-zero, selects an internal 100 kHz clock to be the input to counter 0. If the flag is zero,

only the external clock on P1, pin21 is the input to counter 0 (see figure in daqAdcConfCntr0). Counter
0 can act as a trigger source if the Counter 0 output (pin 2 of P1) is connected to the external trigger
input (pin 25 of P1). The JP1 jumper must be configured for Counter 0 for this operation.

pacer Mode A flag that if zero, disables the external TTL Trigger (P1, pin 25) from affecting the pacer clock. If the flag
is non-zero, any low-level on the TTL trigger will cause the pacer clock to pause.

Returns DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid level
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcConfCntr0

Program References ADC2, ADC3, ADC4, ADC5 (All Languages)
Used With

daqAdcSetTrig sets and arms the trigger of the A/D converter. Eight trigger sources and several
mode flags can be used for a variety of acquisitions. daqAdcSetTrig will stop current acquisitions,
empty acquired data, and arm the Daq* using the specified trigger.

The pacer-clock trigger is used to acquire data at a constant frequency. The sampling rate can be set
using the daqAdcSetClk or daqAdcSetFreq functions. The 1-shot flag has no meaning when
using this trigger source, and the analog-level value is ignored.

The software trigger allows the user to trigger the A/D from software using the daqAdcSoftTrig
function. When the 1-shot mode is enabled, a single scan will be initiated by the software trigger. In
the continuous mode (1-shot disabled), sending a software trigger will cause the A/D converter to
sample at the rate of the pacer clock. The analog level value is ignored.

An external TTL pulse trigger can be used to initiate a scan or start an acquisition when using the
external TTL rising or falling edge trigger source. The external TTL pulse should be applied to trig0
(pin 25 of P1). The pulse will initiate a single scan in one-shot mode, and a continuous acquisition at
the pacer clock frequency in continuous mode. The analog level value is ignored.

Four analog triggers use a rising or falling slope and a positive or negative level. Data acquisition will
start when the first channel of the scan group (defined by daqAdcSetScan or daqAdcSetMux)
passes through the specified trigger level with the proper slope. Analog triggers are used with the 1-
shot mode disabled, so data will be collected at the frequency of the pacer clock after the analog trigger
is satisfied. With an analog trigger, D/A channel 1 is set to the specified trigger level.

Note: The Daq* includes hysteresis to prevent false triggers on the wrong slope of the waveform due to
noise. This hysteresis may cause the actual trigger level to differ from the program trigger level. For
example, with a rising slope specified, the actual trigger level will be higher than the program trigger
level depending on the frequency of the waveform on the trigger channel.

Setting the counter 0 mode flag true enables an onboard 100 kHz clock to be ANDed with the
counter 1 input (pin 21 of P1) to produce the input to counter 0. If nothing is connected to counter 1
input, the line will float high and clock counter 0 from the 100 kHz clock. If the flag is false,
counter 0 can only be clocked from the counter 0 input pin. Counter 0 can be used as an alternative
trigger source by connecting the counter 0 output (pin 2 of P1) to trig0 (pin 25 of P1) and choosing an
external TTL trigger. Counter 0 can also be used for general counter applications.

The pacer mode flag enables/disables operation of the pacer clock. If this flag is non-zero, the pacer
clock will be gated with trig0 (pin 25 of P1). If it is zero, the pacer clock will be enabled.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-19

daqAdcSetTrigPreT
DLL Function daqAdcSetTrigPreT(uchar trigger, uint channel, uint level, uint precount, uint

postcount);
C daqAdcSetTrigPreT(uchar trigger, uint channel, uint level, uint precount, uint

postcount)
QuickBASIC QBdaqAdcSetTrigPreT%(trigger%, channel%, level%, precount%, postcount%)

Turbo Pascal daqAdcSetTrigPreT(trigger:channel:level:precount:postcount):integer;

Parameters
uchar trigger The analog trigger source - DtsAnalogRisePos, DtsAnalogFallPos, DtsAnalogRisNeg, DtsAnalogFallNeg
uint channel The channel in the current scan group to trigger on
uint level The level for the specified channel at which to detect the trigger
uint precount The number of pre-trigger scans to collect before arming the trigger (1-32767)
uint postcount The number of post-trigger scans to collect after the occurrence of the trigger (1-32767)
Returns DerrInvTrigSource - Invalid trigger

DerrInvLevel - Invalid level
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcSetFreq, daqAdcSetCtr, daqAdcRdNForePreT, daqAdcRdNForePreTWait,
daqAdcRdNBackPreT

Program References ADCPRET1.C, ADCPRET2.C, ADCPRET3.C
Used With

daqAdcSetTrigPreT sets the trigger for analog level triggering and initiates the collection of a pre-
trigger data acquisition. daqAdcSetTrigPreT will stop a current acquisition, empty data acquired,
arm the Daq* using the specified analog-level trigger source, and immediately begin the collection of
the specified amount of pre-trigger data.

This command can configure a data acquisition that includes both pre-trigger and post-trigger data.
• The pre-trigger amount indicates the number of pre-trigger scans to be collected before the

trigger is armed. The trigger event will only be recognized after the specified pre-trigger amount
has been satisfied and the trigger is armed. The specified pre-trigger amount represents the
minimum amount of pre-trigger data that will be collected.

• The post-trigger amount represents the number of scans taken after the detection of the trigger
event. This amount represents the exact number of scans taken subsequent to the detection of the
trigger event.

The pacer clock may be used to set up the sampling rate for the acquisition. The sampling rate can best
be set by using the daqAdcSetClk or daqAdcSetFreq commands.

The four analog trigger sources (rising or falling slope with a positive or negative level) can be used
with any one of the channels in the currently defined scan group. This channel parameter represents the
relative channel within the scan group (not necessarily the actual channel number).

The level parameter is the A/D count level (normalized to a 12-bit quantity) at which the trigger is to
occur. Since the internal DAC is not used to set the trigger level, there is no need to call
daqAdcCalcTrig to determine the appropriate level. The level is simply calculated by:

Level (if bipolar) = (VSET/VSPAN × 4096) + 2048

Level (if unipolar) = (VSET/VSPAN × 4096)

When setting up a pre-trigger acquisition, a specific command set must be used to retrieve the data.
This command set includes daqAdcRdNForePreT, daqAdcRdNForePreTWait and
daqAdcRdNBackPreT (refer to their description in this chapter).

Daq* Command Reference (Standard API) Chapter 5

5-20 Programmer’s Manual

daqAdcSoftTrig
DLL Function daqAdcSoftTrig(void);

C daqAdcSoftTrig(void)

QuickBASIC QBdaqAdcSoftTrig%

Turbo Pascal daqAdcSoftTrig():integer;

Parameters None
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcSetTrig

Program References ADC3 (All Languages)
Used With

daqAdcSoftTrig is used to send a software trigger command to the DaqBook/DaqBoard. This
software trigger can be used to initiate a scan or an acquisition from a program after configuring the
software trigger as the trigger source.

daqAdcStopBack
DLL Function daqAdcStopBack(void);

C daqAdcStopBack(void)

QuickBASIC QBdaqAdcStopBack%()

Turbo Pascal daqAdcStopBack():integer;

Parameters None
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcRdNBack, daqAdcGetBackStat

Program References ADC4 (All Languages)
Used With

daqAdcStopBack stops a background operation initiated by the daqAdcRdNBack function.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-21

daqAdcWtCntr0
DLL Function daqAdcWtCntr0(uint cntr0);

C daqAdcWtCntr0(uint cntr0)

QuickBASIC QBdaqAdcWtCntr0%(cntr0%)

Turbo Pascal daqAdcWtCntr0(cntr0:word) :integer;

Parameters
uint cntr0 The value to write to the count down register of Counter 0

Valid values: 0 -65535
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcConfCntr0, daqAdcRdCntr0

Program References ADC5 (All Languages)
Used With

daqAdcWtCntr0 loads the count-down register of Counter 0. See daqAdcConfCntr0 for various
applications of counter 0.

Note: Using counter 0 requires the JP2 jumpers to be in the -OCTOUT and -OCLKIN positions.

daqBrdAdcSetTimeBase
DLL Function daqBrdAdcSetTimeBase(uchar frequency);

C daqBrdAdcSetTimeBase(unsigned char frequency);

QuickBASIC QBdaqBrdAdcSetTimeBase%(frequency%)

Turbo Pascal daqBrdAdcSetTimeBase(frequency:byte):integer;

Parameters
uchar One of four predefined constants (see below).
Frequencies:
Description Value Notes
TB10MHz 00h Used by DaqBoards only
TB5MHz 01h Used by DaqBoard and Daq PCMCIA
TB1MHz 02h Used by DaqBoard and Daq PCMCIA
TB100kHz 03h Used by DaqBoard and Daq PCMCIA
TBExternal 04h Used by Daq PCMCIA only
Returns DerrInvClock - An invalid frequency was specified

DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqBrdDacSetTimeBase

Program References None
Used With

daqBrdAdcSetTimeBase is used to set the main timebase for the ADC pacer clock. The timebase
can be set to 10 MHz, 5 MHz, 1 MHz, or 100 kHz. A 1-MHz clock is set as the default value when the
hardware is initialized. The main timebase is then divided by Counter 1 & Counter 2 of the 8254 to
determine the pacer clock frequency that will drive the ADC scan rate.

Daq* Command Reference (Standard API) Chapter 5

5-22 Programmer’s Manual

daqBrdDacClockSrc
DLL Function daqBrdDacClockSrc(uchar source);

C daqBrdDacClockSrc(source:byte):integer;

QuickBASIC QBdaqBrdDacClockSrc%(source%)

Turbo Pascal daqBrdDacClockSrc(source:byte):integer;

Parameters
uchar source One of five predefined constants. See table below for listing.
Clock Sources:
Source Value Description
DacPcrExt 00hD AC FIFO driven by user supplied external clock
DacPcrTB9513 01hD AC FIFO driven by 9513 Counter 1
DacPcrTBInt 02hD AC FIFO driven by DAC clock which is set by software to 10 MHz, 5 MHz, 1 MHz or 100 kHz
DacPcrGated 03h The internal DAC time base (10, 5, 1, 0.1 MHz set by daqBrdDacTimeBase) is gated by the

external TTL trigger found on pin 25 of P1.
DacPcrAdcPcr 04h DAC FIFO driven by ADC pacer clock
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqBrdDacCtrl, daqBrdDacResetFIFO, daqBrdDacSetTimeBase, daqBrdDacWriteFIFO

Program References DAC3 (All Languages)
Used With

daqBrdDacClockSrc is used to select the source for the DAC FIFO pacer clock. There are 4
sources for the pacer clock:

• the internal DAC time base (set to 1 of 4 frequencies by daqBrdDacSetimeBase)
• a time base driven by Counter 1 of the 9513
• an external time base that is supplied by P1 pin 21
• the ADC pacer time base.

The first 3 of these potential clock sources pass through and are divided by Counter 0 of the 8254
before they reach the DAC FIFO.

The DAC FIFO pacer clock’s frequency is the rate that a sample will be sent from the FIFO to the
DACs. If the DACFIFOChan0 or DACFIFOSimul modes are selected, samples will be sent to DAC
0 or both DACs at this rate.

If the mode is set to DACFIFOInterleave, samples will leave the FIFO at this rate. Since samples
are sent alternately to DAC 0 and DAC 1, each DAC’s value will be updated at half this rate.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-23

daqBrdDacCtrl
DLL Function daqBrdDacCtrl(uchar mode, uchar retransmit);

C daqBrdDacCtrl(mode:byte; retransmit:byte):integer;

QuickBASIC QBdaqBrdDacCtrl%(mode%, retransmit%)

Turbo Pascal daqBrdDacCtrl(mode:byte; retransmit:byte):integer;

Parameters
uchar mode One of four predefined constants (see below)
uchar retransmit A flag that if non-zero will enable the FIFO to be output continuously to the DAC channels.
Modes:
Mode Value Description
DacFIFOBypass 00h DaqBook compatible mode. DAC value updated by daqDacWt command. To stop the

waveforms, use this mode.
DacFIFOChan0 01h FIFO data goes to chan0, chan1 set in FIFO bypass mode.
DacFIFOInterleav
e

02h Chan 0 and chan1’s samples are interleaved in the FIFO.

DacFIFOSimul 03h FIFO data goes to chan0 and chan1 simultaneously.
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqBrdDacClockSrc, daqBrdDacResetFIFO, daqBrdDacSetTimeBase, daqBrdDacWriteFIFO

Program References DAC3 (All Languages)
Used With

daqBrdDacCtrl is used to set the mode of the DAC FIFO. The first parameter determines which
DAC channels the samples in the FIFO are sent to. The second parameter determines whether the
FIFO is transmitted continuously or only once.

Daq* Command Reference (Standard API) Chapter 5

5-24 Programmer’s Manual

daqBrdDacPredefWave
DLL Function daqBrdDacPredefWave(uchar dac, uint samples, uchar waveType, uint amplitude,

uint offset, uint dutyCycle, uint phaseShift);
C daqBrdDacPredefWave(dac:byte; samples:word; waveType:byte amplitude:word;

offset:word; dutyCycle:word; phaseShift:word):integer;
QuickBASIC QBdaqBrdDacPredefWave%(DAC%,samples%, waveType%, amplitude%, offset%,

dutyCycle%, phaseShift%)
Turbo Pascal daqBrdDacPredefWave(DAC:byte; samples:word; waveType:byte amplitude:word;

offset:word; dutyCycle:word; phaseShift:word):integer;
Parameters
uchar dac The DAC channel to assign the waveform to.
uint samples The number of samples in one cycle of the waveform. (QuickBASIC Note: Waveforms constructed with

this command are limited to 256 samples per waveform.)
uchar waveType One of the three predefined waveforms from table below.
uint amplitude The peak to peak amplitude of the waveform in D/A counts. 0 -4095
uint offset The voltage level that the waveform will be centered around in D/A counts. 0 -4095
uint dutyCycle The duty cycle of the waveform as a percentage.
uint phaseShift The number of degrees that the waveform is shifted from the waveform of the other DAC channel.
Predefined Waveforms:
Description Value
PdwSine 00h
PdwSquare 01h
PdwTriangle 02h
Returns DerrInvDacChan - The DAC channel number doesn’t exist

DerrInvDacParam - Parameters were out of range
DerrInvPredefWave - Predefined waveform is not supported
DerrMemAlloc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

 See Also daqBrdDacSetMode, daqBrdDacStart, daqBrdDacStop, daqBrdDacUserWave

Program References DAC2 (All Languages)
Used With

daqBrdDacPredefWave builds a waveform to the user’s specifications and assigns it to one of the
DAC channels. Waveforms assigned with this command are started with the daqBrdDacStart
command and stopped with the daqBrdDacStop command. daqBrdSetMode is used to set the
update rate and cycling mode for this waveform.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-25

daqBrdDacResetFIFO
DLL Function daqBrdDacResetFIFO(void);

C daqBrdDacResetFIFO():integer;

QuickBASIC QBdaqBrdDacResetFIFO%()

Turbo Pascal daqBrdDacResetFIFO():integer;

Parameters None
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqBrdDacClockSrc, daqBrdDacCtrl, daqBrdDacSetTimeBase, daqBrdDacWriteFIFO

Program References DAC3 (All Languages)
Used With

daqBrdDacResetFIFO resets the DAC FIFO and its pointers.

daqBrdDacSetMode
DLL Function daqBrdDacSetMode(ulong period, uchar mode, uchar cycle);

C daqBrdDacSetMode(period:longintmode:byte; cycle:byte):integer;

QuickBASIC QBdaqBrdDacSetMode%(period!, mode%, cycle%)

Turbo Pascal daqBrdDacSetMode(period:longintmode:byte; cycle:byte):integer;

Parameters
ulong period The rate that sample data will be sent to the DACs specified in microseconds. Note: This rate is per

sample per DAC channel regardless of what mode the FIFO is set to.
uchar mode One of four modes for the DAC FIFO from the table below.
uchar cycle A flag that if non-zero will enable the waveforms to be output continuously to the DAC channels.
Modes:
Mode Value Description
DacFIFOBypass 00h DaqBook compatible mode. DAC value updated by daqDacWt command.
DacFIFOChan0 01h FIFO goes to chan0, chan1 set in FIFO bypass mode.
DacFIFOBoth 02h Sends waveforms defined by daqBrdUserWave and daqBrdDacPredfedWave to the DACs.
DacFIFOSimul 03h FIFO goes to chan0 and chan1 simultaneously from waveform defined in Dac0 by

daqBrdDacUserWave or daqBrdDacPredefWave
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqBrdDacPredefWave, daqBrdDacStart, daqBrdDacStop, daqBrdDacUserWave

Program References DAC2 (All Languages)
Used With

daqBrdDacSetMode sets the mode of the DAC FIFO (which DAC channels the FIFO samples will be
sent to), the cycling mode of the FIFO, and the update rate per sample. This command works in
conjunction with the daqBrdDacStart, daqBrdDacStop, daqBrdDacPredefWave and
daqBrdDacUserWave commands. Note: It does not configure the hardware registers until
daqBrdDacStart is called.

Daq* Command Reference (Standard API) Chapter 5

5-26 Programmer’s Manual

daqBrdDacSetTimeBase
DLL Function daqBrdDacSetTimeBase(uchar frequency);

C daqBrdDacSetTimeBase(frequency:byte):integer;

QuickBASIC QBdaqBrdDacSetTimeBase%(frequency%)

Turbo Pascal daqBrdDacSetTimeBase(frequency:byte):integer;

Parameters
uchar frequency One of four predefined constants (see below)
Frequencies:
Description Value
TB10MHz 00h
TB5MHz 01h
TB1MHz 02h
TB100kHz 03h
Returns DerrInvClock - An invalid frequency was specified

DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqBrdDacClockSrc, daqBrdDacCtrl, daqBrdDacResetFIFO, daqBrdDacWriteFIFO

Program References DAC3 (All Languages)
Used With

daqBrdDacSetTimeBase is used to set the main timebase for the DAC FIFO pacer clock. This
clock can be set to 10 MHz, 5 MHz, 1 MHz, or 100 kHz. The default value is 1 MHz and is set when
the hardware and the driver are initialized. This timebase is then divided by Counter 0 of the 8254
chip. This frequency will be the rate at which the DACs will be updated with samples from the FIFO
(if the clock source is set to DacPcrTBInt). Note: This timebase may be changed by
daqBrdDacSetMode.

daqBrdDacStart
DLL Function daqBrdDacStart(void);

C daqBrdDacStart():integer;

QuickBASIC QBdaqBrdDacStart%()

Turbo Pascal daqBrdDacStart():integer;

Parameters None
Returns DerrInvDacWave - Inappropriate dac mode is set

DerrInvBackDac - Waveforms would not fit in FIFO or their sample sizes were not equal
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqBrdDacPredefWave, daqBrdDacSetMode, daqBrdDacStop, daqBrdDacUserWave

Program References DAC2 (All Languages)
Used With

daqBrdDacStart starts the waveforms specified by daqBrdDacPredefWave,
daqBrdDacSetMode, and daqBrdDacUserWave. The total size in samples of all the waveforms
started with this command must be smaller or equal to the size of the DAC FIFO (4096 samples). If
two waveforms are configured, the number of samples in each waveform must be equal.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-27

daqBrdDacStop
DLL Function daqBrdDacStop(void);

C daqBrdDacStop():integer;

QuickBASIC QBdaqBrdDacStop%()

Turbo Pascal daqBrdDacStop():integer;

Parameters None
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqBrdDacPredefWave, daqBrdDacSetMode, daqBrdDacStart, daqBrdDacUserWave

Program References DAC2 (All Languages)
Used With

daqBrdDacStop stops the waveforms specified by daqBrdDacPredefWave,
daqBrdDacSetMode, and daqBrdDacUserWave that were started with daqBrdDacStart.
Note: Use the DAC FIFO bypass mode to stop the waveforms.

daqBrdDacUserWave
DLL Function daqBrdDacUserWave(uchar dac, uint *buf, uint samples);

C daqBrdDacUserWave(dac:byte; buf:WordP; samples:word):integer;

QuickBASIC QBdaqBrdDacUserWave%(DAC%, buf%(), samples%)

Turbo Pascal daqBrdDacUserWave(DAC:byte; buf:WordP; samples:word):integer;

Parameters
uchar dac The dac channel to assign the waveform to.
uint *buf A pointer to the beginning of an array that contains the samples that will be assigned to the DAC channel.
uint samples The number of samples contained in the array. (QuickBASIC Note: Waveforms constructed with this

command are limited to 256 samples per waveform.)
Returns DerrInvDacChan - The DAC channel number doesn’t exist

DerrInvBuf - A waveform buffer was not specified
DerrMemAlloc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqBrdDacPredefWave, daqBrdDacSetMode, daqBrdDacStart, daqBrdDacStop

Program References DAC2 (All Languages)
Used With

daqBrdDacUserWave assigns a user-defined waveform to one of the DAC channels. Any arbitrary
waveform can be built in an array. daqBrdDacUserWave can then be called by specifying a pointer
to the beginning of the waveform, the size of the array, and the target DAC channel to send the
waveform. The waveform will start when daqBrdDacStart is called, as long as all parameters have
been set properly. Note: the waveform is not loaded into its FIFO until daqBrdDacStart is called.

Daq* Command Reference (Standard API) Chapter 5

5-28 Programmer’s Manual

daqBrdDacWriteFIFO
DLL Function daqBrdDacWriteFIFO(uint samples,uint far *storage);

C daqBrdDacWriteFIFO(samples:word; storage:WordP):integer;

QuickBASIC QBdaqBrdDacWriteFIFO%(samples, storage%()))

Turbo Pascal daqBrdDacWriteFIFO(samples:word; storage:WordP):integer;

Parameters
uint samples The number of samples to be loaded into the FIFO
uint far
*storage

A pointer to the beginning of an array that contains the samples that will be load into the DAC FIFO

Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqBrdDacClockSrc, daqBrdDacCtrl, daqBrdDacResetFIFO, daqBrdDacSetTimeBase

Program References DAC3 (All Languages)
Used With

daqBrdDacWriteFIFO loads sample data directly into the DAC FIFO.

daqBrdSetDmaMode
DLL Function daqBrdSetDmaMode(int mode);

C daqBrdSetDmaMode(int mode);

QuickBASIC QBdaqBrdSetDmaMode%(mode%)

Turbo Pascal daqBrdSetDmaMode(mode:integer):integer;

Parameters
int One of two predefined constants (see below)
Modes:
Mode Value Description
DmaNone 00h Do not use DMA
DmaRead 02h Use DMA to transfer scan data from the ADC FIFO to memory
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcRdNBack, daqInit

Program References ADC6
Used With

daqBrdSetDmaMode is used to set the direction for DMA transfers. Of the two possible modes,
DmaNone will disable any DMA transfers and DmaRead will enable scan data to be transferred from
the ADC FIFO to memory via a DMA channel. For this transfer to take place, the DMA channel
number (5, 6, or 7) must be specified when daqInit is called and daqAdcRdNBack must be called
with the updateSingle parameter set to DusDma (02h).

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-29

daqCalConvert
DLL Function daqCalConvert(uint *counts, uint scans);

C daqCalConvert(uint *counts, uintscans)

QuickBASIC QBdaqCalConvert%(counts%, scans%)

Turbo Pascal daqCalConvert(counts:scans):integer;

Parameters
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqReadCalFile, daqCalSetup, daqCalSetupConvert
Program References None
Used With

daqCalConvert function performs the actual calibration of one or more scans according to the
previously called daqCalSetup function. This function will modify the array of data passed to it.

daqCalSetup
DLL Function daqCalSetup(uint nscan, uint readingsPos, uint nReadings, uint chanType, uint

chanGain, uint startChan, uint bipolar, uint noOffset);
C daqCalSetup(uintnscan, uint readingsPos, uint nReadings, uintchanType,

uintchanGain, uint startChan, uintbipolar, uintnoOffset)
QuickBASIC QBdaqCalSetup%(scan%, readingsPos%, nReadings%, chanType%, chanGain%,

startChan, bipolar%, noOffset%)
Turbo Pascal daqCalSetup(nscan:readingsPos:nReadings:chanType:chanGain:startChan:bipolar:n

oOffset):integer;
Parameters
uint nscan The number of readings in a single scan.
uchar readingsPos The position of the readings to be calibrated within the scan.
uchar nReadings The number of readings to calibrate.
uint chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1

when calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.
uint chanGain The gain setting of the channels to be calibrated.
uint startChan The channel number of the first channel to be converted.
uint bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqReadCalFile, daqCalConvert, daqCalSetupConvert

Program References None
Used With

daqCalSetup will configure the order and type of data to be calibrated. This function requires all data
to be calibrated to be from consecutive channels configured for the same gain, polarity, and channel
type. The calibration can be configured to only use the gain calibration constant and not the offset
constant. This allows the offset to be removed at runtime using the zero compensation functions.

Daq* Command Reference (Standard API) Chapter 5

5-30 Programmer’s Manual

daqCalSetupConvert
DLL Function daqCalSetupConvert(uint nscan, uint readingsPos, uint nReadings, uint

chanType, uint chanGain, uint startChan, uint bipolar, uint noOffset, uint
*counts, uint scans);

C daqCalSetupConvert(uintnscan, uint readingsPos, uint nReadings, uintchanType,
uintchanGain, uint startChan, uintbipolar, uintnoOffset, uint *counts, uint
scans)

QuickBASIC QBdaqCalSetupConvert%(scan%, readingsPos%, nReadings%, chanType%, chanGain%,
startChan, bipolar%, noOffset%, counts%, scans%)

Turbo Pascal daqCalSetupConvert(nscan:readingsPos:nReadings:chanType:chanGain:startChan:bi
polar:noOffset:counts:scans):integer;

Parameters
uint nscan The number of readings in a single scan.
uchar readingsPos The position of the readings to be calibrated within the scan.
uchar nReadings The number of readings to calibrate.
uint chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1

when calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.
uint chanGain The gain setting of the channels to be calibrated.
uint startChan The channel number of the first channel to be converted.
uint bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqReadCalFile, daqCalSetup, daqCalConvert

Program References None
Used With

For convenience, both the setup and convert steps can be performed with one call to
daqCalSetupConvert. This is useful when the calibration needs to be performed multiple times
because data was read from non-consecutive channels or at different gains.

daqClose
DLL Function daqClose(void)

C daqClose(void)

QuickBASIC QBdaqClose%(void%)

Turbo Pascal daqClose():integer;

Parameters None
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqInit

Program References INIT, ADC1, ADC2, ADC3, ADC4, ADC5,CTR1, CTR2, DAC1, DAC2, DIG1 (All Languages)
Used With

daqClose is used to end communications with the DaqBook/DaqBoard. If daqClose is called,
daqInit must be called before calling any other function.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-31

daqCtrGetBackStat
DLL Function daqCtrGetBackStat(uchar *active, ulong *count);

C daqCtrGetBackStat(int *active, uint *count)

QuickBASIC QBdaqCtrGetBackStat%(active%, count%)

Turbo Pascal daqCtrGetBackStat (active:ByteP; count:LongP) :integer;

Parameters
uchar *active A flag which will be returned non-zero if a background transfer is in progress, or 0 if not
ulong *count The number of scans acquired by the last or current background transfer
Returns DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrRdNBack, daqCtrStopBack

Program References CTR2 (All Languages)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrGetBackStat reads the status of the last or current background operation initiated by the
daqCtrRdNBack function.

daqCtrGetHold
DLL Function daqCtrGetHold(uchar ctrNum, uint *ctrVal);

C daqCtrGetHold(uchar ctrNum, uint *ctrVal)

QuickBASIC QBdaqCtrGetHold%(ctrNum%, ctrVal%)

Turbo Pascal daqCtrGetHold(ctrNum:byte; ctrVal:DataP):integer;

Parameters
uchar ctrNum The counter number

Valid values: 1 - 5
uint *ctrVal The value read from the hold register of the selected counter is placed in this variable

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetCtrMode

Program References (None)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrGetHold reads the hold register of the specified counter. This register is used in event-
counting applications to store accumulated counter values. The hold register can be read while the
count process is running without interrupting the process.

Daq* Command Reference (Standard API) Chapter 5

5-32 Programmer’s Manual

daqCtrMultCtrl
DLL Function daqCtrMultCtrl(uchar ctrCommand, uchar ctr1, uchar ctr2, uchar ctr3, uchar

ctr4, uchar ctr5);
C daqCtrMultCtrl(int ctrCommand, int ctrl1, int ctr2, int ctr3, int ctr4, int

ctr5)
QuickBASIC QBdaqCtrMultCtrl%(ctrCommand%, ctr1 %, ctr2 %, ctr3%, ctr4%, ctr5%)

Turbo Pascal daqCtrMultCtrl(ctrCmd:byte; ctr1:byte; ctr2:byte; ctr3:byte; ctr4:byte;
ctr5:byte):integer;

Parameters
uchar ctrCommand The counter command (see below)
uchar ctr1 A flag that if non-zero enables the counter command to be executed on counter 1, or if 0 do nothing to

counter 1
uchar ctr2 A flag that if non-zero enables the counter command to be executed on counter 2, or if 0 do nothing to

counter 2
uchar ctr3 A flag that if non-zero enables the counter command to be executed on counter 3, or if 0 do nothing to

counter 3
uchar ctr4 A flag that if non-zero enables the counter command to be executed on counter 4, or if 0 do nothing to

counter 4
uchar ctr5 A flag that if non-zero enables the counter command to be executed on counter 5, or if 0 do nothing to

counter 5
Multiple Counter Commands:
Description Value
DmccArm 20h
DmccLoad 40h
DmccLoadArm 60h
DmccDisarmSave 80h
DmccSave A0h
DmccDisarm C0h
Returns DerrInvCtrCmd - Invalid counter command

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetCtrMode, daqCtrSetMasterMode
Program References CTR1, CTR2 (All Languages)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrMultCtrl performs a command including loading, latching, saving, enabling, and disabling
on multiple counters simultaneously.

• DmccLoad - The initial counter value can be transferred from the load or hold register with the
load command.

• DmccArm - The arm command will enable the counter to begin counting.
• DmccDisarm - The disarm command will disable the counter.
• DmccSave - The save command will transfer the current counter value to the hold register

where it can be read without disturbing the counters.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-33

daqCtrRdFreq
DLL Function daqCtrRdFreq(uint interval, uchar cntSource, uint *count);

C daqCtrRdFreq(int interval, int source, int count)

QuickBASIC QBdaqCtrRdFreq%(interval%, source%, count%)

Turbo Pascal daqCtrRdFreq(interval:word; cntSource:byte; count:DataP) :integer;

Parameters
uint interval The gate interval in milliseconds

Valid values: 1 -32767
uchar cntSource The count source (see below)
uint *count A variable to hold the number of counts accumulated in the gating interval

Valid values: 0 - 65535
Count Source Definitions:
Description Value Description
DcsSrc1 01h Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrc5 05h Counter 5 input (pin 13 of P3)
DcsGate1 06h Counter 1 gate (pin 37 of P3)
DcsGate2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
Returns DerrInvInterval - Invalid interval

DerrInvCntSource - Invalid source
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also
Program References None
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrRdFreq is used to read the frequency of one of 9 external inputs. The 9 available inputs
include the 5 counter inputs (P3 pins 36, 19, 17, 15, or 13) and the gates of counters 1 to 4 (P3 pins 37,
18, 16, and 14). This function counts the number of pulses on the specified input within a specified
time interval, thereby providing the frequency of the signal. This frequency can be obtained by
dividing the number of pulses by the interval (freq in kHz = count/interval).

Note: The counter 4 output (P3 pin 32) must be externally connected to the counter 5 gate (P3 pin 12).
This function will reconfigure counters 4 and 5.

Daq* Command Reference (Standard API) Chapter 5

5-34 Programmer’s Manual

daqCtrRdNBack
DLL Function daqCtrRdNBack(uint *ctr1Buf, uint *ctr2Buf, uint *ctr3Buf, uint *ctr4Buf, uint

*ctr5Buf, uint count, uchar cycle);
C daqCtrRdNBack(int *ctr1Buf, int *ctr2Buf, int *ctr3Buf, int *ctr4Buf, int

*ctr5Buf, int count, int cycle)
QuickBASIC QBdaqCtrRdNBack%(ctr1Buf%(), ctr2Buf%(), ctr3Buf%(), ctr4Buf%(), ctr5Buf%(),

count%, startIP0%, cycle%)
Turbo Pascal daqCtrRdNBack(ctr1Buf:DataP; ctr2Buf:DataP; ctr3Buf:DataP; ctr4Buf:DataP;

ctr5Buf:DataP;count:word; cycle:byte):integer;
Parameters
uint *ctr1Buf An array to hold count values from counter 1 or 0 if counter 1 is not to be read

Valid values: 0 - 65535
uint* ctr2Buf An array to hold count values from counter 2 or 0 if counter 2 is not to be read

Valid values: 0 - 65535
uint*ctr3Buf An array to hold count values from counter 3 or 0 if counter 3 is not to be read

Valid values: 0 - 65535
uint *ctr4Buf An array to hold count values from counter 4 or 0 if counter 4 is not to be read

Valid values: 0 - 65535
uint *ctr5Buf An array to hold count values from counter 5 or 0 if counter 5 is not to be read

Valid values: 0 - 65535
uint count The number of scans to be taken

Valid values: 1 - 32767
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it
Returns DerrMultBackXfer - Background task already started

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrStopBack, daqCtrGetBackStat

Program References None
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrRdNBack reads the values of the specified counters in the background using interrupts. An
interrupt will occur on the rising edge of the interrupt input (P3 pin 1) if the interrupt enable line (P3
pin 2) is pulled low. When an interrupt occurs, the save command (see daqCtrMultCtrl) will be
sent to the selected counters and the hold register of the selected counters will be read (see
daqCtrGetHold) and placed into the user’s buffer. This function will return control back to the
user’s program after initiating the background process. The user can then monitor the status of the
background transfer with the daqCtrGetBackStat function or stop the transfer with the
daqCtrBackStop function. The user can perform other tasks in the foreground.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning of
the user’s buffers after count readings have been read. This allows the user to read large amounts of
data without calling daqCtrRdNBack multiple times. This background transfer can run indefinitely
as long as the user monitors the status of the counter buffers and processes the data before it gets
overwritten. In this mode, the user should get the total number of readings written into the buffer using
daqCtrGetBackStat and keep track of the total number of scans processed in a variable. The
difference between these two totals is the number of unprocessed valid readings the user can process.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-35

daqCtrRdNFore
DLL Function daqCtrRdNFore(uint *ctr1Buf, uint *ctr2Buf, uint *ctr3Buf, uint *ctr4Buf, uint

*ctr5Buf, uint count);
C daqCtrRdNFore(int *ctr1Buf, int *ctr2Buf, int *ctr3Buf, int *ctr4Buf, int

*ctr5Buf, int count)
QuickBASIC QBdaqCtrRdNFore%(ctr1Buf%(), ctr2Buf%(), ctr3Buf%(), ctr4Buf%(), ctr5Buf%(),

count%, startIP0%)
Turbo Pascal daqCtrRdNFore(ctr1Buf:DataP; ctr2Buf:DataP; ctr3Buf:DataP; ctr4Buf:DataP;

ctr5Buf:DataP; count:word):integer;
Parameters
uint ctr1Buf[] An array to hold count values from counter 1 or 0 if counter 1 is not to be read

Valid values: 0 - 65535
uint ctr2Buf An array to hold count values from counter 2 or 0 if counter 2 is not to be read

Valid values: 0 - 65535
uint ctr3Buf[] An array to hold count values from counter 3 or 0 if counter 3 is not to be read

Valid values: 0 - 65535
uint ctr4Buf[] An array to hold count values from counter 4 or 0 if counter 4 is not to be read

Valid values: 0 - 65535
uint ctr5Buf An array to hold count values from counter 5 or 0 if counter 5 is not to be read

Valid values: 0 - 65535
uint count The number of scans to be taken

Valid values: 0 - 32767
Returns DerrMultBackXfer - Background task already started

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also
Program References None
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrRdNFore operates identically to daqCtrRdNBack (using interrupts to acquire data) except
that it will not return control to the user’s program until all the counter readings are acquired.

daqCtrSetAlarm
DLL Function daqCtrSetAlarm(uchar alarmNum, uint alarmVal)

C daqCtrSetAlarm(uchar alarmNum, uint alarmVal)

QuickBASIC QBdaqCtrSetAlarm%(alarmNum%, alarmVal%)

Turbo Pascal daqCtrSetAlarm(alarmNum:byte; alarmVal:word):integer;

Parameters
uchar alarmNum The alarm register number

Valid values: 1 - 2
uint alarmVal The value to write to the selected alarm register

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter number

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetMasterMode

Program References None
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrSetAlarm sets the specified alarm register. This alarm register can be used with the
comparators described in daqCtrSetMasterMode. The alarm register is only used if the
corresponding comparator has been enabled using the daqCtrSetMasterMode function.

Daq* Command Reference (Standard API) Chapter 5

5-36 Programmer’s Manual

daqCtrSetCtrMode
DLL Function daqCtrSetCtrMode(uchar ctrNum, uchar gateCtrl, uchar cntEdge, uchar cntSource,

uchar specGate, uchar reload, uchar cntRepeat, uchar cntType, uchar cntDir,
uchar outputCtrl);

C daqCtrSetCtrMode(int CtrNum, int gateCtrl, int cntEdge, int cntSource, int
specGate, int reload, int cntRepeat, int cntType, int cntDir, int outputCtrl)

QuickBASIC QBdaqCtrSetCtrMode%(ctrNum%, gateCtrl%, cntEdge%, cntSource%, specGate%,
reload%, cntRepeat%, cntType%, cntDir%, outputCtrl%)

Turbo Pascal daqCtrSetCtrMode(ctrNum:byte; gateCtrl:byte; cntEdge:byte; cntSource:byte;
specGate: byte;reload:byte;cntRepeat:byte; cntType:byte; cntDir:byte;
outputCtrl:byte):integer;

Parameters
uchar ctrNum The counter number; Valid values: 1 - 5
uchar gateCtrl The gating control mode (see below)
uchar cntEdge A flag that if non-zero will select a positive count edge, or if 0 will select a negative count edge
uchar cntSource The count source (see below)
uchar specGate A flag that if non-zero will enable the special gate, or if 0 will disable it
unchar reload A flag that if non-zero will select reload from load or hold, or if 0 will select reload from load
uchar cntRepeat A flag that if non-zero will select count repetitively, or if 0 will select count once
uchar cntType A flag that if non-zero will select a BCD count, or if 0 will select a binary count
uchar cntDir A flag that if non-zero will select count up, or if 0 will select count down
uchar outputCtrl The output control mode (see below)
Gating Control Definitions:
Definition Value Description
DgcNoGating 00h Gating Disabled
DgcHighTCNM1 20h Active level high of TC-toggled output of previous (N-1) counter
DgcHighLevelGateNP1 40h Active level high of gate of next (N+1) counter
DgcHighLevelGateNM1 60h Active level high of gate of next (N-1) counter
DgcHighLevelGateN 80h Active level high of gate of selected (N) counter
DgcLowLevelGateN A0h Active level low of gate of selected (N) counter
DgcHighEdgeGateN C0h Active rising edge of gate of selected (N) counter
DgcLowEdgeGateN E0h Active falling edge of gate of selected (N) counter
Count Source Definitions:
DcsTCNM 00h TC toggled output of previous (N-1) counter
DcsSrc1 01h Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrc5 05h Counter 5 input (pin 13 of P3)
DcsGate1 06h Counter 1 gate (pin 37 of P3)
DcsGate2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
DcsGate5 0Ah Counter 5 gate (pin 12 of P3)
DcsF1 0Bh Onboard 1 MHz clock
DcsF2 0Ch Onboard 100 kHz clock
DcsF3 0Dh Onboard 10 kHz clock
DcsF4 0Eh Onboard 1 kHz clock
DcsF5 0Fh Onboard 100 Hz clock
Output Control Definitions:
DocInactiveLow 00h Inactive - Always low
DocHighTermCntPulse 01h High impulse on terminal count
DocTCToggled 02h Toggled on terminal count
DocInactiveHighImp 04h Inactive - High impedance
DocLowTermCntPulse 05h Low pulse on terminal count
Returns DerrInvCtrNum - Invalid channel

DerrInvGateCtrl - Invalid gate
DerrInvCntSource - Invalid source
DerrInvOutputCntrl - Invalid output
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetLoad, daqCtrSetHold, daqCtrGetHold, daqCtrMultCtrl

Program References CTR1 (C Only)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-37

daqCtrSetCtrMode is used to set the 9513’s mode register for a specified counter. Setting this
register defines how the specific counter works, including a wide variety of square wave and pulse
generation and event counting. This function is usually followed by the daqCtrSetLoad or the
daqCtrSetHold to set the initial counter values. Finally the daqCtrMultCtrl function is called
to load an arm multiple counters to start. The daqCtrMultCtrl can also be used when counting
events.

The gate control parameter (gateCtrl) controls how the counter will use its gate input (P3 pins 37,
18, 16, 14 and 12) or another counter’s gate input. If the gate is disabled using the DgcNoGating
definition, it will be ignored and the counter will run as long as it is armed. If a level gate control is
selected (using the DgcHighLevelGateNPI, DgcHighLevelGateNMI, or
DgcHighLevelGateN definitions), the counter will operate only while counter is armed and the
selected high or low level is applied to the gate. If an edge-sensitive gate control is selected using the
DgcHighEdgeGate or DgcHighEdgeGateN definitions, the counter will operate after a rising or
falling edge is detected on the gate input. Most gate control modes select the selected gate (N), but the
gate inputs of the previous (N-1) and next (N+1) counters can be used. For example, counter 3 could
use the gate input of counter 2 by selecting gate N-1 or counter 4 by selecting gate N+1. (Counter 1
and counter 5 are considered adjacent when selecting gate input N+1 or N-1.) The final gate control
mode allows the TC-toggled output (see the output control description) of the previous counter (N-1) to
be the gate. The selected counter will operate only when the previous counter’s TC-toggled output is
high.

Count Edge (cntEdge) selects whether the counter will count when it receives a rising or falling edge
on its count source (see the count source description).

Count Source (cntSource) selects the source used as input to the specified counter. The Count Edge
selects whether the rising or falling edge of this source is counted. Count Source can be any one of the
counter inputs, Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the counter gates, Gate1 to
Gate5 (P3 pins 37, 18, 17, 16 or 14), an internal frequency, F1 to F5, or the TC-toggled output (see
the output control description) of the previous counter (N-1). The internal frequencies are divide-by-10
divisions of the onboard oscillator which is by default 1 MHz, but can be jumpered to 10 MHz. The
sources F1 through F5 correspond to the frequencies 1 MHz, 100 kHz, 10 kHz, 1 kHz and 100 Hz. The
TC-toggled output of the previous counter can be used as a source allowing counters to be cascaded
without external connections.

Count Direction (cntDir) selects whether the counter will count up or down. The counter is normally
configured for down counting when generating a pulse or square wave. The load register would be set
to a positive value which will decrement to zero, defining the duration or width of the waveform. In
event counting, the counter would initially be set to zero and configured to count up. The hold register
in this case would then contain the number of events received.

Count Type (cntType) selects binary or BCD counting. Binary format accepts a 16-bit number
ranging from 0 - 65,535. BCD (binary coded decimal) accepts four 8-bit numbers representing 0-10,
back in 16-bits, ranging from 0-9999.

Output Control (outputCtrl) controls the state of the counter output (P3 pins 35, 34, 33, 32, 31).
There are 2 inactive and 3 active output modes. If the output is inactive, it can either be driven low or
it can be high impedance. The active modes are all associated with the terminal count (TC) which is
the moment in time when the counter reaches 0. This can happen by counting up past 65535 in binary
count mode or 9999 in BCD count mode, or counting down past 1. The output can be driven high
during the TC and low otherwise, low during the TC and high otherwise, or toggle the output every
time a TC occurs. The TC-toggled mode is used to generate variable duty-cycle square waves.

The Count Repeat (cntRepeat), Reload (reload) and Special Gate (specGate) parameters have
complex relationships that define the operation of the counter. The count repeat flag enables/disables
rearming the counter after TC occurs. Applications such as software-retriggerable 1-shots would
disable the repeat flag so the 1-shot occurs only after the counter arm command is sent. Other
applications such as rate generators, square waves and hardware-retriggerable 1-shots, would enable
the count repeat so the counter runs until disarmed.

Daq* Command Reference (Standard API) Chapter 5

5-38 Programmer’s Manual

The Reload flag programs the counter to use the count value in the load and/or hold registers for
counting. If the reload flag is disabled, the counter will use the contents of the load register only for
counting. Enabling the reload flag will allow the counter to use the contents of either or both registers
depending on the special gate flag. If the reload flag is enabled and the special gate is disabled, the
counter will alternate between registers. This allows a variable duty-cycle output waveform depending
on the relative values of the hold and load registers. If the reload flag is enabled and the special gate is
enabled, the operation will depend on the gate control parameter. In this situation, an active gate
control will allow hardware retriggering on the active-going edge, and an inactive gate control will
configure the counter to use the hold register for counting if the counters gate is high, or the load
register if the gate is low. Refer to the Am9513A/AM9513 Technical Manual for further reference.

The table summarizes the operating modes of the counter/timer.

Counter Mode Operating Summary
Counter Mode A B C D E F G H I J K L M N O P Q R S T U V W X

Special Gate (CM7) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Reload Source (CM6) 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
Repetition (CM5) 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
Gate Control (CM15-

CM-13); N=no gating;
L=level; E=edge

N L E N L E N L E N L E N L E N L E N L E N L E

Count to TC once, then
disarm

X X X X X

Count to TC twice, then
disarm

X X X X

Count to TC repeatedly
without disarming

X X X X X X X X X X

Gate input does not gate
counter input

X X X X X X

Count only during active
gate level

X X X X X X

Start count on active
gate edge and stop
count on next TC

X X X X X

Start count on active
gate edge and stop
count on second TC

X X

No hardware retriggering X X X X X X X X X X X X X X X
Reload counter from

Load Register on TC
X X X X X X X X X X X

Reload counter on each
TC, alternating reload
source between Load
and Hold Registers

X X X X X X

Transfer Load Register
into counter on each
TC that gate is LOW,
transfer Hold Register
into counter on each
TC that gate is HIGH

X X

On active gate edge
transfer counter into
Hold Register and
then reload counter
from Load Register

X X X X

On active gate edge
transfer counter into
Hold Register, but
counting continues

X

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-39

daqCtrSetHold
DLL Function daqCtrSetHold(uchar ctrNum, uint ctrVal);

C daqCtrSetHold(uchar ctrNum, uint ctrVal)

QuickBASIC QBdaqCtrSetHold%(ctrNum%, ctrVal%)

Turbo Pascal daqCtrSetHold(ctrNum:byte; ctrVal:word):integer;

Parameters
uchar ctrNum The counter number

Valid values: 1 - 5
uint ctrVal The value to write to the hold register of the selected counter

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetMasterMode, daqCtrSetCtrMode

Program References CTR1, CTR2, (All Languages)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrSetHold outputs a value to the hold register of the specified counter. The hold register can
be used to set the counter’s initial value using the daqCtrMultCtrl function. The
daqCtrSetMasterMode and daqCtrSetCtrMode functions describe various uses of the hold
register.

daqCtrSetLoad
DLL Function daqCtrSetLoad(uchar ctrNum, uint ctrVal);

C daqCtrSetLoad(int ctrNum, uint ctrVal)

QuickBASIC QBdaqCtrSetLoad%(ctrNum%, ctrVal%)

Turbo Pascal daqCtrSetLoad(ctrNum:byte; ctrVal:word):integer;

Parameters
uchar ctrNum The counter number

Valid values: 1 - 5
uint ctrVal The value to write to the load register of the selected counter

Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetMasterMode, daqCtrSetCtrMode

Program References CTR1, CTR2, (All Languages)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrSetLoad outputs a value to the load register of the specified counter. The load register can
be used to set the counter’s initial value using the daqCtrMultCtrl function. The
daqCtrSetMasterMode and daqCtrSetCtrMode functions describe various uses of the load
register.

Daq* Command Reference (Standard API) Chapter 5

5-40 Programmer’s Manual

daqCtrSetMasterMode
DLL Function daqCtrSetMasterMode(uchar foutDiv, uchar cntSource, uchar comp1, uchar comp2,

uchar tod);
C daqCtrSetMasterMode(int foutDiv, int foutSource, int comp1, int comp2, int tod)

QuickBASIC QBdaqCtrSetMasterMode%(foutDiv%, foutSource%, comp1 %, comp2%, tod%)

Turbo Pascal daqCtrSetMasterMode(foutDiv:byte; cntSource: byte; comp1:byte; comp2:byte;
tod:byte):integer;

Parameters
uchar foutDiv The fout divider. A divider of 0 selects divide by 16

Valid values: 1 -16
uchar cntSource The fout source (see below)
uchar comp1 A flag that if non-zero will enable the compare 1 operation, or if 0 will disable it
uchar comp2 A flag that if non-zero will enable the compare 2 operation, or if 0 will disable it
uchar tod The time of day mode (see below)
Count Source Definitions:
Description Value Description
DcsFOut Disabled 00h Fout set low
DcsSrc1 01h Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrc5 05h Counter 5 input (pin 13 of P3)
DcsGate1 06h Counter 1 gate (pin 37 of P3)
DcsGate2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
DcsGate5 0Ah Counter 5 gate (pin 12 of P3)
DcsF1 0Bh Onboard 1 MHz clock
DcsF2 0Ch Onboard 100 kHz clock
DcsF3 0Dh Onboard 10 kHz clock
DcsF4 0Eh Onboard 1 kHz clock
DcsF5 0Fh Onboard 100 Hz clock
Time-Of-Day Definitions:
Description Value
DtodDisabled 00h
DtodDivideBy5 01h
DtodDivideBy6 02h
DtodDivideBy10 03h
Returns DerrInvCntSource - Invalid source

DerrInvTod - Invalid time of day mode
DerrInvDir - Invalid divisor
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCntSetLoad, daqCntMultCtr, daqCntGetHold, daqCntSetCntMode

Program References CTR1 (C Only)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrSetMasterMode is used to set the counter’s master mode register. This register is used to
configure the fout pin (P3 pin 30), the comparators of counter 1 and 2 and the time-of-day operation of
the 9513 chip. The master mode parameters default to zero after daqInit.

The fout source selects what signal will be output on the fout pin. The fout source can be any one of
the counter inputs, Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the counter gates, Gate1
to Gate5 (P3 pins 37, 18, 17, 16 or 14) or an internal frequency, F1 to F5, which are internal 1 MHz,
100 kHz, 10 kHz, 1 kHz and 100 Hz frequencies. The fout divider will divide the selected source by 1
to 16 before outputting the signal on fout.

The 2 comparator flags control the comparators associated with counter 1 and 2. If a comparator is
enabled, the value in the corresponding alarm register, set with the daqCtrSetAlarm function, will
be compared with the value in the counter. The output of the corresponding counter will go true
when the value in the counter reaches the value in the alarm register and remain true until the counter
value changes. The polarity of the output depends on the output control, set with the
daqCtrSetCtrMode function, configuration of counter 1 or 2. When the output control is high,

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-41

terminal count pulsed or terminal count toggled, then the output will be high while the comparator is
true. When the output control is low and terminal count pulsed, then the output will be low while the
comparator is true.

The time-of-day parameter is used to enable or disable the time-of-day operation. The time-of-day
operation is a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour
time-of-day accumulations. The resolution of the time-of-day operation is 0.1 seconds. A 100 Hz, 60
Hz or 50 Hz signal must be applied to the input of counter 1 (P3 pin 36), while in the divide-by-10,
divide-by-6 and divide-by-5 time-of-day modes respectively. This will produce the 10 Hz clock source
needed to drive the time-of-day clock. The hold registers of counters 1 and 2 will hold the 24-hour
time.

The following steps must be performed to use the time-of-day operation:
1. Set the master mode register as described above.
2. For general-purpose time keeping, configure counter 1 using daqCtrSetCtrMode with the no

gating, count on rising edge, special gating disabled, reload from hold only, count repetitively,
BCD counting and count up. The count source can be any of the available sources. The output
control does not affect time-of-day operation.

3. Set the mode of counter 2 with the same settings as counter 1, except the count source should be
TC toggled of the previous (N-1) counter. This allows internal concatenation of counter 1 to
counter 2.

4. Set the load registers of counter 1 and 2 to zero using the daqCtrSetLoad function.
5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2 using

the format shown in the figure above, again using daqCtrSetLoad.
6. Repeat step 4.

Time-of-Day Configuration

Daq* Command Reference (Standard API) Chapter 5

5-42 Programmer’s Manual

daqCtrStopBack
DLL Function daqCtrStopBack(void);

C daqCtrStopBack(void)

QuickBASIC QBdaqCtrStopBack%()

Turbo Pascal daqCtrStopBack:integer;

Parameters None
Returns DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrRdNBack, daqCtrGetBackStat

Program References None
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqCtrStopBack stops a background operation initiated by the daqCtrRdNBack function.

daqDacWt
DLL Function daqDacWt(uchar chan, uint dataVal);

C daqDacWt(int chan, int dataVal)

QuickBASIC QBdaqDacWt%(chan%, dataVal%)

Turbo Pascal daqDacWt(chan:byte; dataVal: word):integer;

Parameters
uchar chan The D/A channel to output to

Valid values: 0 - 1
uint dataVal The value to output to the selected D/A channel

Valid values: 0 -4095
Returns DerrInvChan - Invalid channel

DerrInvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDacWtBoth, daqAdcSetTrig

Program References DAC1 (All Languages)
Used With Does not apply to DaqPCMCIA models.

daqDacWt outputs a voltage between 0 and 5 V to the specified 12-bit D/A channel. The voltage has
a resolution of approximately 1.22 mV (5 V/4095).

Note: daqAdcSetTrig will configure the D/A channel 1 if an analog trigger is source selected for
the A/D converter.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-43

daqDacWtBoth
DLL Function daqDacWtBoth(uint chan0Val, uint chan1Val);

C daqDacWtBoth(uint chan0Val, uint chan1Val);

QuickBASIC QBdaqDacWtBoth%(chan1Val%, chan2Val%) [note: actually DAC channels 0 and 1]
Turbo Pascal daqDacWtBoth(chan0Val:word; chan1Val:word):integer;

Parameters
uint chan0Val The value to output to the D/A channel 0

Valid values: 0 -4095
uint chan1Val The value to output to the D/A channel 1

Valid values: 0 -4095
Returns DerrInvDacVal - Invalid data value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqDacWt, daqAdcSetTrig

Program References DAC1 (All Languages)
Used With Does not apply to DaqPCMCIA models.

daqDacWtBoth outputs voltages between 0 and 5 V to both 12-bit D/A channels. Each voltage has a
resolution of approximately 1.22 mV (5 V/4095).

Note: daqAdcSetTrig will configure the D/A channel 1 if an analog trigger source is selected for
the A/D converter.

daqDacWtMany
DLL Function daqDacWtMany(unsigned int startChan, unsigned int _far *dataVals, unsigned char

count);
C daqDacWtMany(unsigned int startChan, unsigned int _far *dataVals, unsigned char

count);
Quick BASIC QBdaqDacWtMany%(startChan%, dataVals%(), count%)

Turbo Pascal daqDacWtMany(startChan:integer; dataVals:WordP; count:integer):integer;

Parameters
deviceTypes Specifies the DAC types
chans Specifies the DAC channels
dataVals The value to output to the D/A channel

Valid values: 0 -4095
count
Returns DerrInvDacVal - Invalid data value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqDacWt

Program References DACEX1.C, DAQEX.FRM (VB)
Used With DaqBoard100A, DaqBoard112A, DaqBoard200A, DaqBoard216A

daqDacWtMany outputs voltages between 0 and 5 V to all active 12-bit D/A channels. Each
voltage has a resolution of approximately 1.22 mV (5 V/4095).

Note: daqAdcSetTrig will configure the D/A channel 1 if an analog trigger source is selected
for the A/D converter.

Daq* Command Reference (Standard API) Chapter 5

5-44 Programmer’s Manual

daqDigConf
DLL Function daqDigConf(uchar chip, uchar config);

C daqDigConf(int port, int config)

QuickBASIC QBdaqDigConf%(port%, config%)

Turbo Pascal daqDigConf(chip:byte; config:byte):integer;

Parameters
uchar chip The chip to configure (see below)
uchar config The configuration byte to write to the control register of the specified chip

Valid values: 0 - 255
Digital I/O Chip Definitions:
Description Value Address Select Jumper Location
DdcLocal 13h Local 8255
DdcExp0 63h Address Select Location A
DdcExp1 67h Address Select Location A
DdcExp2 6Bh Address Select Location B
DdcExp3 6Fh Address Select Location B
DdcExp4 73h Address Select Location C
DdcExp5 77h Address Select Location C
DdcExp6 7Bh Address Select Location D
DdcExp7 7Fh Address Select Location D
Returns DerrInvChip - Invalid chip

DerrNotCapable -No 8255 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDigWtByte, daqDigRdByte, daqDigWtBit, daqDigRdBit

Program References DIG1 (All Languages)
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqDigConf configures the operation of the 3 8-bit ports of the selected 8255 digital I/O chip. This
chip can be local or on a DBK20/21 digital I/O expansion card. daqDigConf configures ports A and
B as inputs or outputs and port C for simple input/output or more complicated handshaking.
daqDigGetConf can be used to generate a configuration byte for the basic input/output mode. This
 byte can then be passed to the daqDigConf function. In the basic input/output mode, port A and
port B can be independently configured for input or output. Port C is divided into 2 4-bit nibbles that
can be independently configured for input or output.

Note: For information on the strobed input/output and bi-directional bus modes of the 8255, reference
the 8255 technical reference manual from Intel.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-45

daqDigGetConf
DLL Function daqDigGetConf(uchar portA, uchar portB, uchar portCHigh, uchar portCLow,

uchar *config)
C daqDigGetConf(uchar portA, uchar portB, uchar portCHigh, uchar portClow, uchar

*config)
QuickBASIC QBdaqDigGetConf%(portA%, portB% , portCHigh%, portClow%, config%)

Turbo Pascal daqDigGetConf(portA:byte; portB:byte; portCHigh:byte; portCLow:byte;
config:DataP) :integer;

Parameters
uchar portA A flag that if non-zero will configure port A as input, otherwise will configure port A as output.
uchar portB A flag that if non-zero will configure port B as input, otherwise will configure port B as output.
uchar portCHigh A flag that if non-zero will configure the most significant 4 bits of port C as input, otherwise will configure

them as output.
uchar portCLow A flag that if non-zero will configure the least significant 4 bits of port C as input, otherwise will configure

them as output.
uchar *config A variable that will be returned with the configuration byte
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqDigConf

Program References DIG1
Used With Only applies to DaqBook/100/200 and DaqBoard/100A/200A

daqDigGetConf is used to generate a configuration byte that can be passed to the daqDigConf
function to set the operation of the 3 8-bit ports of an 8255 chip. This byte is derived from 4 flags that
configure port A, port B, the most significant 4-bits of port C and the least significant 4-bit of port C.
Each of these ports can be independently selected as input or output.

daqDigRdBit
DLL Function daqDigRdBit(uchar port, uchar bitNum, uchar *bitVal);

C daqDigRdBit(int port, int bitNum, int *bitVal)

QuickBASIC QBdaqDigRdBit% (port%, bitNum%, bitVal%)

Turbo Pascal daqDigRdBit(port:byte; bitNum:byte; bitVal:ByteP) :integer;

Parameters
uchar port The digital I/O port to read from
uchar bitNum The bit number of the specified digital I/O port to read

Valid values:
0 - 7 For 8-bit ports
0 - 3 For 4-bit ports

uchar *bitVal A variable to hold the value of the specified bit (non-zero if asserted, 0 if unasserted)
Returns DerrInvBitNum - Invalid bit number

DerrInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDigConf, daqDigWtByte, daqDigRdByte, daqDigWtBit

Program References DIG1 (All Languages)
Used With

daqDigRdBit reads the state of a single bit on a digital I/O port. The port read from can be the local
8255 chip, an 8255 chip on a DBK20 or DBK21 digital expansion board, or the P1 digital I/O nibble.
When the port is on an 8255 chip, this function can read port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DaqBook/112 can only read digital nibble in P1.

Daq* Command Reference (Standard API) Chapter 5

5-46 Programmer’s Manual

daqDigRdByte
DLL Function daqDigRdByte(uchar port, uchar *byteVal);

C daqDigRdByte(int port, int *byteVal)

QuickBASIC QBdaqDigRdByte%(port%,byteVal%)

Turbo Pascal daqDigRdByte(port:byte; byteVal:DataP):integer;

Parameters
uchar port The digital I/O port to read from
uchar *byteVal A variable to hold the value read from the specified port

Valid values:
0 -255 for 8-bit ports
0-15 for 4-bit ports

Returns DerrInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDigConf, daqDigWtByte, daqDigWtBit, daqDigRdBit

Program References DIG1 (All Languages)
Used With

daqDigRdByte reads an 8-bit byte or a 4-bit nibble from a digital I/O port. The port read from can
be the local 8255 chip, an 8255 chip on a DBK20 digital expansion board, or the P1 digital I/O nibble.
 When the port is on an 8255 chip, this function can read port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DaqBook/112 can only read digital nibble in P1.

daqDigWtBit
DLL Function daqDigWtBit(uchar port, uchar bitNum, uchar bitVal);

C daqDigWtBit(int port, int BitNum, int bitVal)

QuickBASIC QBdaqDigWtBit%(port%, bit Num%, bitVal%)

Turbo Pascal daqDigWtBit(port:byte; bitNum:byte; bitVal:byte) :integer;

Parameters
uchar The digital I/O port to write to
uchar bitNum The bit number of the specified digital I/O port to assert/unassert

Valid values:
0 - 7 For 8-bit ports
0 - 3 For 4-bit ports

uchar bitVal A flag that if non-zero will assert the specified bit, if 0 the bit is unasserted
Returns DerrInvBitNum - Invalid bit number

DerrInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDigConf, daqDigWtByte, daqDigRdByte, daqDigRdBit

Program References DIG1 (All Languages)
Used With

daqDigWtBit sets or clears a single bit on a digital I/O port. The port written to can be the local
8255 chip, an 8255 chip on a DBK20 or DBK21 digital expansion board, or the P1 digital I/O nibble.
When the port is on an 8255 chip, this function can write to port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DaqBook/112 can only read digital nibble in P1.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-47

daqDigWtByte
DLL Function daqDigWtByte(uchar port, uchar byteVal);

C daqDigWtByte(int port, int byteVal)

QuickBASIC QBdaqDigWtByte%(port%, byteVal%)

Turbo Pascal daqDigWtByte(port:byte; byteVal:byte):integer;

Parameters
uchar port The digital I/O port to write to
uchar byteVal The value to write to the specified port

Valid values: 0 - 255 for 8-bit ports
0-15 for 4-bit ports

Returns DerrInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqDigConf, daqDigRdByte, daqDigWtBit, daqDigRdBit

Program References DIG1 (All Languages)
Used With

daqDigWtByte writes to an 8-bit byte or a 4-bit nibble from a digital I/O port. The port written to
can be the local 8255 chip, an 8255 chip on a DBK20 or DBK21 digital expansion board, or the P1
digital I/O nibble. When the port is on an 8255 chip, this function can write to port A, port B, or port C
or the most significant or least significant 4-bit nibble of port C.

Note: The DaqBook/112 can only read digital nibble in P1.

daqGetProtocol
DLL Function daqGetProtocol(int *protocol)

C daqGetProtocol(int *protocol)

QuickBASIC QBdaqGetProtocol(protocol%)

Turbo Pascal daqGetProtocol(protocol):integer;

Parameters
protocol A pointer to a value that will be set to the current protocol chosen from the protocol codes listed below.
Protocol Codes:
Name Description Value
DaqProtocol8 8-bit I/O 1
DaqProtocol4 4-bit I/O 2
DaqProtocolFPort Far Point F/Port EPP Interface 10
DaqProtocolSL 82360 SL EPP Interface 20
DaqProtocolISA ISA Bus Interface (DaqBoard Only) 100
DaqProtocolEPPBIOS EPP BIOS (Draft Revision 3) 40
DaqProtocolSMC666 Quatech SMC666 EPP Interface 30
Note: Additional EPP implementation codes may be described in the README file
Returns An error number, or 0 is no error (also, refer to API Error Codes on page 5-68)
 See Also daqInit, daqSetProtocol

Program References None
Used With

daqGetProtocol returns the current parallel port communications protocol. daqInit initially
sets the protocol to either DaqProtocol8 or DaqProtocol4, indicating either 8-bit or 4-bit
standard parallel port protocol. daqSetProtocol may be used to specify other protocols.

Daq* Command Reference (Standard API) Chapter 5

5-48 Programmer’s Manual

daqInit
DLL Function daqInit(uint lptPort, uchar lptIntr);

C daqInit(uint lptPort, uchar intr)

QuickBASIC QBdaqInit%(lptPort%, intr%)

Turbo Pascal daqInit(lptPort:integer; lptIntr:byte):integer;

DaqBook Parameters
uint lptPort The LPT port number (see below)
uchar lptIntr The interrupt level
DaqBook LPT Ports:
Description Value
LPT1 00h
LPT2 01h
LPT3 02h
LPT4 03h
DaqBoard Parameters
uint lptPort The ISA bus address (see below)
uchar lptIntr The lower nibble (4 least significant bits) contains the interrupt level (10-15). The upper nibble (4 most

significant bits) contains the DMA channel (see below for defined constants) Adding the interrupt level
to the DMA constant will pack these two parameters into one byte. (See sample code.)

DaqBoard Ports: DaqBoard DMA Channels:
Description Value Description Value
PORT_0300 300h DMANone 00h
PORT_0304 304h DMA5 50h
... ... DMA6 60h
PORT_031F 31Fh DMA7 70h
Daq PCMCIA Parameters
uint lptPort The ISA bus address at which the card is configured (see below)
uchar lptIntr The interrupt level at which the card is configured.
Daq PCMCIA Ports:
Description Value
PORT_0300 300h
PORT_0304 304h
... ...
PORT_031F 31Fh
Sample code

(DaqBoard Only)
daqInit(PORT_0330, DMA5 + 10)

Returns DerrNotOnLine - No communication with DaqBook/DaqBoard
DerrBadChannel - Invalid LPT channel or ISA bus address
DerrNoDaqBook - No DaqBook/DaqBoard detected
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqSelectPort, daqClose

Program References INIT, ADC1, ADC2, ADC3, ADC4, ADC5, CTR1, CTR2, DAC1, DAC2, DAC3, DIG1 (All Languages)
Used With

daqInit is used to perform multiple functions: initialize subroutine library variables, establish
communications with a Daq*, reset the Daq* hardware to power-on conditions, and select the current
Daq*. daqInit can be called to reinitialize the Daq* only after the daqClose command is called to
terminate communications.

daqInit will perform the following tasks:
• Stop any current acquisition
• Set the scan group to channel 1 with a gain of ×1
• Set the pacer clock to 100 kHz
• Enable tagging of A/D data
• Set the D/A converter to 0 V (Note: does not apply to Daq PCMCIA)
• Configure all digital I/O as inputs
• Reset the counter/timers

Note: daqInit must be called before any other daq* function.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-49

daqLinearConvert
DLL Function daqLinearConvert(unsigned *counts, unsigned scans, float fValues, unsigned nValues)

C daqLinearConvert(unsigned _far *counts,
 unsigned scans, float _far *fValues, unsigned nValues);

QuickBASIC QBdaqLinearConvert%(counts%(), scans%, fValues!(), nValues%)

Turbo Pascal daqLinearConvert(counts:WordP; scans:word; fValues:SingleP; nValues:word) : integer;

Parameters
*counts The acquired ADC readings to be converted.
scans The number of scans to be converted.
*fValues An array to hold the converted readings.
nValues The size of the reading array.
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
Used With

daqLinearConvert converts the ADC readings into floating point numbers using the linear
relationship that was specified with daqLinearSetup. daqLinearConvert may be invoked
repeatedly to perform multiple conversions, each using the same linear relationship.

daqLinearSetup
DLL Function daqLinearSetup(unsigned nscan,unsigned readingsPos,unsigned nReadings,float

ADmin, float ADmax, float signal1, float voltage1, float signal2, float
voltage2, unsigned avg)

C daqLinearSetup(unsigned nscan,
 unsigned readingsPos, unsigned nReadings, float ADmin, float ADmax,
 float signal1, float voltage1, float signal2, float voltage2, unsigned avg);

QuickBASIC QBdaqLinearSetup%(nscan%, readingsPos%, nReadings%, ADmin!, ADmax!, signal1!,
voltage1!, signal2!, voltage2!, avg%)

Turbo Pascal daqLinearSetup(nscan:word; readingsPos:word; nReadings:word; ADmin:single;
ADmax:single;

 signal1:single; voltage1:single; signal2:single; voltage2:single; avg:word) :
integer;

Parameters
nscan The number of readings in a single scan (1 to 512).
readingsPos The position within the scan of the first reading to convert (0 to nscan - 1).
nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)
ADmin, ADmax The input voltages that correspond to the minimum and maximum possible A/D readings.
signal1, signal2 The transducer input signals that produce voltage1 and voltage2.
voltage1, voltage2 The transducer output voltages for two different input signals.
avg The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.
“2” (or more) specifies moving average of the specified number of scans. Each scan’s readings are

averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also daqLinearConvert, daqLinearSetupConvert

Program References
Used With

daqLinearSetup saves the data
required for daqLinearConvert to
perform conversions. Six parameters are
used to specify a linear relationship: the
A/D input range (minimum and maximum
values), and the transducer input signal
level and output voltage at 2 points in the
range.

Readings from
Channel

Results from Channel

Scan 0 1 0 1
1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Daq* Command Reference (Standard API) Chapter 5

5-50 Programmer’s Manual

daqLinearSetupConvert
DLL Function daqLinearSetupConvert(unsigned nscan, unsigned readingsPos, unsigned nReadings,

float ADmin, float ADmax, float signal1, float voltage1, float signal2, float
voltage2, unsigned avg, unsigned _far *counts, unsigned scans, float _far
*fValues, unsigned nValues)

C daqLinearSetupConvert(unsigned nscan,
 unsigned readingsPos, unsigned nReadings, float ADmin, float ADmax,
 float signal1, float voltage1, float signal2, float voltage2, unsigned avg,
 unsigned _far *counts, unsigned scans, float _far *fValues, unsigned nValues);

QuickBASIC QBdaqLinearSetupConvert%(nscan%, readingsPos%, nReadings%, ADmin!, ADmax!,
signal1!, voltage1!, signal2!, voltage2!, avg%, counts%(), scans%, fValues!(),
nValues%)

Turbo Pascal daqLinearSetupConvert(nscan:word; readingsPos:word; nReadings:word; ADmin:single;
ADmax:single;

 signal1:single; voltage1:single; signal2:single; voltage2:single; avg:word;
 counts:WordP; scans:word; fValues:SingleP; nValues:word) : integer;

Parameters See daqLinearSetup and daqLinearConvert for a description of the parameters.
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
Used With

daqLinearSetupConvert combines the setup and conversion processes into one function.

daqReadCalFile
DLL Function daqReadCalFile(char *calfile);

C daqReadCalFile(char *calfile)

QuickBASIC QBdaqReadCalFile%(calfile%)

Turbo Pascal daqReadCalFile(calfile):integer;

Parameters
char *calfile The file name with optional path information of the calibration file. If calfile is NULL or empty (“”), the

default calibration file DAQBOOK.CAL will be read.
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)

DerrInvCalfile - Error occurred while opening or reading calibration file
See Also daqCalSetup, daqCalConvert, daqCalSetupConvert

Program References None
Used With

daqReadCalFile is the initialization function for reading in the calibration constants from the
calibration text file.

This function (usually called once at the beginning of a program) will read all the calibration constants
from the specified file. If calibration constants for a specific channel number and gain setting are not
contained in the file, ideal calibration constants will be used (essentially performing no calibration for
that channel). If an error occurs while trying to open the calibration file, ideal calibration constants will
be used for all channels and daqReadCalFile will return a non-zero error code.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-51

daqRTDConvert
DLL Function daqRtdConvert (uint *counts, uint scans ,int *temp, uint ntemp);

C daqRtdConvert(unsigned _far *counts, unsigned scans, int _far *temp, unsigned
ntemp);

QuickBASIC QBdaqRtdConvert% (counts%(), scans%, temp%(), ntemp%)

Turbo Pascal daqRtdConvert(var counts; scans:word; var temp; ntemp:word) : integer;

Parameters
uint *counts Raw A/D data from one or more scans
uint scans Number of scans of raw data in counts
int * temp Variable array to hold converted temperatures
uint ntemp Size of temperature array (should be number of RTDs specified in setup times the number of scans)
Returns DerrRtdNoSetup - Setup was not called

DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
DerrRtdTArraySize - Temperature array is not large enough

See Also DaqRtdSetup, DaqRtdSetupConvert

Program References None
Used With

daqRTDConvert takes raw A/D readings from RTDs and converts them to temperature readings in
tenths of degrees Celsius. Note: Total number of conversions (scan * (RTD chans per scan) * 4) must
be less than 32K.

The Daq* measures temperatures sensed by RTDs attached via a DBK9 RTD expansion card. Up to 8
RTDs can attach to each DBK9. Up to 32 DBK9s may be attached to a single Daq* for a maximum of
256 temperatures. The software currently supports 100-, 500-, and 1000-ohm RTDs.

The RTD measurement functions are designed for simple temperature measurement in which each RTD
channel is read 4 times. These 4 readings must be grouped together in the scan and in order:
Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1), Dbk9VoltageD (gain=3), Dbk9VoltageD
(gain=3). The RTDs must be of the same type, and the reading groups must follow each other in the
scan sequence.

The temperature conversion functions use input data from one or more Daq* scans. They take 4
voltage readings for each RTD channel, apply the appropriate averaging method, convert the voltages
to a resistance and then, using the appropriate curves for the RTD type, convert the resistance into a
temperature. For example, assume the following readings:

Readings Channel 0 Readings Channel 1
Scan 0 1 2 3 4 5 6 7

1 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
2 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
3 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
4 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd
5 Ch 0 Va Ch 0 Vb Ch 0 Vd Ch 0 Vd Ch 1 Va Ch 1 Vb Ch 1 Vd Ch 1 Vd

The 4 readings for each channel are grouped together in order. If
this scan data is passed to daqRtdConvert (through the counts
parameter) with averaging disabled (avg parameter set to 1), the
function will return the temp parameters shown in the table. Note:
Temperatures returned will be in tenths of a degree Celsius.

If the scan data is passed to daqRtdConvert (in the counts
parameter) with averaging set to block
averaging (avg parameter set to 0) the
function will return the temp parameters
shown in the table.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement; and Conversion changes raw readings into temperatures. For convenience,
both setup and conversion can be performed at once by daqRtdSetupConvert. All of the
functions return error codes which are defined in DaqBook.h.

Temperatures
Scan 0 1

1 Ch 0 °C Ch 1 °C
2 Ch 0 °C Ch 1 °C
3 Ch 0 °C Ch 1 °C
4 Ch 0 °C Ch 1 °C
5 Ch 0 °C Ch 1 °C

Temperatures
0 1

Average of all Temperatures Ch 0 °C Ch 1 °C

Daq* Command Reference (Standard API) Chapter 5

5-52 Programmer’s Manual

daqRtdSetup
DLL Function daqRtdSetup(unsigned nScan, unsigned startPosition, unsigned nRtd, unsigned

rtdValue, unsigned avg)
C daqRtdSetup(unsigned nScan, unsigned startPosition, unsigned nRtd, unsigned

rtdValue, unsigned avg);
QuickBASIC QBdaqRtdSetup% (nscan%, startPosition%, nRtd%, rtdValue%, avg%)

Turbo Pascal daqRtdSetup(nScan, startPosition, nRtd, rtdValue, avg:word) : integer;

Parameters
uint nReadings The total number of readings in a scan.

valid range 1-512
uint
startPosition

Position of the first RTD reading group in the scan.
Valid range 1-509

int nRtd Number of RTD reading groups in the scan.
Valid range 1- 128

uint rtdValue Value of RTD being used.
Dbk9RtdType100- 100 ohm RTD
Dbk9RtdType500- 500 ohm RTD
Dbk9RtdType1K- 1000 ohm RTD

uint avg Type of averaging to be used.
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average

Returns DerrRtdParam - Setup parameter out of range
DerrRtdValue - Invalid RTD type
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also
Program References None
Used With

daqRtdSetup sets up parameters for subsequent RTD temperature conversions. Refer to discussion
of daqRTDConvert.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-53

daqRtdSetupConvert
DLL Function daqRtdSetupConvert(unsigned nScan, unsigned startPositionunsigned nRtdunsigned

rtdValue, unsigned avg, unsigned _far *counts, unsigned scans, int _far *temp,
unsigned ntemp)

C daqRtdSetupConvert(unsigned nScan, unsigned startPosition, unsigned nRtd,
unsigned rtdValue, unsigned avg, unsigned _far *counts, unsigned scans, int
_far *temp, unsigned ntemp);

QuickBASIC QBdaqRtdSetupConvert% (nscan%, startPosition%, nRtd%, rtdValue%, avg%,
counts%(), scans%, temp%(), ntemp%)

Turbo Pascal daqRtdSetupConvert(nScan, startPosition, nRtd, rtdValue, avg:word var counts;
scans:word; var temp; ntemp:word) : integer;

Parameters
uint nReadings The total number of readings in a scan.

valid range 1-512
uint
startPosition

Position of the first RTD reading group in the scan.
Valid range 1-509

uint nRtd Number of RTD reading groups in the scan.
Valid range 1-128

uint rtdValue Value of RTD being used.
Dbk9RtdType100- 100 ohm RTD
Dbk9RtdType500- 500 ohm RTD
Dbk9RtdType1K- 1000 ohm RTD

uint avg Type of averaging to be used
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average

uint *counts Raw A/D data readings from one or more scans.
uint scans Number of scans of raw data in contained in *counts.
int *temp Array to hold converted temperatures.
uint nTemp Size of temperature array. Should be the number of RTDs times the number of scans for no averaging and

moving averages or the number of RTDs for block averaging.
Returns DerrRtdParam - Setup parameter out of range

DerrRtdValue - Invalid RTD type
DerrRtdTArraySize - temperature storage array not large enough
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also
Program References None
Used With

daqRtdSetupConvert sets up and converts raw A/D readings from RTDs into temperature
readings. Refer to discussion of daqRTDConvert.

Daq* Command Reference (Standard API) Chapter 5

5-54 Programmer’s Manual

daqSelectPort
DLL Function daqSelectPort(uint lptPort);

C daqSelectPort(uint lptPort)

QuickBASIC QBdaqSelectPort%(lptPort%)

Turbo Pascal daqSelectPort(lptPort:integer) :integer;

Parameters
uint lptPort The LPT port number or ISA bus address (see below)
DaqBook LPT Ports:
Description Value
LPT1 00h
LPT2 01h
LPT3 02h
LPT4 03h
DaqBoard Ports:
Description Value
PORT_0300 300h
PORT_0304 304h
... ...
PORT_031F 31Fh
Returns DerrNotOnLine - No communications with DaqBook/DaqBoard

DerrBadChannel - Invalid LPT channel
DerrNoDaqBook - No DaqBook/DaqBoard detected
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also daqInit

Program References None
Used With

daqSelectPort selects an initialized Daq*. This function causes any subsequent function calls to
be performed on this Daq*. Because daqInit initializes then selects a Daq*, daqSelectPort is
only needed when using multiple Daq*s.

Note: daqInit must be called with the corresponding LPT port before daqSelectPort can select
it.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-55

daqSetErrHandler
DLL Function daqSetErrHandler(daqErrorHandlerFPT daqErrorHandler);

C daqSetErrHandler(daqErrorHandlerFPT daqErrorHandler);

QuickBASIC QBdaqSetErrHandler%(errHandler%)

Turbo Pascal daqSetErrHandler(daqErrorHandler:ErrorFuncT):integer;

Parameters
daqErrorHandlerFPT
daqErrorHandler

The routine to call when an error occurs, or null (0) to have nothing called when an error occurs.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also
Program References All
Used With

daqSetErrHandler specifies the routine to call when an error occurs in any command. The default
routine displays a message, then terminates the program. If this is not desirable, use this command to
specify your own routine to be called when errors occur. If you want no action to occur when a
command error is detected, use this command with a null (0) parameter.

The default error routine is daqDefaultHandler. Use that as the command parameter to restore
default error processing. This command may be called at any time, even before daqInit.

Daq* Command Reference (Standard API) Chapter 5

5-56 Programmer’s Manual

daqSetProtocol
DLL Function daqSetProtocol(int protocol)

C daqSetProtocol(int protocol)

QuickBASIC QBdaqSetProtocol(protocol%)

Turbo Pascal daqSetProtocol(protocol):integer;

Parameter
protocol One of the predefined protocol codes listed below.
Protocol Codes
Name Description Value
DaqProtocol8 8-bit I/O 1
DaqProtocol4 4-bit I/O 2
DaqProtocolFPort Far Point F/Port EPP Interface 10
DaqProtocolSL 82360 SL EPP Interface 20
DaqProtocolISA ISA Bus Interface (DaqBoard Only) 100
DaqProtocolEPPBIOS EPP BIOS (Draft Revision 3) 40
DaqProtocolSMC666 Quatech SMC666 EPP Interface 30
Additional protocol codes may be described in the README file.
Returns An error number, or 0 if no error (also, refer to API Error Codes on page 5-68)
Related Functions daqInit, daqGetProtocol

Used With Only applies to DaqBook; does not apply to DaqBoard or DaqPCMCIA.

daqSetProtocol specifies to the DaqBook/DaqBoard driver the type of parallel-port
implementation and protocol that is available on the computer. The driver then attempts to configure
the computer and the DaqBook/DaqBoard to communicate using the specified protocol. As
establishing the protocol may affect the settings of the DaqBook/DaqBoard, daqSetProtocol
should only be invoked immediately after daqInit has established communications with and reset the
DaqBook. Switching protocols during normal operation is not recommended.

Two types of parallel port implementations are supported by the DaqBook: standard and enhanced.
Standard parallel ports, using the DaqBook’s proprietary protocols, are capable of receiving data either
4 or 8 bits at a time. When possible, the faster 8-bit operation is preferred, but not all standard parallel
ports support 8-bit data reception.

Enhanced parallel ports (EPP) include extra hardware that increases the rate of data transfer to 3 to 10
times the rate of a standard parallel port. Unfortunately, not every computer includes EPP capability
and attempting to use EPP on an incompatible computer may cause the driver to access I/O locations
which are not part of the printer port interface. Such accesses may interfere with other operations and
cause the computer to operate incorrectly. For this reason, EPP operation must be explicitly requested
by the program.

When the DaqBook is initialized by daqInit, it is initially configured for a standard parallel port
protocol: either 8-bit, if possible, or the slower 4-bit protocol. After daqInit has completed,
daqSetProtocol may be used to switch to any other supported protocols as listed below.

If daqSetProtocol is unable to establish communications using the specified protocol, then it will
try to establish communications using the standard port protocols, first 8-bit, then the slower 4-bit. In
such an event, daqSetProtocol will not return an error indication unless it is unable to establish
any protocol.

In any case, daqGetProtocol may be used to check the current operating protocol.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-57

daqTCConvert
DLL Function daqTCConvert (uint *counts, uint scans ,int *temp, uint ntemp);

C daqTCConvert(uint *counts, uint scans, int *temp, uint ntemp)

QuickBASIC QBdaqTCConvert%(counts%(), scans%, temp%(), ntemp%)

Turbo Pascal daqTCConvert(var counts; scans: word; var temp; ntemp: word):integer;

Parameters
uint *counts An array of one or more scans of raw data as received from the Daq. The ADC data bits are in the 12

most significant bits of the 16-bit integers, and the tag bits (which are discarded) are in the 4 least-
significant bits. Channel tagging must be enabled using the daqAdcSetTag command.

Valid range: Each raw data item may be any 16-bit value.
uint scans The number of scans of data in counts.

Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes).
int * temp Variable array to hold converted temperature results. The integer values are 10 times the temperatures in

°C. For example, 50°C would be represented as 500 and -10°C would be -100.
Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the thermocouple type.

uint ntemp The number of entries in the temperature array. This value is checked by the functions to avoid writing
past the end of the array.

Valid range: If avg is 0, then ntc or greater. If avg is non-zero, then scans * ntc or greater.
Returns DerrTCE_NOSETUP - Setup was not called

DerrTCE_PARAM - Param out of range
DerrNoError -No Error (also, refer to API Error Codes on page 5-68)

See Also DaqTCSetup, DaqTCSetupConvert

Program References None
Used With

daqTCConvert takes raw A/D readings and converts them to temperature readings in tenths of
degrees Celsius (the total number of conversions (scan * chans/scan) must be less than 32K). The
Daq* measures thermocouple temperatures by way of a DBK19 or DBK52 that includes a cold-
junction compensation circuit (CJC) attached to channel 0. Channel 1 is shorted for performing auto-
zero compensation. Channels 2 through 15 accept thermocouples for temperature measurement. Up to
16 expansion cards may be attached to a single Daq* to measure a maximum of 224 (16×14)
temperatures. The software supports type J, K, T, E, N28, N14, S, R and B thermocouples.

Two software techniques (calibration and zero compensation) can be used to increase the accuracy of
the DBK19 card.

• Software calibration uses gain and offset calibration constants, unique to each card, to
compensate for inherent errors on the card.

• Zero compensation is a method by which any offset voltage on the card can be removed at run-
time. This is done by measuring a shorted channel at the same gain on the actual input to find the
offset and by subtracting this value from the actual reading.

The thermocouple linearization function has a special auto-zero compensation feature that will perform
zero compensation on the raw thermocouple data before linearizing when using a DBK19. The auto-
zero feature is enabled by default, but can be disabled using the daqZeroDbk19 function. It is not
available when using unipolar mode.

The temperature measurement conversion functions are designed for temperature measurement where:
• The cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is

immediately followed in the scan sequence by the T/C channel readings, all of which must be
from the same type of T/C (including: J, K, T, E, N28, N14, S, R, or B).

• If a DBK19 is used with auto-zeroing enabled, the CJC channel reading described above must be
preceded by a reading from the shorted channel (channel 1). This reading must be at the same
gain setting as the CJC reading and a reading from the shorted channel (channel 1) at the same
gain setting as the T/C to be converted.

• If software calibration is used with the DBK19, the calibration constants for the card to be used
should be entered into the calibration file.

• The CJC and T/C readings are taken with the optimal gains (as described below).
• All non-thermocouple data conversion, if any, must be done by other means.

Daq* Command Reference (Standard API) Chapter 5

5-58 Programmer’s Manual

The temperature conversion functions take input data from one or more scans from the Daq*. They
then examine the CJC and thermocouple readings within that scan and, after optional averaging,
convert them to temperatures which are stored as output. For example, see readings in the table.

The first 2 readings of each scan
are non-temperature voltage
readings to compensate for the
CJC circuit and the shorted
channel 0. The third reading is
from the CJC, and the remaining
3 readings are from 3 type J thermocouples. If the auto-zero feature is disabled, the first 2 readings will
be ignored. Otherwise, the first 2 readings will be used to remove offset errors in the CJC and T/C
reading. The CJC and T/C readings are used to produce one temperature result for each T/C reading.
Thus, the 24 original readings are reduced to 12 temperatures.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement, and Conversion changes the raw readings into temperatures. All of the
functions return error codes which are defined in DaqBook.h which also includes the function
prototypes and the definitions of the thermocouple type codes.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If
auto-zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and
a T/C zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the
same type: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple,
they must be sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to thermocouple measurements. The scan may include other types of signals
such as voltage, current, or
digital input, but conversion of
these readings is up to you.
The temperature conversion
functions cannot handle them.

The temperature measurements
must be made with the correct
gain settings. The gain settings
for the different thermocouple
types depend on the channel
type and the bipolar/unipolar
setting of the Daq* as specified in the table. Note: Unipolar operations are not recommended for
thermocouple measurement unless the measured temperatures will be greater than the Daq*
temperature.

When measuring thermocouples using the gains above, the following temperature ranges apply.

Reading
Scan 0 1 2 3 4 5

1 V or CJC Zero V or J Zero CJC J1a J1b J1c
2 V or CJC Zero V or J Zero CJC J2a J2b J2c
3 V or CJC Zero V or J Zero CJC J3a J3b J3c
4 V or CJC Zero V or J Zero CJC J4a J4b J4c

GAIN CODES
Type Unipolar Gain

Code
Unipolar

Gain
Bipolar Gain Code Bipolar

Gain
CJC Dbk19UniCJC 90 Dbk19BiCJC 60
J Dbk19UniTypeJ 180 Dbk19BiTypeJ 90
K Dbk19UniTypeK 180 Dbk19BiTypeK 90
T Dbk19UniTypeT 240 Dbk19BiTypeT 180
E Dbk19UniTypeE 90 Dbk19BiTypeE 60
N28 Dbk19UniTypeN28 240 Dbk19BiTypeN28 240
N14 Dbk19UniTypeN14 180 Dbk19BiTypeN14 90
S Dbk19UniTypeS 240 Dbk19BiTypeS 240
R Dbk19UniTypeR 180 Dbk19BiTypeR 240
B Dbk19UniTypeB 240 Dbk19BiTypeB 240

Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature
T/C

Type
Measured Temperature Range

@ 0°C ambient
Measured Temperature Range

@ 25°C ambient
Measured Temperature Range

@ 50°C ambient
Temperature °C 0°C Output (mV) Temperature°C 25°C Output (mV) Temperature°C 50°C Output (mV)

J -200 to 760 -7.9 to 42.9 -200 to 760 -9.2 to 41.6 -200 to 760 -11.8 to 39.0
K -200 to 1372 -5.9 to 54.9 -200 to 1372 -6.9 to 53.9 -200 to 1372 -8.9 to 52.9 (50.0
T -200 to 400 -5.6 to 20.9 -200 to 400 -6.6 to 19.9 -200 to 400 -8.7 to 17.7
E -270 to 1000 -9.8 to 76.4 -270 to 1000 -11.3 to 74.9 -270 to 1000 -14.5 to 71.7

 N28 -270 to 400 -4.3 to 13.0 -270 to 400 -5.0 to 12.3 -270 to 400 -6.4 to 10.9
N14 0 to 1300 0.0 to 47.5 0 to 1300 -0.7 to 46.8 0 to 1300 -2.0 to 45.5

S -50 to 1780 -0.2 to 18.8 -50 to 1780 -0.4 to 18.7 -50 to 1780 -0.7 to 18.4
R -50 to 1780 -0.2 to 21.3 -50 to 1780 -0.4 to 21.1 -50 to 1780 -0.7 to 20.8
B 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4 50 to 1780 0.0 to 13.4

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-59

daqTCSetup
DLL Function daqTCSetup(uint nscan, uint cjcPosition, uint ntc , uint tcType, uchar

bipolar, uint avg);
C daqTCSetup(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar bipolar,

unsigned avg)
QuickBASIC QBdaqTCSetup%(nscan%, cjcPosition%, ntc%, tcType%, bipolar%, avg%)

Turbo Pascal daqTCSetup(nscan, cjcPosition, ntc, tcType: word; bipolar: boolean; avg:
word):integer;

Parameters
uint nscans The number of readings in a single scan of DaqBook/DaqBoard data. The daqTC functions can convert

several consecutive scans worth of data in a single invocation.
Valid range: 2 to 512.

uint cjcPosition The position of the actual cold-junction compensation circuit (CJC) reading within each scan (not the CJC
zero reading, if any). The first reading of the scan is position 0, and the last reading is position -1. Each
scan of temperature data must include a reading of the CJC signal on the expansion board to which the
thermocouples are attached. The CJC readings must be taken with the gain in the section Scan Setup.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero compensation.
uint ntc The number of thermocouple signals that are to be converted to temperature values. The thermocouple

signal readings must immediately follow the CJC reading in the scan data. The first thermocouple
signal is at scan position cjcPosition+1,; the next is at cjcPosition+2,; and so on. Valid range: 1 to
nscan-1-cjcPosition.

uint tcType The type of thermocouples that generated the measurements. Valid range: One of the pre-defined
values: Dbk19TCTypeJ, Dbk19TCTypeK, Dbk19TCTypeT, Dbk19TCTypeE, Dbk19TCTypeN28,
Dbk19TCTypeN14, Dbk19TCTypeS, Dbk19TCTypeR or Dbk19TCTypeB.

uchar bipolar Must be set true (non-zero) if the readings were acquired with the Daq set for bipolar operation. Must be
set false (zero) for unipolar operation. The required gain settings for the CJC and thermocouple
channels change depending on the unipolar/bipolar mode. Valid range: 0 for unipolar or any non-zero
value for bipolar.

uint avg The type of averaging to be performed. Valid range: any unsigned integer. Since the thermocouple
voltage may be small compared to the ambient electrical noise, averaging may be necessary to yield a
steady temperature output.

0 specifies block averaging in which all of the scans are averaged together to compute a single
temperature measurement for each of the ntemp thermocouples.

1 specifies no averaging. Each scan’s readings are converted into ntemp measured temperatures for a
total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Scan readings are averaged with
the avg-1 preceding scans’ readings before conversion. The first avg-1 scans are averaged with all of
the preceding scans because they do not have enough preceding scans. For example, if avg is 3, then
the results from the first scan are not averaged at all, the results from the second scan are averaged
with the first scan, the results from the third and subsequent scans are averaged with the preceding two
scans as shown in the table.

Returns DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also daqTCConvert, daqTCSetupConvert

Program References None
Used With

daqTCSetup sets up parameters for subsequent temperature conversions. The table shows how
averages are computed.

Scan Readings
from
Channel

Results from Channel

0 1 0 1
1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Daq* Command Reference (Standard API) Chapter 5

5-60 Programmer’s Manual

daqTCSetupConvert
DLL Function daqTCSetupConvert(uint nscan,uint cjcPosition, uint ntc, uint tcType,uchar

bipolar,uint avg, uint *counts, uint scans, int *temp,);
C daqTCSetupConvert(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar

bipolar, uint avg, uint*counts, uint scans, int*temp, uint ntemp)
QuickBASIC QBdaqTCSetupConvert%(nscan%, cjcPosition%, ntc%, tcType%, bipolar%, avg%,

counts%(), scans%, temp%(), ntemp%)
Turbo Pascal daqTCSetupConvert(nscan, cjcPosition, ntc, tcType: word; bipolar: boolean; avg:

word, var counts; scans: word; var temp; ntemp: word):integer;
Parameters
uint nscan The number of readings in a single scan.

Valid range: 1- 512
uint cjcPosition The position of the CJC reading within the scan.

Valid range:
0 -(nscan-1)
2 -(nscan-1), if auto-zeroing is used with DBK19.

uint ntc The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 -(nscan-cjcposition-1)

uint tcType The type of thermocouples being measured.
uchar bipolar Non-zero if the DaqBook/DaqBoard is configured for bipolar readings.
uint avg The type of averaging to be performed: block, none or moving.
uint *counts The raw data (with tags) from one or more scans.
uint scans The number of scans of raw data in counts.
int *temp The converted temperatures in tenths of a degree C.
uint ntemp The number of elements provided in the temp array (for error checking).
Returns DerrTCE_PARAM - Parameter out of range

DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also daqTCSetup, daqTCConvert

Program References None
Used With

daqTCSetupConvert sets up and converts raw A/D readings into temperature readings.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-61

daqVersion
DLL Function daqVersion(uint *hardware);

C daqVersion(uint *hardware)

QuickBASIC QBdaqVersion%(hardware%)

Turbo Pascal daqVersion(hardware: WordP):integer;

Parameters
hardware Pointer to variable to receive hardware version

100 for DaqBook/100; 112 for DaqBook/112; 200 for DaqBook/200; 216 for DaqBook/216; 1100 for
DaqBoard/100A; 1112 for DaqBoard/112A,; 1200 for DaqBoard/200A; 1116 for DaqBoard/216A

Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also None
Program References None
Used With

daqVersion returns the hardware version.

daqZeroConvert
DLL Function daqZeroConvert(uint *counts, uint scans);

C daqZeroConvert(uint *counts, uint scans)

QuickBASIC QBdaqZeroConvert%(counts%, scans%)

Turbo Pascal daqZeroConvert(counts:scans):integer;

Parameters
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqZeroSetup, daqZeroSetupConvert, daqZeroDbk19

Program References None
Used With

daqZeroConvert compensates one or more scans according the previously called daqZeroSetup
function. This function will modify the array of data passed to it.

daqZeroDbk19
DLL Function daqZeroDbk19(uint zero);

C daqZeroDbk19(uint zero)

QuickBASIC QBdaqZeroDbk19%(zero%)

Turbo Pascal daqZeroDbk19(zero):integer;

Parameters
uint zero If non-zero will enable auto zero compensation in the daqTC… functions
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqZeroSetup, daqZeroConvert, daqZeroSetupConvert, daqTCSetup, daqTCConvert,

daqTCSetupConvert
Program References None
Used With

daqZeroDbk19 will configure the thermocouple linearization functions to automatically perform
zero compensation. This is the easiest way to use zero compensation with the DBK19. When enabled,
the thermocouple conversion functions will require a CJC zero reading and a TC zero reading to
precede the actual CJC and TC reading. This can easily be done by configuring the scan group to read
channel 1 using the DBK19 CJC gain code (CJC zero), channel 1 using the gain code of the connected
TC (TC zero), channel 0 using the DBK19 CJC gain code (CJC) and finally the thermocouple channels
using the gain code of the connected thermocouples.

Note: the offset of the real CJC value should be specified, not the offset of the CJC zero, when calling
the thermocouple linearization setup functions.

Daq* Command Reference (Standard API) Chapter 5

5-62 Programmer’s Manual

daqZeroSetup
DLL Function daqZeroSetup(uint nscan, uint ZeroPosition, uint readingsPosition, uint

nReadings);
C daqZeroSetup(uint nscan, uint ZeroPostition, uint readingsPosition, uint

nReadings)
QuickBASIC QBdaqZeroSetup%(nscan%, ZeroPostition%, readingsPosition%, nReadings%)

Turbo Pascal daqZeroSetup(nscan: zero position: readings position: nReadings):integer;

Parameters
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan
uint readingsPosition The position of the readings to be zeroed within the scan.
uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain

as the zero reading.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqZeroConvert, daqZeroSetupConvert, daqZeroDbk19

Program References None
Used With

daqZeroSetup configures the location of the shorted channel and the channels to be zeroed within a
scan, the size of the scan and the number of readings to zero. This function does not do the conversion.
 A non-zero return value indicates an invalid parameter error.

daqZeroSetupConvert
DLL Function daqZeroSetupConvert(uint nscan, uint ZeroPosition, uint readingsPosition, uint

nReadings, uint *counts, uint scans);
C daqZeroSetupConvert(uint nscan, uint ZeroPostition, uint readingsPosition,

uint nReadings, uint *counts, uint scans)
QuickBASIC QBdaqZeroSetupConvert%(nscan%, ZeroPostition%, readingsPosition%,

nReadings%,counts%, scans%)
Turbo Pascal daqZeroSetupConvert(nscan: zero position: readings position:

nReadings):integer;
Parameters
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan
uint readingsPosition The position of the readings to be zeroed within the scan.
uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain

as the zero reading.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrZCInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqZeroSetup, daqZeroConvert, daqZeroDbk19

Program References None
Used With

For convenience, both the setup and convert steps can be performed with one call to
daqZeroSetupConvert. This is useful when the zero compensation needs to be performed
multiple times because data was read from channels at different gains or from different boards.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-63

daq200GetScan
DLL Function daq200GetScan(uint *chans, uchar *gains, uchar *polarity, uint count);

C daq200GetScan(uint *chans, uchar *gains, uchar *polarity, uint *count)

QuickBASIC QBdaq200GetScan%(chans%(), gains%(), polarity%(), count%)

Turbo Pascal daq200GetScan(chans: DataP; gains: ByteP; polarity: ByteP; count:
WordP):integer;

Parameters
uint *chans An array to hold up to 512 channel numbers or 0 if the channel information is not desired.
uchar *gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired.
uchar *polarity An array to hold up to 512 polarity values or 0 if the polarity information is not desired.
uint count A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqAdcGetScan, daq200SetScan

Program References None
Used With Does not apply to DaqBook/100/112/120

daq200GetScan retrieves a scan sequence much like daqAdcGetScan.

daq200SetMode
DLL Function daq200SetMode(uchar di_se, uchar polarity, uchar comp);

C daq200SetMode(uchar di_se, uchar polarity, uchar comp)

QuickBASIC QBdaq200SetMode%(di se%, polarity%, comp%)

Turbo Pascal daq200SetMode(die se: Word; polarity:word ; cop:word):integer;

Parameters
uchar di_se Zero value causes DaqBook to go to single-ended mode (power-on default). Non-zero value causes

differential mode.
uchar polarity Zero value causes DaqBook to default to Unipolar mode. Non-zero value causes default Bipolar mode. All

ADC conversions except those started with daq200SetScan will use the default polarity.
uchar comp Non-zero value causes DaqBook/DaqBoard complement all data from Bipolar channels. This makes the

acquired data integer values; negative numbers correspond with negative voltages and positive numbers
correspond with positive voltages.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also
Program References None
Used With Does not apply to DaqBook/100/112/120

daq200SetMode is used to program the gain amp for single-ended or differential operation and to
set the default polarity.

• Single-ended operation measures the voltage of the selected channel referred to analog ground.
• Differential operation measures differences in voltage between the pair of selected channels.

Voltage polarity can be unipolar or bipolar:
• Unipolar maximum voltage range is 0 V to +10 V
• Bipolar maximum voltage range is -10 V to +10 V.

Daq* Command Reference (Standard API) Chapter 5

5-64 Programmer’s Manual

daq200SetScan
DLL Function daq200SetScan(uint *chans, uchar * gains, uchar *polarity, uint count);

C daq200SetScan(uint *chans, uchar *gains, uchar *polarity, uint count)

QuickBASIC QBdaq200SetScan%(chans%(), gains%(), polarity%(), count%)

Turbo Pascal daq200SetScan(chans: DataP; gains: ByteP; polarity: ByteP; count:
Word):integer;

Parameters
uint *chans An array of up to 512 channel numbers

Valid values:
0-15 For local A/D channels
16-271 For local expansion A/D channels
272 For the high speed digital I/O input

uchar *gains An array of up to 512 gain values
uchar *polarity An array of up to 512 polarity values.

Zero value causes DaqBook/DaqBoard to select Unipolar mode.
Non-zero values causes Bipolar mode.

uint count The number of values in the chans and gain arrays
Valid values: 1-512

Returns DerrInvCount - Invalid count
DerrInvChan -Invalid channel
DerrInvGain - Invalid gain
DerrNotCapable - No programmable polarity
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqAdcGetScan, daq200SetMode

Program References None
Used With Does not apply to DaqBook/100/112/120

daq200SetScan configures a scan sequence much like daqAdcSetScan with the addition of a
polarity mode per channel.

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-65

A/D Channel Descriptions

Thermocouple Types

A/D Trigger Source Definitions

A/D Channel Source
0 to 15 Local channels 0 to 15
16 to 31 Channels 0 to 15 of A/D expansion card 0
32 to 47 Channels 0 to 15 of A/D expansion card 1
48 to 63 Channels 0 to 15 of A/D expansion card 2
64 to 79 Channels 0 to 15 of A/D expansion card 3
80 to 95 Channels 0 to 15 of A/D expansion card 4
96 to 111 Channels 0 to 15 of A/D expansion card 5
112 to 127 Channels 0 to 15 of A/D expansion card 6
128 to 143 Channels 0 to 15 of A/D expansion card 7
144 to 159 Channels 0 to 15 of A/D expansion card 8
160 to 175 Channels 0 to 15 of A/D expansion card 9
176 to 191 Channels 0 to 15 of A/D expansion card 10
192 to 207 Channels 0 to 15 of A/D expansion card 11
208 to 223 Channels 0 to 15 of A/D expansion card 12
224 to 239 Channels 0 to 15 of A/D expansion card 13
240 to 255 Channels 0 to 15 of A/D expansion card 14
256 to 271 Channels 0 to 15 of A/D expansion card 15
272 High speed digital I/O (DaqBook/100,

DaqBook/200, DaqBoard/100A or
DaqBoard/200A)

Note: In differential mode, only (sub) channels 0 to 7 are valid.

Description Value Description Value
Dbk14TCTypeJ 0 Dbk14TCTypeK 1
Dbk14TCTypeT 2 Dbk14TCTypeE 3
Dbk14TCTypeN28 4 Dbk14TCTypeN14 5
Dbk14TCTypeS 6 Dbk14TCTypeR 7
Dbk14TCTypeB 8 Dbk19TCTypeJ 9
Dbk19TCTypeK 10 Dbk19TCTypeT 11
Dbk19TCTypeE 12 Dbk19TCTypeN28 13
Dbk19TCTypeN14 14 Dbk19TCTypeS 15
Dbk19TCTypeR 16 Dbk19TCTypeB 17

Definition Value Trigger
DtsPacerClock 00h 8254 Pacer Clock
DtsSoftware 10h Software
DtsTTLFall 20h External TTL falling edge
DtsTTLRise 30h External TTL rising edge
DtsAnalogFallNeg 40h Falling below a negative setpoint
DtsAnalogRiseNeg 50h Rising above a negative setpoint
DtsAnalogRisePos 60h Rising above a positive setpoint
DtsAnalogFallPos 70h Falling below positive setpoint

Daq* Command Reference (Standard API) Chapter 5

5-66 Programmer’s Manual

A/D Gain Definitions

BASE UNIT
Description Value
DgainX1 00h
DgainX2 01h
DgainX4 02h
DgainX8 03h

DBK12
Description Value
Dbk12X1 00h
Dbk12X2 01h
Dbk12X4 02h
Dbk12X8 03h
Dbk12X16 13h
Dbk12X32 23h
Dbk12X64 33h

DBK14
Description Bipolar

Value
Unipolar

Value
Dbk14BiGainCJC 10h 20h
Dbk14BiGainJ 02h 12h
Dbk14BiGainK 31h 12h
Dbk14BiGainT 12h 22h
Dbk14BiGainE 21h 02h
Dbk14BiGainN28 22h 32h
Dbk14BiGainN14 02h 12h
Dbk14BiGainS 12h 22h
Dbk14BiGainR 12h 22h
Dbk14BiGainB 22h 32h

DBK13
Description Value
Dbk13X1 00h
Dbk13X2 10h
Dbk13X4 20h
Dbk13X8 30h
Dbk13X10 01h
Dbk13X20 11h
Dbk13X40 21h
Dbk13X80 31h
Dbk13X100 02h
Dbk13X200 12h
Dbk13X400 22h
Dbk13X800 32h
Dbk13X1000 03h
Dbk13X2000 13h
Dbk13X4000 23h
Dbk13X8000 33h

DBK16
Description Value
Dbk16ReadBridge 00h
Dbk16SetOffse 01h
Dbk16SetInputGain 02h
Dbk16SetScalingGain 03h

DBK19
Description Bipolar

Value
Unipolar

Value
Dbk19BiCJC 00h 01h
Dbk19BiTypeJ 01h 02h
Dbk19BiTypeK 01h 02h
Dbk19BiTypeT 02h 03h
Dbk19BiTypeE 00h 01h
Dbk19BiTypeN28 03h 03h
Dbk19BiTypeN14 01h 02h
Dbk19BiTypeS 03h 03h
Dbk19BiTypeR 02h 03h
Dbk19BiTypeB 03h 03h

DBK15
Description Bipolar

Value
Unipolar

Value
Dbk15BiX1 00h 02h
Dbk15BiX2 01h 03h

DBK44
Description Value
Dbk44X1 00h

DBK43
Description Value
Dbk43ReadBridge 00h
Dbk43SetOffset 01h
Dbk43SetInputGain 02h
Dbk43SetScalingGain 03h

DBK42
Description Value
Dbk42X1 00h

DBK50
Description Value
Dbk50Range1 00h
Dbk50Range10 01h
Dbk50Range100 02h
Dbk50Range300 03h

Chapter 5 Daq* Command Reference (Standard API)

Programmer’s Manual 5-67

Digital I/O Port Connection
Base Unit
Description Value Address Select Jumper Location
Ddp4BitIO 83h Connector P1
DdpLocalA 10h Connector P2 Port A
DdpLocalB 11h Connector P2 Port B
DdpLocalC 12h Connector P2 Port C
DdpLocalCHigh B2h Connector P2 Port C High Nibble
DdpLocalCLow 92h Connector P2 Port C Low Nibble
Expansion Unit Address A
Description Value Address Select Jumper Location / (DBK20 & 21
DdpExp0A 60h Dig Exp Chan 0 Port A / (P2 A)
DdpExp0B 61h Dig Exp Chan 0 Port B / (P2 A)
DdpExp0C 62h Dig Exp Chan 0 Port C / (P2 A)
DdpExp0High E2h Dig Exp Chan 0 Port C High Nibble / (P2 A)
DdpExp0Low C2h Dig Exp Chan 0 Port C Low Nibble / (P2 A)
DdpExp1A 64h Dig Exp Chan 1 Port A / (P3 A)
DdpExp1B 65h Dig Exp Chan 1 Port B / (P3 A)
DdpExp1C 66h Dig Exp Chan 1 Port C / (P3 A)
DdpExp1CHigh E6h Dig Exp Chan 1 Port C High Nibble / (P3 A)
DdpExp1Low C6h Dig Exp Chan 1 Port C Low Nibble / (P3 A)
Expansion Unit Address B
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp2A 68h Dig Exp Chan 2 Port A / (P2 B)
DdpExp2B 69h Dig Exp Chan 2 Port B / (P2 B)
DdpExp2C 6Ah Dig Exp Chan 2 Port C / (P2 B)
DdpExp2CHigh EAh Dig Exp Chan 2 Port C High Nibble / (P2 B)
DdpExp2Low CAh Dig Exp Chan 2 Port C Low Nibble / (P2 B)
DdpExp3A 6Ch Dig Exp Chan 3 Port A / (P3 B)
DdpExp3B 6Dh Dig Exp Chan 3 Port B / (P3 B)
DdpExp3C 6Eh Dig Exp Chan 3 Port C / (P3 B)
DdpExp3CHigh EEh Dig Exp Chan 3 Port C High Nibble / (P3 B)
DdpExp3Low CEh Dig Exp Chan 3 Port C Low Nibble / (P3 B)
Expansion Unit Address C
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp4A 70h Dig Exp Chan 4 Port A / (P2 C)
DdpExp4B 71h Dig Exp Chan 4 Port B / (P2 C)
DdpExp4C 72h Dig Exp Chan 4 Port C / (P2 C)
DdpExp4CHigh F2h Dig Exp Chan 4 Port C High Nibble / (P2 C)
DdpExp4Low D2h Dig Exp Chan 4 Port C Low Nibble / (P2 C)
DdpExp5A 74h Dig Exp Chan 5 Port A / (P3 C)
DdpExp5B 75h Dig Exp Chan 5 Port B / (P3 C)
DdpExp5C 76h Dig Exp Chan 5 Port C / (P3 C)
DdpExp5CHigh F6h Dig Exp Chan 5 Port C High Nibble / (P3 C)
DdpExp5Low D6h Dig Exp Chan 5 Port C Low Nibble / (P3 C)
Expansion Unit Address D
Description Value Address Select Jumper Location / (DBK20 & 21)
DdpExp6A 78h Dig Exp Chan 6 Port A / (P2 D)
DdpExp6B 79h Dig Exp Chan 6 Port B / (P2 D)
DdpExp6C 7Ah Dig Exp Chan 6 Port C / (P2 D)
DdpExp6CHigh FAh Dig Exp Chan 6 Port C High Nibble / (P2 D)
DdpExp6Low DAh Dig Exp Chan 6 Port C Low Nibble / (P2 D)
DdpExp7A 7Ch Dig Exp Chan 7 Port A / (P3 D)
DdpExp7B 7Dh Dig Exp Chan 7 Port B / (P3 D)
DdpExp7C 7Eh Dig Exp Chan 7 Port C / (P3 D)
DdpExp7CHigh FEh Dig Exp Chan 7 Port C High Nibble / (P3 D)
DdpExp7Low DEh Dig Exp Chan 7 Port C Low Nibble / (P3 D)

Daq* Command Reference (Standard API) Chapter 5

5-68 Programmer’s Manual

API Error Codes
Error
Name

Code #
hex - dec Description

DerrNoError 00h - 0 No error
DerrBadChannel 01h - 1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested DaqBook is not online
DerrNoDaqbook 03h - 3 DaqBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrInvChan 10h - 16 Invalid analog input channel
DerrInvCount 11h - 17 Invalid count parameter
DerrInvTrigSource 12h - 18 Invalid trigger source parameter
DerrInvLevel 13h - 19 Invalid trigger level parameter
DerrInvGain 14h - 20 Invalid channel gain parameter
DerrInvDacVal 15h - 21 Invalid DAC output parameter
DerrInvExpCard 16h - 22 Invalid expansion card parameter
DerrInvPort 17h - 23 Invalid port parameter
DerrInvChip 18h - 24 Invalid chip parameter
DerrInvDigVal 19h - 25 Invalid digital output parameter
DerrInvBitNum 1Ah - 26 Invalid bit number parameter
DerrInvClock 1Bh - 27 Invalid clock parameter
DerrInvTod 1Ch - 28 Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 Invalid counter number
DerrInvCntSource 1Eh - 30 Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 Invalid counter command parameter
DerrInvGateCtrl 20h - 32 Invalid gate control parameter
DerrInvOutputCtrl 21h - 33 Invalid output control parameter
DerrInvInterval 22h - 34 Invalid interval parameter
DerrTypeConflict 23h - 35 An integer was passed to a function requiring a character
DerrMultBackXfer 24h - 36 A second background transfer was requested
DerrInvDiv 25h - 37 Invalid Fout divisor
DerrTCE_TYPE 26h - 38 TC type out-of-range
DerrTCE_TRANGE 27h - 39 Temperature out-of-CJC-range
DerrTCE_VRANGE 28h - 40 Voltage out-of-TC-range
DerrTCE_PARAM 29h - 41 Unspecified parameter value error
DerrTCE_NOSETUP 2Ah - 42 dacTCConvert called before dacTCSetup
DerrNotCapable 2Bh - 43 DaqBook is incapable of function
DerrOverrun 2Ch - 44 A buffer overrun occurred
DerrNoPreTActive 32h - 50 No pretrigger configured
DerrInvDacChan 33h - 51 DAC channel does not exist
DerrInvDacParam 34h - 52 DAC parameter is invalid
DerrInvBuf 35h - 53 Buffer point to NULL or size
DerrMemAlloc 36h - 54 Could not allocate the needed memory
DerrUpdateRate 37h - 55 Could not achieve the specified update rate
DerrInvDacWave 38h - 56 Could not start waveforms because of missing or invalid parameters
DerrInvBackDac 39h - 57 Could not start waveforms with background transfers
DerrInvPredWave 3Ah - 58 Predefined waveform not supported
DerrRtdValue 3Bh - 59 rtdValue out-of-range
DerrRtdNoSetup 3Ch - 60 rtdConvert called before rtdSetup
DerrRtdArraySize 3Dh - 61 Temperature array not large enough
DerrRtdParam 3Eh - 62 Incorrect RTD parameter
DerrInvBankType 3Fh - 63 Invalid bank type specified
DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed
DerrInvFreq 41h - 65 Invalid scan frequency specified
DerrNoDaq 42h - 66 No Daq112B/216B installed
DerrInvOptionType 43h - 67 Invalid option type parameter
DerrInvOptionValue 44h - 68 Invalid option value parameter
DerrInvParam 45h - 69 Invalid parameter
DerrNoSetup 46h - 70 A …convert function was called before …setup
DerrArraySize 47h - 71 The array size is too small to hold converted data

Visual Basic VBX Support 6

Programmer’s Manual 6-1

Overview
Five VBX files provide access to all Daq* hardware functions including: analog input, analog output,
digital I/O, counter/timers, and communications. Each VBX tool has its own icon.

To use the VBX tools, add the DBK.VBX tool to your project by selecting Add File... from the File
item in the VB menu. A file selection box will allow you to select the VBX tool, then click OK. In the
same way, add as many of the other VBX tools as you need. For example, if your application requires
analog input only, just add the ADC.VBX (must also include dbk.bas). The following table describes
the five included VBXs and related drivers.

VBX Filename Description
DBK dbk.vbx Performs Daq* configuration and opening and closing the driver;

must be included
ADC adc.vbx Performs A/D functions, selectable
CTR ctr.vbx Performs Counter/Timer Functions, selectable
DAC dac.vbx Performs D/A functions, selectable
DIO dio.vbx Performs Digital I/O Functions, selectable

daqbook.dll DaqBook driver V1.7 or greater
dbk.bas Must be included if adc.vbx or ctr.vbx are used

To use the Daq* VB controls, place the DBK control on one of your forms with any or all of the
controls. Selecting a control on your application form will display its design-time properties in the
Properties window.

This chapter has 6 sections: one for each VBX and one of example programs.

DBK VBX
The following table lists general configuration properties of the VBXs.

• The “R/W” in the column heading stands for Read/Write. An “R” in this column means that the
property can be Read or assigned to a variable as follows: processStatus = ADC1.Active. A
“W” in this column means that the property can be Written to or assigned a value as follows:
ADC1.Arm = True. A “R/W” in this column means that the property possesses both read and
write characteristics.

• The “Access” column signifies whether the property is accessible in the Properties window.
“Run” in this column means the property can only be accessed in code at run-time (it is not
visible in the Properties window). If “Design” is in this column, the property is visible and
accessible in the Properties window at Design-time.

Visual Basic VBX Support Chapter 6

6-2 Programmer’s Manual

VBX General Configuration Properties
Property Description R/W Access Valid Settings
IntLevel Specifies the LPT interrupt level prior to assigning

the Open property
R/W Design/Run 0 - 7 (DaqBook)

10-15 (DaqBoard)
LptPort Specifies the LPT port number prior to assigning

the Open property
R/W Design/Run (DaqBook Only:)

0 - LPT1
1 - LPT2
2 - LPT3
3 -LPT4

Open After the LptPort, IntLevel, and Protocol
properties have been set, this method, if set to
True, initializes the driver and establishes
communication with the Daq*. If set to False,
this method performs a close function

W Run True to open
False to close

Protocol Specifies which type of parallel-port
implementation and protocol is available to the
computer

R/W Design/Run (DaqBook Only:)
0 - 8 bit I/O
1 - 4 bit I/O
2-Far Point F/Port EPP

Interface
3 - 82360SL EPP Interface

Version Return the hardware version number of the Daq*
being used

R Run 100 - DaqBook/100
112 -DaqBook/112
200-DaqBook/200
216-DaqBook/216
1100-DaqBoard/100
1112-DaqBoard/112
1200-DaqBoard/200
1216-DaqBoard/216

Type Specifies the type of hardware prior to assigning
the Open Property

R/W Design/Run 0 -DaqBook
1 - DaqBoard

ISA
Addres
s

Specifies the address of the base port for a
DaqBoard prior to assigning the open property

R/W Design/Run 0 -Port_0300
1 - Port_0304
2 -Port_0308...
15 -Port_033C

�DM
Chann
el

Specified the DMA channel for the DaqBoard
prior to assigning the Open Property

R/W Design/Run 0 -DMA None
1 - DMA 5
2 - DMA 6
3 - DMA 7

Event Routines- DBK:
None

DBK Properties

IntLevel

Access: Read and write
Valid settings: 0 - 7 for DaqBook; 10 - 15 for DaqBoard
Syntax: Dbk1.IntLevel = 7

Dbk1.LptPort = 0
Dbk1.Protocol = 0
Dbk1.Open = True ’This line usually appears in the Form_Load subroutineDbk1.
Open = False Closing the driver usually takes place in the Form_Unload subroutine

Specifies the LPT or DaqBoard interrupt level prior to assigning the Open property. The default
interrupt level is 7.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-3

LptPort (DaqBook Only)

Access: Read and write
Valid settings: 0 - LPT1; 1 - LPT2; 2 - LPT3; 3 - LPT4
Syntax: Dbk1.IntLevel = 7

Dbk1.LptPort = 0
Dbk1.Protocol = 0
Dbk1.Open = True ’This line usually appears in the Form_Load subroutine
Dbk1.Open = False ’Closing the driver usually takes place in the Form_Unload subroutine

Specifies the LPT port number prior to assigning the Open property. The default LPT port is 1. If you
only have one LPT port in the system, it is very likely LPT1.

Open

Access: Write only
Valid settings: True to open; False to close
Syntax: Dbk1.IntLevel = 7

Dbk1.LptPort = 0
Dbk1.Protocol = 0
Dbk1.Open = True ’This line usually appears in the Form_Load subroutine
Dbk1.Open = False ’Closing the driver usually takes place in the Form_Unload subroutine

After the LptPort or ISA Bus Address, IntLevel, and Protocol properties have been set, this method, if
set to True, initializes the driver and establishes communication with the Daq*. If set to False, this
method performs a close function.

Protocol (DaqBook Only)

Access: Read and write
Valid settings: 0 - 8 bit I/O

1 - 4 bit I/O
2 - Far Point F/Port EPP Interface
3 - 82360 SL EPP Interface
4 - Quatech SMC666 EPP Interface
5 - EPP Bios (Draft Revision 3)

Syntax: Dbk1.IntLevel = 7
Dbk1.LptPort = 0
Dbk1.Protocol = 0 ’Set to 8-bit protocol
Dbk1.Open = True ’This line usually appears in the Form_Load subroutine
Dbk1.Open = False ’Closing the driver usually takes place in the Form_Unload subroutine

Specifies which type of parallel-port implementation and protocol is available to the computer. EPP
(Enhanced Parallel Port) will allow the fastest data transfer, if it is supported by your LPT port. 8-bit
operation is 2nd fastest, while 4-bit is the slowest, but compatible with virtually all LPT ports.

Version

Access: Read only
Syntax: Dbk1.IntLevel = 7

Dbk1.LptPort = 0
Dbk1.Protocol = 0 ’Set to 8-bit protocol
Dbk1.Open = True ’This line usually appears in the Form_Load subroutine ersionNumber =
DBK1.Version.Dbk1.Open = False ’Closing the driver usually takes place in the Form_Unload

subroutine

Returns the hardware version of the Daq DAS Family being used, allowing the user to properly
interpret data and issue commands.

Visual Basic VBX Support Chapter 6

6-4 Programmer’s Manual

Type

Valid Settings: 0 - DaqBook; 1 - DaqBoard
Syntax: Dbk1.Type = 0 ’for a DaqBook product

Dbk1.IntLevel = 7
Dbk1.LptPort = 0
Dbk1.Protocol = 0
Dbk1.Open = TRUE

Specifies the type of hardware to being attached to prior to assigning the Open property. Some of the
DBK VBX’s properties are only relevant for one hardware type or the other. The default value is 0 -
DaqBook.

ISA Address

Valid Settings: 0 - Port_0300
1 - Port_0304
2 - Port_0308...
15 - Port_033C

Syntax: Dbk1.Type = 1 ’for a DaqBoard product
Dbk1.IntLevel = 8 ’ for interrupt 10
Dbk1.IsaAddress = PORT_0300
Dbk1.DmaChannel = DMA5
Dbk1.Open = TRUE

Specifies the address of the base port for a DaqBoard product prior to assigning the Open property.
The base port address are set on hardware switches. The addresses start at &H300 and are spaced
every 4 addresses from there. e.g. &H300, &H304, &H308 &H30C, The default is PORT_0300.

DMA Channel

Valid Settings: 0 - DMA None
1 - DMA 5
2 - DMA 6
3 - DMA 7

Syntax: Dbk1.Type = 1 ’for a DaqBoard product
Dbk1.IntLevel = 8 ’ for interrupt 10
Dbk1.IsaAddress = PORT_0300
Dbk1.DmaChannel = DMA5
Dbk1.Open = TRUE

Specifies the DMA channel to be used for a DaqBoard product prior to assigning the Open property.
The default is DMANONE (no DMA used).

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-5

ADC VBX

ADC VBX Property Summary
Property Description R/

W
Access Valid Settings

Active A status flag showing if the acquisition is active R Run True or False
Arm After all of the acquisition parameters are set, this property arms

the acquisition
W Run True to Arm

False to Disarm
BipolarArray When UseChanArray is true, BipolarArray holds the pole

configuration values for the associated channel in the
ChanArray. (DaqBook/200 and DaqBoards only)

W Run An integer array of
elements assigned
to either True or
False.

Buffer Points to the user buffer for the incoming data. All data is
collected directly into a VB integer buffer in the background

W Run The 0th element of a
user-dimensioned
integer array.

Buffered Represents how many scans have been collected and placed in
the buffer.

R Run 0-4000000

BufferLength Represents the usable length of the user-allocated integer array. R/
W

Design/
Run

1 to 32767

BufferOverrun Indicates whether or not a buffer overrun condition exists. R Run True or False
ChanArray When UseChanArray is true, ChanArray holds the array of

channels used in the scan
W Run An integer array of

channel numbers,
each with a value of
0 to 272 .

EndChan When UseChanArray is false, StartChan represents the first
channel in a channel range that ends with EndChan

R/
W

Design/
Run

0 - 272
See channel table.

Frequency Sets the scan rate for acquisitions containing more than one scan R/
W

Design/
Run

100000.0 to 0.0002

GainArray When UseChanArray is true, GainArray holds the gain values for
the associated channels in the ChanArray

W Run An integer array of
gain values.

See gain table.
GlobalGain When UseChanArray is false, GlobalGain represents the gain to

be used on all of the channels specified in the channel range
StartChan to EndChan

R/
W

Design/
Run

See gain table.

GlobalBipolar When UseChanArray is false, specifies the bipolar or unipolar
inputs for all channels in the scan range specified by StartChan
through EndChan. (DaqBook/200 only

R/
W

Design/
Run

True or False

NumChannels When UseChanArray is true, NumChannels holds an integer
representing the number of channels in the channel array

R/
W

Design/
Run

1 - 512

NumScans The number of scans to collect R/
W

Design/
Run

1 - 32767,
or -1 for infinite cycle

OneShot If true enables one-shot trigger mode R/
W

Design/
Run

True or False

GlobalSE Specifies Single Ended or Differential inputs (DaqBook/200 only R/
W

Design/
Run

True or False

SoftTrig If trigger source is Software, provides the trigger condition W Run True to trigger
StartChan When UseChanArray is false, StartChan represents the first

channel in a channel range that ends with EndChan
R/

W
Design/

Run
0 - 272
See channel table in

chapter 11.
TrigLevel The analog trigger setpoint R/

W
Design/

Run
-10.0 to +10.0 volts

TrigRefVoltage If analog trigger is the source, this represents the external
reference voltage of D/A channel 1

R/
W

Design/
Run

-10.0 to 0.0 volts

TrigSource The source of the trigger R/
W

Design/
Run

0 - Software
1 - TTL
2 - Analog

TrigSourceRising Specifies a rising or a falling trigger (TTL and Analog only R/
W

Design/
Run

True or False

UseChanArray Specifies use of StartChan/EndChan or ChanArray to specify the
desired channels in the scans.

R/
W

Design/
Run

True or False

Visual Basic VBX Support Chapter 6

6-6 Programmer’s Manual

Event Routines- ADC
When the ADC.VBX tool is placed on an application form, 2 subroutine stubs are automatically
created. They are:

Sub ADC1_Triggered()
Sub ADC1_AcquisitionComplete()

When the system trigger has been satisfied by either an internal or external event, the subroutine
ADC1_Triggered is automatically called. Code required to post status or begin the data transfer
process can be located in this routine.

The trigger event is monitored in the hardware and passed on the custom control in the background
during the transfer of the first block of data that has been buffered in the external hardware. If the
sample frequency is slow, the external buffer may take a few seconds to fill, delaying the notification of
the custom control that the trigger has been satisfied.

When the acquisition is completely finished, the Active property will become false and the subroutine
ADC1_AcquisitionComplete will automatically be called.

ADC.VBX Note
When using the analog input control, the file DBK.BAS must be added to your application. This file
contains the function declaration addressof which gets the address of a VB integer array. The Buffer
property accepts this pointer.

Example:
Dim MyData(1000)As Integer

’The Following line would typically be placed in the Form_Load subroutine.
ADC1.Buffer = addressof(MyData(0))

ADC VBX Properties
The gain definitions are shown in the table.

VBX Gain Entry Table
0 - Base Unit X1 20 - Dbk13 ×200 40 - Dbk16 Set Offset
1 - Base Unit ×2 21 - Dbk13 ×400 41 - Dbk16 Input Gain
2 - Base Unit ×4 22 - Dbk13 ×800 42 - Dbk16 Scaling Gain
3 - Base Unit ×8 23 - Dbk13 ×1000 43 - 00 Hex (reserved)
4 - Dbk12 ×1 24 - Dbk13 ×2000 44 - 01 Hex (reserved)
5 - Dbk12 ×2 25 - Dbk13 ×4000 45 - 02 Hex (reserved)
6 - Dbk12 ×4 26 - Dbk13 ×8000 46 - 03 Hex (reserved)
7 - Dbk12 ×8 27 - Dbk14 Bipolar CJC 47 - 10 Hex (reserved)
8 - Dbk12 ×16 28 - Dbk14 Bipolar Type J 48 - 11 Hex (reserved)
9 - Dbk12 ×32 29 - Dbk14 Bipolar Type K 49 - 12 Hex (reserved)
10 - Dbk12 ×64 30 - Dbk14 Bipolar Type T 50 - 13 Hex (reserved)
11 - Dbk13 ×1 31 - Dbk14 Unipolar CJC 51 - 20 Hex (reserved)
12 - Dbk13 ×2 32 - Dbk14 Unipolar Type J 52 - 21 Hex (reserved)
13 - Dbk13 ×4 33 - Dbk14 Unipolar Type K 53 - 22 Hex (reserved)
14 - Dbk13 ×8 34 - Dbk14 Unipolar TypeT 54 - 23 Hex (reserved)
15 - Dbk13 ×10 35 - Dbk15 Bipolar ×1 55 - 30 Hex (reserved)
16 - Dbk13 ×20 36 - Dbk15 Bipolar ×2 56 - 31 Hex (reserved)
17 - Dbk13 ×40 37 - Dbk15 Unipolar ×1 57 - 32 Hex (reserved)
18 - Dbk13 ×80 38 - Dbk15 Unipolar ×2 58 - 33 Hex (reserved)
19 - Dbk13 ×100 39 - Dbk16 Read Bridge

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-7

Active

Access: Read only
Valid setting: True or False
Syntax: If ADC1.Active = False then MsgBox “The acquisition is inactive”

The Active property serves as a status flag to show the state of the armed acquisition. At run-time the
Active property returns True to signify that the acquisition is still active, and false if inactive. This
property is useful when the state of the acquisition is in question. Upon completion of any acquisition,
the Acquisition_Complete routine is automatically called. If polling the acquisition is preferred, use
the Active property.

Arm

Access: Write Only
Valid settings: True to Arm, False to Disarm
Syntax: Adc1.Arm = True ’Start the acquisition

Adc1.Arm = False ’Stop the acquisition

After all of the acquisition parameters are set, this property arms the acquisition. Setting this property
to True arms the acquisition, setting it to False stops data collection and disarms the acquisition.

The ADC VBX “ARM” code only uses “Bipolar Array” or “GlobalBipolar” when utilizing the
following components: DaqBook/200, DaqBoard/100/200.

The “ARM” code uses “GlobalSE” (single-ended) only if “UseChanArray” is true, when using the
above components.

The “BopolarArray” & “GlobalBipolar” properties have no effect with the following components:
DaqBook/216, DaqBoard/112/216

BipolarArray (DaqBook/200 & DaqBoards Only)

Access: Write only
Valid settings: True for Bipolar and False for Unipolar
Syntax: Adc1.UseChanArray = True

For i = 0 to 15
 Adc1.chanArray(i) = i
 Adc1.gainArray(i) = 0
 Adc1.BipolarArray(i) = TRUE ’Set all chans in scan to bipolar
Next i
Adc1.NumChannels = 16

When UseChanArray is true, BipolarArray holds the pole configuration values for the associated
channel in the ChanArray. Up to 512 array elements can be assigned a value of True or False. The
NumChannels property is used to tell the custom control which element in the ChanArray holds the last
valid channel.

Visual Basic VBX Support Chapter 6

6-8 Programmer’s Manual

Buffer

Access: Write only
Valid settings: A pointer to the 0th element of a user-dimensioned integer array.
Syntax: Dim arrayBuffer(1000) as integer

Adc1.Buffer = addressof(arrayBuffer(0))
Adc1.BufferLength = 1000

The ADC VBX collects all readings in the background under interrupt control. As the data is acquired,
it is placed directly into a user-dimensioned VB integer array. Assign the Buffer property the value of
the pointer to the integer array. Once dimensioned, the pointer to the integer array is yielded from the
function call “addressof”, supplied in the file DBK.BAS. The data in the integer array can be accessed
concurrently with the acquisition. The number of valid scans in the integer array can be queried using
the Buffered property.

Before any analog input operations are performed, the Buffer property must be assigned a pointer to a
valid, dimensioned integer array. The dimensioned array must remain valid during the entire
background acquisition. If the array is dimensioned within a subroutine using the ReDim command,
this array will be de-allocated as the program leaves the subroutine. If the acquisition is still active, the
acquisition will write over an undefined area of memory. For this reason, it is recommended that the
array be dimensioned as a Global variable. The assignment of the buffer pointer to the Buffer property
is typically done in the Form_Load subroutine.

Buffered

Access: Read only
Valid settings: 0 - 4000000
Syntax: Static ScansProcessed as Long

If ScansProcessed Adc1.Buffered then
Call moveNewScan
End if

During the acquisition, the buffer is filled with incoming scans. The Buffered property holds the
number of buffered scans that are presently valid in the integer array. For applications that need to act
on the data as it is coming in, the Buffered property provides the number of valid scans in the buffer.
To calculate the array index for any one sample, the number of the scan should be multiplied by the
number of channels in the scan. For example, if there are 4 channels in the scan, and the Buffered
property show 100 scans, the number of valid values in the integer array is 400.

If the NumScans property is set to -1, the Daq DAS Family is in Cycle mode, collecting an infinite
number of scans. In this mode, the integer array will be modeled as a circular buffer, starting at the
beginning as the end is reached. The program is responsible for moving the data to a new location, to
disk for example, before old data is overwritten. When in Cycle mode, the Buffered property can
exceed the size of the buffer by many times since it is keeping track of the total number of scans that
have been collected, not just the number that are presently in the buffer. Your program should keep
track of the number of scans processed and compare that number with the value of the Buffered
property to see if new data is present.

BufferLength

Access: Read and Write
Valid settings: 1 to 32767
Syntax: Dim arrayBuffer(1000) as integer

Adc1.Buffer = addressof(arrayBuffer(0))
Adc1.BufferLength = 1000

Represents the usable length of the user-allocated integer array that was assigned to the Buffer
property. Assigning the correct value to BufferLength keeps the acquisition from accidently
overrunning the end of the dimensioned array. When the NumScans property is set to -1 (infinite cycle
mode), the BufferLength property is used by the control to know when to wrap to the beginning of the
buffer.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-9

BufferOverrun

Access: Read only
Valid setting: True or False
Syntax: If Adc1.BufferOverrun = True then MsgBox “The FIFO has overrun, data may be missing”

The Daq* has a FIFO (first in first out) buffer on the A/D converter. The ADC.VBX control monitors
the amount of data in the FIFO and automatically transfers it into the VB integer array in the
background. If the speed of the acquisition is greater than the speed at which the computer is able to
upload the data, the FIFO will eventually overrun, setting the BufferOverrun property to True.

ChanArray

Access: Write only
Valid settings: Each element can be assigned a channel number from 0 to 272.
Syntax: Adc1.UseChanArray = True

For i = 0 to 15
 Adc1.chanArray(i) = i : Adc1.gainArray(i) = 0
Next i
Adc1.NumChannels = 16

When UseChanArray is true, ChanArray holds the array of channels used in the scan. Up to 512 array
elements can be loaded with any channel number in any order. The sample data in the buffer will be in
the same order as the channels in the ChanArray. The NumChannels property is used with the
ChanArray property to tell the custom control which element in the ChanArray holds the last valid
channel.

EndChan

Access: Read and write.
Valid settings: 0 - 272. StartChan must be less than or equal to EndChan.
Syntax: Adc1.StartChan = 0

Adc1.EndChan = 3
Adc1.GlobalGain = 0

When UseChanArray is false, StartChan represents the first channel in a channel range that ends with
EndChan. When StartChan and EndChan are used, it is not possible to assign individual gains to the
channels, the GlobalGain property is used to assign a gain to all channels in the scan.

Frequency

Access: Read and write
Valid settings: 100000.0 to 0.0002
Syntax: Adc1.Frequency = 1000 ’Set scan rate to 1kHz

Sets the scan rate, in hertz, for acquisitions containing more than one scan.

GainArray

Access: Write only
Valid settings: Any valid gain value.
Syntax: Adc1.UseChanArray = True

For i = 0 to 15
 Adc1.chanArray(i) = i : Adc1.gainArray(i) = 0
Next i
Adc1.NumChannels = 16

When UseChanArray is true, GainArray holds the gain values for the associated channels in the
ChanArray. A scan can consist of as many as 512 channels, in any order. The property NumChannels
is used to tell the custom control which element in the ChanArray holds the last valid channel number.

Visual Basic VBX Support Chapter 6

6-10 Programmer’s Manual

GlobalGain

Access: Read and write
Valid settings: Any valid gain value.
Syntax: Adc1.StartChan = 0

Adc1.EndChan = 3
Adc1.GlobalGain = 0

When UseChanArray is false, GlobalGain represents the gain to be used on all of the channels specified
in the channel range StartChan to EndChan. When StartChan and EndChan are used, it is not possible
to assign individual gains to the channels; the GlobalGain property is used to assign a gain to all
channels in the scan.

GlobalBipolar (DaqBook/200 & DaqBoards Only)

Access: Read and write
Valid settings: True for bipolar, False for unipolar
Syntax: Adc1.StartChan = 0

Adc1.EndChan = 3
Adc1.GlobalGain = 0
Adc1.GlobalBipolar = True ’Set all channels in scan to Bipolar

When UseChanArray is false, specifies the bipolar or unipolar inputs for all channels in the scan range
specified by StartChan through EndChan. When StartChan and EndChan are used, it is not possible to
assign individual pole values to the channels; the GlobalBipolar property is used to assign bipolar or
unipolar to all channels in the scan.

NumChannels

Access: Read and write
Valid settings: 1 - 512
Syntax: Adc1.UseChanArray = True

For i = 0 to 15
 Adc1.chanArray(i) = i : Adc1.gainArray(i) = 0
Next i
Adc1.NumChannels = 16

When UseChanArray is true, NumChannels holds an integer representing the number of channels in the
ChanArray properties. The NumChannels property is used in conjunction with the ChanArray property
to tell the custom control which element in the ChanArray holds the last valid channel.

NumScans

Access: Read and write
Valid settings: 1 - 32767, or -1 for infinite cycle
Syntax: Adc1.NumScans = 1000 ’collect 1000 scans.

The number of scans to collect. If NumScans is set to -1, the acquisition will continue until it is
disarmed by setting the Arm property to false. When the BufferLength is reached, the buffer will wrap
around to the beginning, overwriting the oldest scans. In this case, your application should monitor the
Buffered property and move the data to other destinations before it is overwritten.

OneShot

Access: Read and write
Valid settings: True to enable one-shot trigger mode

False to disable one-shot trigger mode.
Syntax: Adc1.OneShot = True ’Take a scan every trigger event.

When set to true, this property enables one-shot trigger mode, taking one scan on every occurrence of
the specified trigger event. When in this mode, the Frequency and NumScans properties are ignored.
One-shot trigger mode is useful for synchronizing scans with external events rather than a timebase.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-11

GlobalSE (DaqBook/200 & DaqBoards Only)

Access: Read and write
Valid settings: True for SE

False for DIFF
Syntax: Adc1.GlobalSE = True ’Set input configuration to SE

The DaqBook/200 provides programmable control of the single-ended/differential input circuitry. This
property sets the system-wide input configuration.

SoftTrig

Access: Write
Valid settings: True to trigger
Syntax: Adc1.TrigSource = 0 ’Set source to Software

Adc1.Arm = True ’Arm the acquisition
Adc1.SoftTrig = True ’Trigger the acquisition

When TrigSource is set to Software, and Arm is set to True, set this property to True to initiate the
acquisition trigger. If TrigSource is not set to Software when SoftTrig is set to True, the message
“Software Trigger Source Not Selected” appears. No acquisition can be triggered unless the
acquisition is first armed by setting the Arm property to True.

StartChan

Access: Read and write.
Valid settings: 0 - 272. StartChan must be less than or equal to EndChan.
Syntax: Adc1.StartChan = 0

Adc1.EndChan = 3
Adc1.GlobalGain = 0

When UseChanArray is false, StartChan represents the first channel in a channel range that ends with
EndChan. When StartChan and EndChan are used, it is not possible to assign individual gains to the
channels; instead the GlobalGain property is used to assign a gain to all channels in the scan.

TrigLevel

Access: Read and write
Valid settings: -10.0 to +10.0 volts
Syntax: Adc1.TrigLevel = 2.0 ’Trigger on 2 volts

Adc1.TrigSourceRising = True ’Trigger on rising edge
Adc1.TrigRefVoltage = -5.0 ’Set to default value
Adc1.Arm = True ’Arm the acquisition

When the TrigSource is set to Analog, this property provides the voltage level at which the acquisition
will be triggered. To trigger as the voltage rises through the setpoint, set the TrigSourceRising
property to true, set it to false to trigger on a falling edge. DAC1 is used to provide the analog
comparator voltage for the analog trigger source. When the analog trigger source is used, DAC1
becomes unavailable for other purposes.

TrigRefVoltage

Access: Read and write
Valid settings: -10.0 to 0.0 volts
Syntax: Adc1.TrigSource = 2 ’Set the trigger source to Analog

Adc1.TrigLevel = 2.0 ’Trigger on 2 volts
Adc1.TrigSourceRising = True ’Trigger on rising edge
Adc1.TrigRefVoltage = -5.0 ’Set to default value
Adc1.Arm = True ’Arm the acquisition

DAC1 is used as the analog trigger comparator input. When the TrigSource property is set to Analog,
the value of DAC1 is set by the TrigLevel property in volts. To calculate the binary value required by
the 12-bit DAC, the DAC reference voltage must be known. The factory default, internal reference is -
5 volts; but when set to External, voltages from 0 to -10 can be applied.

Visual Basic VBX Support Chapter 6

6-12 Programmer’s Manual

TrigSource

Access: Read and write
Valid settings: 0 - Software, 1 - TTL , 2 - Analog
Syntax: Adc1.TrigSource = 2 ’Set the trigger source to Analog

Adc1.TrigLevel = 2.0 ’Trigger on 2 volts
Adc1.TrigSourceRising = True ’Trigger on rising edge
Adc1.TrigRefVoltage = -5.0 ’Set to default value
Adc1.Arm = True ’Arm the acquisitionor
Adc1.TrigSource = 1 ’Set the trigger source to TTL
Adc1.TrigSourceRising = False ’Trigger on falling edge
Adc1.Arm = True ’Arm the acquisitionor
Adc1.TrigSource = 0 ’Set the trigger source to Software
Adc1.Arm = True ’Arm the acquisition
Adc1.SoftTrig = True ’Trigger the acquisition

The TrigSource property specifies the source of the trigger event. When the trigger source is Software,
the property SoftTrig must be set to true to trigger the acquisition. When set to TTL or Analog,
external events are required to trigger the acquisition. Setting the SoftTrig property to True without
having set the TrigSource property to Software Trigger will generate the message “Software Trigger
Source Not Selected.”

The property TrigSourceRising should be used in conjunction with the TTL and Analog source to
select which edge of the external signal should trigger the system. The properties TrigLevel and
TrigRefVoltage should be set when using the Analog trigger source to select the level of the analog
input voltage on which to trigger.

TrigSourceRising

Access: Read and write
Valid settings: True for rising, False for falling
Syntax: Adc1.TrigSource = 1 ’Set the trigger source to TTL

Adc1.TrigSourceRising = False ’Trigger on falling edge
Adc1.Arm = True ’Arm the acquisition

When the TrigSource property is set to TTL or Analog, the TrigSourceRising property specifies which
edge of the external trigger signal will cause the trigger.

UseChanArray

Access: Read and write
Valid settings: True to use ChanArray

False to use StartChan and EndChan
Syntax: Adc1.UseChanArray = True

For i = 0 to 15
 Adc1.chanArray(i) = i : Adc1.gainArray(i) = 0
Next i
Adc1.NumChannels = 16
or
Adc1.UseChanArray = False
Adc1.StartChan = 0
Adc1.EndChan = 3
Adc1.GlobalGain = 0

When UseChanArray is true, ChanArray holds the array of channels used in the scan. When
UseChanArray is false, the channels in the scan are defined by the StartChan and EndChan properties.
If your application requires a channel scan of non-consecutive channels, or channels repeated in a scan,
or if you need to set individual channels to different gains, the ChanArray property should be used
instead of the StartChan and EndChan properties.

Up to 512 array elements can be loaded with any channel number in any order. The sample data in the
buffer will be in the same order as the channels in the ChanArray. The NumChannels property is used
in conjunction with the ChanArray property to tell the custom control which element in the ChanArray
holds the last valid channel.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-13

CTR VBX
Counter/Timer Properties

Property Description R/W Access Valid Settings
Active A status flag showing if the acquisition is

active.
R Run True or False

Alarm1 Writes a value to the alarm register #1 W Run 0 - 65535
Alarm2 Writes a value to the alarm register #2 W Run 0 - 65535
Arm Arm the enabled counters to start

counting.
W Run True to Arm

Buffered Represents how many scans have been
collected and placed in the buffer.

R Run 0 -4000000

BufferLength Represents the usable length of the user-
allocated arrays.

R/W Design/Run 1 to 32767

Comp1Enable Enables/Disables Comparator #1 R/W Design/Run True or False
Comp2Enable Enables/Disables Comparator #2 R/W Design/Run True or False
Disarm Disable the enabled counters from

counting
W Run True to disarm

DisarmSave Disable the enabled counters and move
their current values to their respective
hold registers

W Run True to disarm and save

FoutDivider Selects the divider of the selected source
before outputting the signal on fout

R/W Design/Run 0 -Divide by 16
1 -Divide by 1
2-Divide by 2
3-Divide by 3
4-Divide by 4
5-Divide by 5
6-Divide by 6
7-Divide by 7
8-Divide by 8
9-Divide by 9
10-Divide by 10
11-Divide by 11
12-Divide by 12
13-Divide by 13
14-Divide by 14
15-Divide by 15

FoutSource Specifies the frequency output source R/W Design/Run 0 - Fout Disabled
1-Counter 1 Input
2-Counter 2 Input
3-Counter 3 Input
4-Counter 4 Input
5-Counter 5 Input
6-Counter 1 Gate
7-Counter 2 Gate
8-Counter 3 Gate
9-Counter 4 Gate
10-Counter 5 Gate
11-1 MHz Clk
12-100 kHz Clk
13-10 kHz Clk
14-1 kHz Clk
15 -100 Hz Clk

FreqCnt Specifies the number of counts
accumulated in the gating interval

R Run 0 - 65535

FreqCntSource Specifies which external input to read
frequency from

R/W Design/Run 1-Counter 1 Input
2-Counter 2 Input
3-Counter 3 Input
4-Counter 4 Input
5-Counter 5 Input
6-Counter 1 Gate
7-Counter 2 Gate
8-Counter 3 Gate
9 -Counter 4 Gate

FreqInterval Specifies the gating interval in which to
compute frequency

R/W Design/Run 1 - 32767
milliseconds

Load Load the initial counter values of the
enabled counters with their respective
load or hold registers

W Run True to activate

LoadArm Load the initial counter values of the
enabled counters with their respective

W Run True to activate

Visual Basic VBX Support Chapter 6

6-14 Programmer’s Manual

Counter/Timer Properties
Property Description R/W Access Valid Settings

load or hold registers and enable the
counters to start counting.

NumScans The number of scans to collect R/W Design/Run 1 - 32767, or -1 for infinite
cycle

ReadCounters Initiate reading of the values of the
specified counters in the background
using interrupts or stop the current
background reading.

W Run True to initiate
False to stop

Save Transfer the current counter values of the
enabled counters to their respective hold
registers.

W Run True to activate

SetMasterMode Set the counters master mode register with
the values previously specified in the
master mode properties

W Run True to activate

SetCounterMode Set the 9513’s Mode register for the
specified counter with values previously
specified in the set counter properties

W Run 1-5 signifying the counter
number.

TimeOfDay Enables or Disables the time of day
operation

R/W Design/Run 0 - Disabled
1 - Divide by 5
2 - Divide by 6
3 - Divide by 10

CxBuffer
x = 1-5 for

counters 1-5

Points to the user buffer for the incoming
data from ctr #x or 0 if ctr #x is not to be
read

W Run The 0th element of a user-
dimensioned integer array
or 0

CxCntDir
x = 1-5 for

counters 1-5

Selects whether ctr #x will count up or
 down

R/W Design/Run 0 - down
1 - up

CxCntEdge
x = 1-5 for

counters 1-5

Selects whether ctr #x will count when it
receives a rising or falling edge on its
count source

R/W Design/Run 0 - neg. count edge
1 - pos. count edge

CxCntRepeat
x = 1-5 for

counters 1-5

Enables/Disables rearming ctr #x after
terminal count occurs

R/W Design/Run True or False

CxCntSource
x = 1-5 for

counters 1-5

Selects the source used as input to ctr #x R/W Design/Run 0 - TC toggled output of last
ctr

1 - Counter 1 Input
2 - Counter 2 Input
3 - Counter 3 Input
4 - Counter 4 Input
5 -Counter 5 Input
6 - Counter 1 Gate
7 - Counter 2 Gate
8 - Counter 3 Gate
9 - Counter 4 Gate
10 -Counter 5 Gate
11 - 1 MHz Clk
12 - 100 kHz Clk
13 - 10 kHz Clk
14 - 1 kHz Clk
15 - 100 Hz Clk

CxCntType
x = 1-5 for

counters 1-5

Select binary or BCD counting for ctr #x R/W Design/Run 0 - Binary
1 -BCD

CxEnable
x = 1-5 for

counters 1-5

Enables/Disables ctr #x to respond to the
Arm, Disarm, DisarmSave, Load,
LoadArm and Save properties

R/W Design/Run True or False

CxGateCtrl
x = 1-5 for

counters 1-5

Selects how ctr #x will use its gate input or
another counter’s gate input

R/W Design/Run 0 - Gating Disabled
1 - Level Hi of TC toggled

output of last ctr
2 - Level Hi of gate of next ctr
3 -Level Hi of gate of last ctr
4 - Level Hi of gate of this ctr
5 - Level Lo of gate of this ctr
6 - Rising edge of gate of this

ctr
7 - Falling edge of gate of

this ctr
CxHold
 x = 1-5 for

counters 1-5

Reads the value of or writes a value to the
hold register of ctr #x

R/W Run 0 - 65535

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-15

Counter/Timer Properties
Property Description R/W Access Valid Settings
CxLoad
x = 1-5 for

counters 1-5

Writes a value to the load register of ctr #x W Run 0 - 65535

CxOutput
x = 1-5 for

counters 1-5

Specifies the state of ctr #x’s output R/W Design/Run 0 - Inactive, always low
1 - High pulse on terminal

count
2 - Toggled on terminal count
3 - Inactive, High impedance
4 - Low pulse on terminal

count
CxReload
x = 1-5 for

counters 1-5

Programs ctr #x to reload from its load
register or reload from either its hold
register or load register

R/W Design/Run 0 - Reload from Load
1 - Reload from Load or Hold

CxSpecialGate
x = 1-5 for

counters 1-5

Enables/Disables the special gate for ctr
#x

R/W Design/Run True or False

Event Routines - CTR
When the CTR.VBX tool is placed on an application form, 2 subroutine stubs are automatically
created. They are:

Sub CTR1_Triggered()
Sub CTR1_AcquisitionComplete()

When the system trigger has been satisfied by either an internal or external event, the subroutine
CTR1_Triggered is automatically called. Code required to post status or begin the data transfer
process can be located in this routine.

The trigger event is monitored in the hardware. It is then passed to the custom control (in the
background) during the transfer of the first block of data which has been buffered in the external
hardware.

When the acquisition is completely finished, the Active property will become false and the subroutine
CTR1_AcquisitionComplete will automatically be called.

CTR.VBX Note
When using the counter/timer control, the file DBK.BAS must be added to your application. This file
contains the function declaration, “addressof”, which gets the address of a VB integer array. The
Buffer property accepts this pointer.

Example:
Dim MyData(1000)As Integer

’The Following line would typically be placed in the Form_Load subroutine.
Ctr1.C1Buffer = addressof(MyData(0))

Visual Basic VBX Support Chapter 6

6-16 Programmer’s Manual

CTR VBX Properties

Active

Access: Read only
Valid setting: True or False
Syntax: If Ctr1.Active = False then MsgBox “The acquisition is inactive”

The Active property serves as a status flag to show the state of the armed acquisition. At run-time the
Active property returns True to signify that the acquisition is still active, and false is inactive. This
property is useful when the state of the acquisition is in question. Upon completion of any acquisition,
the Acquisition_Complete routine is automatically called. If polling the acquisition is preferred, use
the Active property.

Alarm1, Alarm2

Access: Write only
Valid setting: 0 - 65535
Syntax: Ctr1.Comp1Enable = True ’ Enable comparator #1

Ctr1.Alarm1 = 1000 ’ Set the Alarm register #1 to 1000
Ctr1.SetMasterMode = True

Specifies the value to write to the alarm registers 1 or 2, respectively. These alarm registers are only
used if the corresponding comparators are enabled with the Comp1Enable and Comp2Enable
properties. The operation of these registers is described under the SetMasterMode property.

Arm

Access: Write only
Valid setting: True to arm, False does nothing
Syntax: Ctr1.C1Enable = True

Ctr1.C3Enable = True
Ctr1.Arm = True ’ Arm counters 1 and 3

Arm enables one or more counters to start counting. Setting this property to true will simultaneously
start all counters that have the CnEnable (n=1 to 5) property set to true. This is usually done after all
the other properties of the corresponding counters have been set. Setting this property to false does
nothing.

Buffered

Access: Read only
Valid settings: 0 - 4000000
Syntax: Static ScansProcessed as Long

If ScansProcessed Ctr1.Buffered then
 Call moveNewScan
End if

During an acquisition, the buffer specified by the CxBuffer (x=1 to 5) property is filled with incoming
data. The Buffered property holds the number of buffered scans that are presently valid in the integer
array. A scan of the counters consists of one reading from each of the counters configured with a non-
zero CxBuffer property.

If the NumScans property is set to -1, the acquisition is in Cycle mode, collecting an infinite number of
scans. In this mode, the integer array will be modeled as a circular buffer, starting at the beginning as
the end is reached. The program is responsible for moving the data to a new location, to disk for
example, before old data is overwritten. When in Cycle mode, the Buffered property can exceed the
size of the buffer by many times since it is keeping track of the total number of scans that have been
collected, not just the number that are presently in the buffer. Your program should keep track of the
number of scans processed and compare that number with the value of the Buffered property to see if
new data is present.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-17

BufferLength

Access: Read and Write
Valid setting: 1 to 32767
Syntax: Dim arrayBuffer(1000) as integer

Ctr1.C1Buffer = addressOf(arrayBuffer(0))
Ctr1.BufferLength = 1000

Represents the usable length of the user-allocated integer array that was assigned to the CxBuffer (x=1
to 5) property. Assigning the correct value to BufferLength keeps the acquisition from accidently
overrunning the end of the dimensioned array. If more than one buffer has been defined by the
CxBuffer property and the buffers are not dimensioned to be the same size, the BufferLength should be
set to the size of the smallest buffer. When the NumScans property is set to -1 (infinite cycle mode),
the BufferLength property is used by the control to know when to wrap to the beginning of the buffer.

Comp1Enable, Comp2Enable

Access: Read and Write
Valid setting: True or False
Syntax: Ctr1.Comp1Enable = True ’ Enable comparator #1

Ctr1.Alarm1 = 1000 ’ Set the Alarm register #1 to 1000
Ctr1.SetMasterMode = True

Enables/disables the use of comparators 1 or 2, respectively. The operation of the comparators is
described under the SetMasterMode property.

Disarm

Access: Write only
Valid setting: True to disarm, False does nothing
Syntax: Ctr1.C1Enable = True

Ctr1.C3Enable = True
Ctr1.Disarm = True ’ Disarm counters 1 and 3

Disarm stops one or more counters from counting. Setting this property to true will simultaneously
stop all counters that have the CxEnable (x=1 to 5) property set to true. Setting this property to false
does nothing.

DisarmSave

Access: Write only
Valid setting: True to disarm and save, False does nothing
Syntax: Ctr1.C1Enable = True

Ctr1.C3Enable = True
Ctr1.DisarmSave = True ’ Disarm and save counters 1 and 3
count% = Ctr1.C1Hold ’ Read the saved value from counter 1

Disarm stops one or more counters from counting and saves the count values of the counters in the hold
register. Setting this property to true will simultaneously stop all counters that have the CxEnable (x=1
to 5) property set to true. This property also saves the count values of those counters to the hold
register which can be read using the Hold property. Setting this property to false does nothing.

Visual Basic VBX Support Chapter 6

6-18 Programmer’s Manual

FoutDivider

Access: Read and Write
Valid setting: 0- Divide by 16

1- Divide by 1
2- Divide by 2
3- Divide by 3

4- Divide by 4
5- Divide by 5
6- Divide by 6
7- Divide by 7

8- Divide by 8
9- Divide by 9
10- Divide by 10
11- Divide by 11

12- Divide by 12
13- Divide by 13
14- Divide by 14
15- Divide by 15

Syntax: Ctr1.FoutSource = 15 ’ Select 100Hz internal clock as the Fout source
Ctr1.FoutDivider = 5 ’ Select a divider of 5 for a 20Hz Fout signal
Ctr1.SetMasterMode = True ’ Configure the master mode register

The FoutDivider property selects a divider of the FoutSource property. The source defined by the
FoutSource will be divided by this value before outputting the signal on the FOUT line (pin 30 of P3).

FoutSource

Access: Read and Write
Valid setting: Value Source P3 Pin

0 Fout Disabled N/A
1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14
10 Counter 5 Gate 12
11 1 MHz Clk Internal
12 100 kHz Clk Internal
13 10 kHz Clk Internal
14 1 kHz Clk Internal
15 100 Hz Clk Internal

Syntax: Ctr1.FoutSource = 15 ’ Select 100 Hz internal clock as the Fout source
Ctr1.FoutDivider = 5 ’ Select a divider of 5 for a 20 Hz Fout signal
Ctr1.SetMasterMode = True ’ Configure the master mode register

The FoutSource property selects the source of the FOUT line (pin 30 of P3). This source will then be
divided by the value set by the FoutDivider property and output onto the FOUT line. Setting this
property to 0 will disable the FOUT signal. The possible inputs include each of the 5 counter input or
gate lines or one of 5 internal clock frequencies. See the following table for a complete listing of
sources and pin numbers.

FreqCnt

Access: Read only
Valid setting: 0 - 65535
Syntax: Ctr1.FreqSource = 1 ’ Select counter 1 input as the frequency source

Ctr1.FreqInterval = 100 ’ Set the frequency interval to 100ms
count% = Ctr1.FreqCnt ’ Read the number of counts during this interval
freq! = count% * 1000 / Ctr1.FreqInterval ’ Calculate the frequency

Contains the number of counts accumulated from the frequency source during the gating interval. The
frequency source is specified by the FreqCntSource property and the gating interval is specified in
milliseconds by the FreqInterval property. The actual frequency can be calculated by multiplying 1000
times the value of FreqCnt and dividing by the gating interval in milliseconds. Note: The counter 4
output (pin 32 of P3) must be externally connected to the counter 5 gate (pin 12 of P3). Reading this
property will reconfigure counters 4 and 5.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-19

FreqCntSource

Access: Read and Write
Valid setting: Value Source P3 Pin

1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14

Syntax: Ctr1.FreqSource = 1 ’ Select counter 1 input as the frequency source
Ctr1.FreqInterval = 100 ’ Set the frequency interval to 100ms
count% = Ctr1.FreqCnt ’ Read the number of counts during this interval
freq! = count% * 1000 / Ctr1.FreqInterval ’ Calculate the frequency

Specifies which external input will be used when the FreqCnt property is read. See the FreqCnt
property for a complete description of reading frequencies using the FreqCntSource property.

FreqInterval

Access: Read and Write
Valid setting: 1 - 32767 milliseconds
Syntax: Ctr1.FreqSource = 1 ’ Select counter 1 input as the frequency source

Ctr1.FreqInterval = 100 ’ Set the frequency interval to 100ms
count% = Ctr1.FreqCnt ’ Read the number of counts during this interval
freq! = count% * 1000 / Ctr1.FreqInterval ’ Calculate the frequency

Specifies the gating interval in milliseconds that will be used when the FreqCnt property is read. See
the FreqCnt property for a complete description of reading frequencies using the FreqInterval property.

Load

Access: Write only
Valid setting: True to arm, False does nothing
Syntax: Ctr1.C1Enable = True

Ctr1.C3Enable = True
Ctr1.Load = True ’ Load the count values of counters 1 and 3

Load initializes the count value of one or more counters. Setting this property to true will
simultaneously load the initial count of all counters that have the CxEnable (x=1 to 5) property set to
true. This initial count value is set using the CxLoad property. Setting this property to false does
nothing.

LoadArm

Access: Write only
Valid setting: True to arm, False does nothing
Syntax: Ctr1.C1Enable = True

Ctr1.C3Enable = True
Ctr1.LoadArm = True ’ Load and arm counters 1 and 3

LoadArm initializes the count value of one or more counters and enables them to start counting.
Setting this property to true will simultaneously initialize the count values and start all counters that
have the CxEnable (x=1 to 5) property set to true. The initial count value is set using the CxLoad
property. This property is usually used after all the other properties of the corresponding counters have
been set. Setting this property to false does nothing.

Visual Basic VBX Support Chapter 6

6-20 Programmer’s Manual

NumScans

Access: Read and Write
Valid setting: 1 - 32767

-1 for infinite cycle
Syntax: Ctr1.NumScans = 1000 ’ collect 1000 scans

The number of scans to collect when the ReadCounters property is set to true. If NumScans is set to -1,
the acquisition will continue until it is disarmed by setting the ReadCounters property to false. When
the BufferLength is reached, the buffer will wrap around to the beginning, overwriting the oldest scans.
 In this case, your application should monitor the Buffered property and move the data to other
destinations before it is overwritten.

ReadCounters

Access: Write only
Valid setting: True to start reading the counters

False to stop reading the counters
Syntax: Ctr1.ReadCounters = True ’ Start the acquisition

Ctr1.ReadCounters = False ’ Stop the acquisition

ReadCounters enables/disables reading the values of one or more counters in the background using
interrupts. Setting this property to true will enable the background acquisition on interrupts. An
interrupts will occur on a rising transition on the interrupt input (pin 1 of P3) if the interrupt enable line
(pin 2 of P3) is pulled low. When an interrupt occurs the count value of all counters that have a data
buffer configured using the CxBuffer (x=1 to 5) property will be stored in the next available location of
the data buffer.

This acquisition uses the NumScans and BufferLength properties to define the size of the data buffer
and the CxBuffer to define the location of the data buffer and which counter to read from. The
Buffered and Active properties can be used to monitor the state of the acquisition. The
CTR1_Triggered subroutine will be called after the first scan is read from the counters and the
CTR1_AcquisitionComplete subroutine will be called when the acquisition is finished.

Save

Access: Write only
Valid setting: True to save, False does nothing
Syntax: Ctr1.C1Enable = TrueCtr1.C3Enable = TrueCtr1.Save = True ’ Save counters 1 and 3count% =

Ctr1.C1Hold ’ Read the saved value from counter 1

Save transfers the count values of one of more counters to their corresponding hold registers. Setting
this property to true will simultaneously save the count value to the hold register for all counters that
have the CxEnable (x=1 to 5) property set to true. The hold register which can be read using the
CxHold property. Setting this property to false does nothing.

SetMasterMode

Access: Write only
Valid setting: True to set the master mode register, False does nothing
Syntax: Ctr1.FoutSource = 15 ’ Select 100 Hz internal clock as the Fout source

Ctr1.FoutDivider = 5 ’ Select a divider of 5 for a 20 Hz Fout signal
Ctr1.SetMasterMode = True ’ Configure the master mode register

Set the master mode register with the values previously set by the FoutDivider, FoutSource,
Comp1Enable, Comp2Enable and TimeOfDay properties.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-21

SetCounterMode

Access: Write only
Valid setting: 1-5 signifying the counter number.
Syntax: Ctr1.SetCounterMode = 1 ’ Set counter 1 mode register

Set the specified counter’s mode register with values previously set by the CxCntDir (x=1 to 5),
CxCntEdge, CxCntRepeat, CxCntSource, CxCntType, CxGateCtrl, CxOutput, CxReload, and
CxSpecialGate properties.

TimeOfDay

Access: Read/Write
Valid setting: Value Description

0 Disabled
1 Divide by 5
2 Divide by 6
3 Divide by 10

Syntax: Ctr1.TimeOfDay = 3 ’ Select divide by 10
Ctr1.SetMasterMode = True ’ Configure master mode register

The TimeOfDay property enables/disables the time of day operation of the counters. This operation is
a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour time-of-day
accumulations. (See figure below.) The resolution of the time-of-day operation is 0.1 seconds. To use
the time-of-day mode, counter 1 must be configured for a 100Hz, 60Hz or 50Hz source (internal or
external) and the TimeOfDay property must be set to Divide by 10, 6 or 5 respectively. This will
produce the 10Hz clock source needed to drive the time-of-day clock. The hold registers of counters 1
and 2 will hold the 24-hour time.

Counter 2
C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

(2) (3) (5) (9)
Hours Minutes

Counter 1
C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

(5) (9) (9)
Hours 1/10 second +5,6,10

The following steps must be performed to use the time-of-day mode:

1. Set the TimeOfDay property to Divide by 5, 6 or 10.
2. Set the SetMasterMode property to true to configure the master mode register with the properties

set in step 1.
3. Set C1GateCtrl=0 (no gating), C1CntEdge=1 (rising edge), C1SpecialGate=False, C1Reload=0

(reload from load), C1CntRepeat=True (count repetitively), C1CntType=1 (BCD), C1CntDir=1
(count up).

4. Set the SetCounterMode to 1 to configure counter 1 with the properties set in step 3.
5. Set up counter 2 the same as counter 1 except that C2CntSource=0 (TC output of last counter).
6. Set the SetCounterMode to 2 to configure counter 2 with the properties set in step 5.
7. Set C1Load and C2Load to 0
8. Initialize the current 24-hour time-of-day setting according to the figure above by setting C1Load

and C2Load again.
9. Load and arm counters 1 and 2 using the C1Enabled, C2Enabled and LoadArm properties.

Visual Basic VBX Support Chapter 6

6-22 Programmer’s Manual

C1Buffer, C2Buffer, C3Buffer, C4Buffer, C5Buffer

Access: Write only
Valid settings: A pointer to the 0th element of a user-dimensioned integer array to read from the counter or 0

to disable reading from the counter.
Syntax: Dim arrayBuffer(1000) as integer

Ctr1.C1Buffer = addressOf(arrayBuffer(0)) ’ Read from counter 1 into arrayBuffer
Ctr1.C2Buffer = 0 ’ Do not read from counter 2

The CTR VBX collects all readings in the background under interrupt control. Acquired data is placed
directly into a user-dimensioned VB integer array. For each counter to be read in the background, the
CxBuffer property should be assigned the value of the pointer to the integer array. For other counters
which will not be read from, the CxBuffer property should be set to 0. Once dimensioned, the pointer
to the integer array is yielded from the function call “addressOf”, supplied in the file DBK.BAS.

The data in the integer array can be accessed concurrently with the acquisition. The number of valid
scans in the integer array can be queried using the Buffered property.

Before the ReadCounters property is enabled, the CxBuffer properties must be assigned pointers to a
valid, dimensioned integer array. The dimensioned array must remain valid during the entire
background acquisition. If the array is dimensioned within a subroutine using the ReDim command,
this array will be deallocated as the program leaves the subroutine. If the acquisition is still active, the
acquisition will write over an undefined area of memory. For this reason, the array should be
dimensioned as a Global variable.

The dimensioned size of the array should be configured using the BufferLength property.

C1CntDir, C2CntDir, C3CntDir, C4CntDir, C5CntDir

Access: Read and Write
Valid setting: 0 for counting down, 1 for counting up
Syntax: Ctr1.C1CntDir = 1 ’ Configure counter 1 to count up

Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxCntDir (x=1 to 5) property selects whether the counter will count up or down. The counter is
normally configured for down counting when generating a pulse or square wave. The CxLoad property
would be set to a positive value which will decrement to zero, defining the duration or width of the
waveform. In event counting, the counter would initially be set to 0 and configured to count up. The
CxHold property in this case would then contain the number of events received. The SetCounterMode
property must be used after setting CxCntDir to configure the desired counters in the mode register.

C1CntEdge, C2CntEdge, C3CntEdge, C4CntEdge, C5CntEdge

Access: Read and Write
Valid setting: 0 for counting on a falling edge

1 for counting on a rising edge
Syntax: Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxCntEdge (x=1 to 5) property selects whether the desired counter will count when it receives a
rising or falling edge on the source specified by CxCntSource. The SetCounterMode property must be
used after setting CxCntEdge to configure the desired counters in the mode register.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-23

C1CntRepeat, C2CntRepeat, C3CntRepeat, C4CntRepeat, C5CntRepeat

Access: Read and Write
Valid setting: True enables repetitive counting

False disables repetitive counting
Syntax: Ctr1.C1CntRepeat = True ’ Enable repetitive counting

Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxCntRepeat (x=1 to 5) property enables/disables rearming the specified counter after a terminal
count (TC) occurs. A terminal count occurs when a down counter reaches 0 or an up counter counts
past 65535 in binary count mode or 9999 in BCD count mode. When this TC occurs, the counter can
reset the value of the counter to the value contained in the load or hold register and start counting
again, or it can disarm itself. Applications such as software retriggerable one-shots would set
CxCntRepeat to false so that the one-shot pulse only occurs once after the Arm property is set. Other
applications such as rate generators, hardware retriggerable one-shots and square waves would set
CxCntRepeat to true so that the counter runs until it is disarmed. The SetCounterMode property must
be used after setting CxCntRepeat to configure the desired counters in the mode register.

C1CntSource, C2CntSource, C3CntSource, C4CntSource, C5CntSource

Access: Read and Write
Valid setting: Value Source P3 Pin #

0 TC output of last counter N/A
1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14
10 Counter 5 Gate 12
11 1 MHz Clk Internal
12 100 kHz Clk Internal
13 10 kHz Clk Internal
14 1 kHz Clk Internal
15 100 Hz Clk Internal

Syntax: Ctr1.C1CntSource = 15 ’ Select the 100Hz internal clock sourceCtr1.SetCounterMode = 1 ’
Program counter 1 mode

The CxCntSource (x=1 to 5) selects the source which the specified counter will count. This source can
be any one of the counter input or gate pins or one of five internal clocks including 1MHz, 100kHz,
10kHz, 1kHz and 100Hz. The source can also be configured to be the terminal count (TC) of the
previous counter. The input or gate pins are commonly used for counting events from an external
source. The internal clock can be used to generate square wave and rate generators. The TC of the
previous counter occurs when the previous counter reaches 0 (down counting), 65535 (binary up
counting) or 9999 (BCD up counting). This allows counters to be concatenated internally rather than
externally. For example, counter 1 could be configured to count an external input and counter 2 could
be configured to count counter 1. This would make the combination of counters 1 and 2 appear to be a
single 32-bit counter without any external connection. Counter 5 in this mode is adjacent to counter 1.

 The SetCounterMode property must be used after setting CxCntSource to configure the desired
counters the mode register.

Visual Basic VBX Support Chapter 6

6-24 Programmer’s Manual

C1CntType, C2CntType, C3CntType, C4CntType, C5CntType

Access: Read and Write
Valid setting: 0 for binary counting

1 for BCD counting
Syntax: Ctr1.C1CntType = 1 ’ Configure binary counting

Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxCntType selects binary or BCD counting for the specified counter. Binary counting uses a
single 16-bit integer ranging from 0 to 65535. BCD (binary coded decimal) counting uses four 4-bit
numbers each of which ranges from 0 to 9, so that the whole16-bit integer will have a range of 0 to
9999. The SetCounterMode property must be used after setting CxCntType to configure the desired
counters the mode register.

C1Enable, C2Enable, C3Enable, C4Enable, C5Enable

Access: Read and Write
Valid setting: True or False
Syntax: Ctr1.C1Enable = True

Ctr2.C2Enable = False
Ctr1.C3Enable = True
Ctr2.C4Enable = False
Ctr2.C5Enable = False
Ctr1.Arm = True ’ Arm counters 1 and 3

The CxEnable (x=1 to 5) enables/disables the specified counter to respond to the Arm, Disarm,
DisarmSave, Load, LoadArm and Save properties.

C1GateCtrl, C2GateCtrl, C3GateCtrl, C4GateCtrl, C5GateCtrl

Access: Read/Write
Valid setting: Value Gate Control

0 Gating Disabled
1 Level Hi of TC toggled output of last ctr
2 Level Hi of gate of next ctr
3 Level Hi of gate of last ctr
4 Level Hi of gate of this ctr
5 Level Lo of gate of this ctr
6 Rising edge of gate of this ctr
7 Falling edge of gate of this ctr

Syntax: Ctr1.C1GateCtrl = 0 ’ Disable gating
Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxGateCtrl (x=1 to 5) property selects how the specified counter uses its gate pin or the gate pin of
the previous or next counter. If gating is disabled, the counter will count when armed regardless of the
state of the gate pins. If a level gate is selected, the counter will only count while it is armed and the
desired level is applied to the proper gate pin. These settings include a level high on the specified
counter, the next counter or the previous counter, or a level low on specified counter. If a falling or
rising edge on this counter is selected, the counter will not operate until it receives the desired transition
on its corresponding gate pin while it is armed. The final gate control is level high on TC toggled
output of last counter. In this mode the current counter will run only when the TC toggled output of the
previous counter is high. See the CxOutput property for a complete description of TC toggled output.
Counter 1 is adjacent to counter 5 when using the previous or next counter.

The SetCounterMode property must be used after setting CxCntGateCtrl to configure the desired
counters in the mode register.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-25

C1Hold, C2Hold, C3Hold, C4Hold, C5Hold

Access: Read and Write
Valid setting: 0 - 65535
Syntax: Ctr1.C1Enabled = True

Ctr1.Save = True ’ Save count value to the hold register
count% = Ctr1.C1Hold ’ Read the hold register of counter 1
Ctr1.C1Hold = 1000 ’ Set the hold register of counter 1 to 1000

The CxHold (x=1 to 5) reads or sets the value of the hold register of the specified counter. When event
counting, this register can be used to view the current count value of the counter without disturbing the
counting in progress. This is done using the Save or DisarmSave property. This register can also be
used to initialize the value of the counter when the CxReload property is set to reload from load or
hold. See the CxReload for a complete description of when this register is used.

C1Load, C2Load, C3Load, C4Load, C5Load

Access: Write only
Valid setting: 0 - 65535
Syntax: Ctr1.C1Hold = 1000 ’ Set the hold register of counter 1 to 1000

The CxLoad (x=1 to 5) sets the value of the load register of the specified counter. This register is used
to initialize the value of the counter when the Load or LoadArm property is set to true. It is also used
when the CxCntRepeat property is set for repetitive counting and the counter reaches its terminal count.

C1Output, C2Output, C3Output, C4Output, C5Output

Access: Read and Write
Valid setting: Value Output

0 Inactivealways low
1 High pulse on terminal count
2 Toggled on terminal count
3 Inactive, High impedance
4 Low pulse on terminal count

Syntax: Ctr1.C1Output = 2 ’ Select the output to be TC toggled
Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxOutput (x=1 to 5) property controls the output line of the specified counter. The output line of
each counter can be disabled and either forced low or put into a high impedance state. It can also be
configured to go high or low during a terminal count (TC). A terminal count occurs when a counter
reaches 0 by counting down past 1 or up counts past 65535 in binary count mode or 9999 in BCD
count mode. Finally, the output can be configured to toggle after a TC. This mode is used to generate
variable duty cycle square waves.

The SetCounterMode property must be used after setting CxOutput to configure the desired counters in
the mode register.

Visual Basic VBX Support Chapter 6

6-26 Programmer’s Manual

C1Reload, C2Reload, C3Reload, C4Reload, C5Reload

Access: Read and Write
Valid setting: 0 for Reload from Load

1 for Reload from Load or Hold
Syntax: Ctr1.C1Reload = 0 ’ Reload from load only

Ctr1.SetCounterMode = 1 ’ Program counter 1 mode

The CxReload (x=1 to 5) property selects whether the specified counter reloads its count value from
just the load register or from either the load or hold register. The actual reloading of the counter is
related to the values of the CxSpecialGate and CxGateCtrl properties. If the reload property is set to
reload from load, the counter will always use the load register when it needs to reload the counter. This
usually occurs when the counter is configured for repetitive counting and it reaches a count of 0. If the
reload property is set to reload from load or hold, the counter will sometimes use the load register and
sometimes the hold register for reloading depending on the CxSpecialGate setting. See the
CxSpecialGate setting for a description of this.

The SetCounterMode property must be used after setting CxReload to configure the desired counters in
the mode register.

C1SpecialGate, C2SpecialGate, C3SpecialGate, C4SpecialGate, C5SpecialGate

Access: Read and Write
Valid setting: True or False
Syntax: Ctr1.SpecialGate = 0 ’ Disable the special gate

Ctr1.SetCounterMode = 1’ Program counter 1 mode

The CxSpecialGate (x=1 to 5) property enables/disables the special gating operation of the specified
counter. If the special gate is disabled and the CxReload is set to reload from load, the counter will
reload itself from the load register. If the CxReload is set to reload from load and hold, the counter will
toggle between reloading from the load and hold registers. If the special gate is enabled and the
CxReload property is set to reload from load, an active edge on the gate will cause the counter to save
the count value in the hold register and reload the counter with the load register. If the CxReload
property is set to reload from load or hold, the gate will control which register is used. If the gate is
low during a terminal count the load register will be used to reload the counter, and if the gate is high
the hold register will be used.

The SetCounterMode property must be used after setting CxSpecialGate to configure the desired
counters in the mode register.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-27

DAC VBX
D/A PROPERTIES

Property Description R/W Access Valid Settings
ChVoltage(0 Specifies the voltage value to

output to D/A channel 0
W Run 0 -4095

(0 - 5 Volts
ChVoltage(1 Specifies the voltage value to

output to D/A channel 1.
W Run 0 -4095

(0 - 5 Volts

Event Routines - DAC
None.

DAC Properties

ChVoltage(i)

Access: Write only
Valid settings: 0 - 4095, representing 0 - 5 Volts when the reference is set to -5.
Syntax: Dac1.ChVoltage(0) = 2000

Dac1.ChVoltage(1) = 1000

Specifies the voltage value to output to D/A channel i. The integer value from 0 to 4095 is used to vary
the output voltage of the 12-bit D/As. The voltage varies from 0 to 5 volts when the on-board jumper
is set to Internal Reference. The following equation converts volts to counts.

counts = (4095 / (-voltageRef)) * desiredVoltage

For example, if the internal voltage reference of -5 volts is used and 3 volts is required on the output,
the count value to assign to the property would be calculated per the following equation:

counts = (4095 / (-(-5))) * 3

Dac1.ChVoltage(0) = counts

Visual Basic VBX Support Chapter 6

6-28 Programmer’s Manual

DIO VBX

DIGITAL I/O PROPERTIES
Property Description R/W Access Valid Settings

Local Specifies whether the local chip is available. (not
available means expansion chips are available)

R/W Design/Run True = local
False = expansion

LocalxSetAsInput
x = A or B

Specifies whether local port x is to be configured as
input or output

R/W Design/Run True = input
False = output

LocalxByte
x = A or B

Set or read the byte on local port x R/W Design/Run 0 - 255

LocalxBit(i)
x = A or B
i = 0 to 7

Set or read one of the 8 bits on local port x R/W Run 0 or non-0

LocalCHiSetAsInput Specifies whether local port C - High nibble is to be
configured as input or output

R/W Design/Run True = input
False = output

LocalCHiNibble Set or read the 4 bits on local port C, high nibble R/W Design/Run 0 - 15
LocalCHiBit(i)
i = 0 to 3

Set or read one of the 4 bits on local port C, high
nibble

R/W Run 0 or non-0

LocalCLoSetAsInput Specifies whether local port C - Low nibble is to be
configured as input or output

R/W Design/Run True = input
False = output

LocalCLoNibble Set or read the 4 bits on local port C, low nibble R/W Design/Run 0 - 15
LocalCLoBit(I)
I = 0 to 3

Set or read one of the 4 bits on local port C, low
nibble

R/W Run 0 or non 0

ExpASetAsInput(i)
i = 0 to 7

Specifies whether expansion port A(i) is to be
configured as input or output

R/W Run True = input
False = output

ExpAByte(i)
i = 0 to 7

Set or read the byte on expansion port A(i R/W Run 0 -255

ExpBSetAsInput(i)
i = 0 to 7

Specifies whether expansion port B(i) is to be
configured as input or output

R/W Run True = input
False = output

ExpBByte(i)
 i = 0 to 7

Set or read the byte on expansion port B(i R/W Run 0 -255

ExpCHiSetAsInput(i)
 i = 0 to 7

Specifies whether expansion port C(i) - High nibble
is to be configured as input or output

R/W Run True = input
False = output

ExpCHiNibble(i)
i = 0 to 7

Set or read the 4 bits on expansion port C(i), high
nibble

R/W Run 0 - 15

ExpCLoSetAsInput(i)
i = 0 to 7

Specifies whether expansion port C(i) - Low nibble is
to be configured as input or output

R/W Run True = input
False = output

ExpCLoNibble(i)
i = 0 to 7

Set or read the 4 bits on expansion port C(i), low
nibble

R/W Run 0 - 15

InitLocalPorts Configures the local I/O ports then outputs the
values specified in the properties window to their
corresponding output ports. Note that this is only
necessary if the local output ports are expected to
be valid when switching from design to run mode.

W Run True to activate

Event Routines - DIO
None.

DIO Properties
Local

Access: Read and write
Valid settings: True = local

False = expansion
Syntax: Dio1.Local = True ’The local ports on P2 are being used.

Specifies whether the local ports or expansion ports are being used. If a DBK20 or 21 is being used,
set this property to false and use the Exp___ properties to control the ports. If the local ports are being
used (no DBK20 or 21s), then set this property to true and use the Local___ properties to control the
ports.

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-29

LocalASetAsInput, LocalBSetAsInput, LocalCHiSetAsInput, LocalCLoSetAsInput

Access: Read or write
Valid settings: True = input False = output
Syntax: Dio1.LocalASetAsInput = True ’Configure local port A as input

theValue = Dio1.LocalAByte ’Get the byte value from input port A

Specifies whether the specified local port is to be configured as input or output. The setting of any of
these properties automatically sets the output value of all of the ports to zero. These properties should
only be used when the local ports are being exercised. If expansion cards DBK20 or DBK21 are being
used, the property Local should be set to False, and the Exp___ properties should be used.

LocalAByte, LocalBByte, LocalCHiNibble, LocalCLoNibble

Access: Read or write
Valid settings: 0 to 255 for byte properties

0 to 15 for nibble properties.
Syntax: Dio1.LocalASetAsInput = True ’Configure local port A as input

Dio1.LocalBSetAsInput = False ’Configure local port B as output
theValue = Dio1.LocalAByte ’Get the byte value from input port A
Dio1.LocalBByte = 255 ’Set all bits high on port B

These properties set or read the bytes on the local digital I/O on P2. The C port is configured as 2
independent 4-bit nibbles. Each nibble can be independently set as an input or output. The byte values
set or read should be between 0 and 255, the nibble values can be between 0 and 15. Bits above the 8th
for byte values and bits above the 4th for nibble values will be ignored when assigning values to these
properties. These properties should only be used when the local ports are being exercised. If
expansion cards DBK20 or DBK21 are being used, the property Local should be set to False, and the
Exp___ properties should be used.

LocalABit(i), LocalBBit(i), LocalCHiBit(i), LocalCLoBit(i)

Access: Read or write
Valid settings: 0 for TTL low

non-zero for TTL high
Syntax: Dio1.LocalASetAsInput = True ’Configure local port A as input

Dio1.LocalBSetAsInput = False ’Configure local port B as output
theBit = Dio1.LocalABit(0) ’Get the bit value of bit 0 on port A
Dio1.LocalBBit(0) = 1 ’Set bit 0 on port B to low
Dio1.LocalBBit(1) = 0 ’Set bit 1 on port B to high

These properties set or read the bits on the local digital I/O on P2. The C port is configured as 2
independent 4-bit nibbles. Each nibble can be independently set as an input or output. The bit values
set or read are zero or non-zero. The i index which ranges from 0 to 7 (or 0 to 3) indicates what bit of
the port is to be read or set. These properties should only be used when the local ports are being
exercised. If expansion cards DBK20 or DBK21 are being used, the property Local should be set to
False, and the Exp___ properties should be used.

Visual Basic VBX Support Chapter 6

6-30 Programmer’s Manual

ExpASetAsInput(i), ExpBSetAsInput(i), ExpCHiSetAsInput(i), ExpCLoSetAsInput(i)

Access: Read and write
Valid settings: True = input, False = output
Syntax: Dio1.ExpASetAsInput(0) = True

 ’Configure port A on 1st connector of DBK20 at address A as input
Dio1.ExpBSetAsInput(2) = False
 ’Configure port B on 1st connector of DBK20 at address B as output
Dio1.ExpASetAsInput(5) = False
 ’Configure port A on 2nd connector of DBK20 at address C as output
theValue = Dio1.ExpAByte(0)
 ’Get the value from port A on 1st connector of DBK20 at address A
Dio1.ExpBSetAsInput(2) = 255
 ’Set all bits high on port B on 1st connector of DBK20 at address B
Dio1.ExpASetAsInput(5) = 0
 ’Set all bits low on port A on 2nd connector of DBK20 at address C

Specifies whether the specified expansion port is to be configured as
input or output. The setting of any of these properties automatically
sets the output value of all of the ports to zero. The i index, set from 0
to 7, specifies the expansion section on the DBK20 and 21s connected.
 As many as 4 cards can be connected, each with 2 connectors. The
jumper on the expansion cards marked “A-B-C-D” allows the user to
assign a unique address to each card as follows.

These properties should only be used when DBK20 or DBK21 digital
expansion cards are used and the Local property is set to false. If no expansion cards used, the
property Local should be set to True, and the Local___ properties should be used.

ExpAByte(i), ExpBByte(i), ExpCHiNibble(i), ExpCLoNibble(i)

Access: Read and write
Valid settings: 0 to 255 for byte properties, 0 to 15 for nibble properties.
Syntax: Dio1.ExpASetAsInput(0) = True

 ’Configure port A on 1st connector of DBK20 at address A as input
Dio1.ExpBSetAsInput(2) = False
 ’Configure port B on 1st connector of DBK20 at address B as output
Dio1.ExpASetAsInput(5) = False
 ’Configure port A on 2nd connector of DBK20 at address C as output
theValue = Dio1.ExpAByte(0)
 ’Get the value from port A on 1st connector of DBK20 at address A
Dio1.ExpBSetAsInput(2) = 255
 ’Set all bits high on port B on 1st connector of DBK20 at address B
Dio1.ExpASetAsInput(5) = 0
 ’Set all bits low on port A on 2nd connector of DBK20 at address C

These properties set or read the bytes on the expansion digital I/O from the DBK20 and 21s. The C
ports on each card are configured as 2 independent 4-bit nibbles. Each nibble can be independently set
as an input or output. The byte values set or read should be between 0 and 255, the nibble values can
be between 0 and 15. Bits above the 8th for byte values and bits above the 4th for nibble values will be
ignored when assigning values to these properties. The i index, set from 0 to 7, specifies the expansion
 section on the DBK20 and 21s connected. As many as 4 cards can be connected, each with 2
connectors. The jumper on the expansion cards marked “A-B-C-D” allows the user to assign a unique
address to each card as follows.

i IndexCard Affected0A 1st connector1A 2nd connector2B 1st connector3B 2nd connector4C
1st connector5C 2nd connector6D 1st connector7D 2nd connector

These properties should only be used when DBK20 or DBK21 digital expansion cards are used and the
Local property is set to false. If no expansion cards are used, the property Local should be set to True,
and the Local___ properties should be used.

i Index Card Affected
0 A 1st connector
1 A 2nd connector
2 B 1st connector
3 B 2nd connector
4 C 1st connector
5 C 2nd connector
6 D 1st connector
7 D 2nd connector

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-31

InitLocalPorts

Access: Write only
Valid settings: True to activate
Syntax: Dio1.InitLocalPorts = True

 This property configures the local I/O ports then outputs the values specified in the properties window
to their corresponding output ports. Note that this is only necessary if the local output ports are
expected to be valid when switching from design to run mode. If the Local byte properties are set in
the properties window, these values will not automatically appear on the output ports until the property
InitLocalPorts is set to true. This is unnecessary if the local byte properties are assigned in code.

Programming Examples
These programming examples the proper use of custom VBX properties. The user interface and
elegance are minimized for the sake of clarity. Each example is preceded by a graphic of the
application form and listing of the design-time properties of the controls set in the Properties window.

Example Summary
Example Description Controls

Used
Featured Properties Page #

ADC1 Analog input of one scan using start
and end channel parameters

DBK, ADC Arm Buffer
BufferedLength EndChan
GlobalGain Open
SoftTrig StartChan

9-33

ADC2 Analog input of multiple scans using
start and end channel, and trigger
parameters

DBK, ADC Active Arm
Buffer Buffered BufferedLength
EndChan Frequency
GlobalGain NumScans
Open SoftTrig
StartChan TrigLevel TrigRefVoltage
TrigSource TrigSourceRising

9-35

ADC3 Analog input of multiple scans using
ChanArray and trigger
parameters

DBK, ADC Arm BipolarArray
Buffer Buffered
BufferLength ChanArray
Frequency GainArray
NumChannels NumScans
Open SoftTrig
UseChanArray

9-39

ADC4 Analog input direct-to-disk program
that uses the input buffer in a
continuous circular fashion

DBK, ADC Arm Buffer
Buffered BufferLength
BufferOverrun EndChan
Frequency GlobalGain
NumScans (as infinite) Open
SoftTrig StartChan
TrigLevel TrigSourceRising
TrigSource

9-42

ADC5 Analog input using expansion
cards. Converts counts to volts

DBK, ADC Active Arm
Buffer BufferLength
EndChan GlobalGain
Open SoftTrig
StartChan

9-47

DAC1 Analog output. Controls both
DACs.

DBK, DAC ChVoltage Open 9-51

DIO1 Digital I/O. Provides byte-wise I/O
to local and expansion ports

DBK, DIO ExpAByte ExpASetAsInput
ExpBByte ExpBSetAsInput
ExpCHiNibble ExpCHiSetAsInput
ExpCLoNibble ExpCLoSetAsInput
Local LocalAbyte
LocalASetAsInput LocalBbyte
LocalBSetAsInput LocalCHiNibble
LocalCHiSetAsInput LocalCLoNibble
LocalCLoSetAsInput Open

9-52

DIO2 Digital I/O. Provides bit-wise I/O for
local ports.

DBK, DIO Local LocalABit
LocalASetAsInput LocalBBit
LocalBSetAsInput LocalCHiBit
LocalCHiSetAsInput LocalCLoBit
LocalCLoSetAsInput Open

9-54

Visual Basic VBX Support Chapter 6

6-32 Programmer’s Manual

Example Description Controls
Used

Featured Properties Page #

CTR1 Counter/Timer. Output variable
duty-cycle waveforms.

DBK, CTR CxCntDir CxCntEdge
CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate,
Disarm LoadArm
Open SetCounterMode

9-59

CTR2 Counter/Timer. Totalize events on
the counter inputs.

DBK, CTR CxCntDir CxCntEdge
CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate
Disarm LoadArm
Load Open
Save SetCounterMode

9-62

CTR3 Counter/Timer. Read the frequency
of each counter input using low-
level counter properties.

DBK, CTR CxCntDir CxCntEdge
CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate
Disarm LoadArm
Open Save
SetCounterMode

9-66

CTR4 Counter/Timer. Configure the
source and divider of the Fout
pin.

DBK, CTR FoutDivider FoutSource
Open SetMasterMode

9-68

CTR5 Counter/Timer. Display the
elapsed time from the start if the
program using the time-of-day
operation of the counter.

DBK, CTR CxCntDir CxCntEdge
CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxOutputCtrl
CxReload CxSpecialGate
CxLoad CxHold
Disarm LoadArm
Open Save
SetCounterModeRSet MasterMode
TimeOfDay

9-70

CTR6 Counter/Timer. Read the frequency
of each counter using the built-in
frequency properties.

DBK, CTR FreqCnt FreqCntSource
FreqInterval Open

9-72

CTR7 Counter/Timer. Totalize events on
the counter inputs using a
background transfer and write
totalized values to disk.

DBK, CTR Active Buffered
BufferLength CxBuffer
CxCntDir CxCntEdge
CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxLoad
CxOutputCtrl CxReload
CxSpecialGate Disarm
LoadArm NumScans
Open ReadCounters
SetCounterMode

9-75

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-33

ADC1

Begin ADC Adc1
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 ’False
GlobalGain = 0 ’ 0 - Base Unit X1
GlobalSE = 0 ’False
Left = 30
NumChannels = 1
NumScans = 1
OneShot = 0 ’False
StartChan = 0
Top = 165
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 ’Software
TrigSourceRising = -1 ’True
UseChanArray = 0 ’False

End
Begin DBK Dbk1

IntLevel = 7
Left = 30
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 810

End
Const MAXBUF = 100 ’The size of my data buffer
Const STARTCH = 0 ’Mnemonic to identify the index of the control array
Const ENDCH = 1 ’Mnemonic to identify the index of the control array
Dim NL As String ’Used to separate the channels in the text box
Dim dataBuffer(MAXBUF) As Integer

’This is the data buffer for all of the analog input data
Sub Adc1_AcquisitionComplete ()
Dim i As Integer
Dim NumberOfChannels As Integer

’At this point, the scan is already in the array dataBuffer.
’The following code extracts the data from the integer array,
’dataBuffer, and places into the TextBox dataText. So that each
’channel value occupies one line in the TextBox, a Newline (NL)
’is placed between each reading.

NumberOfChannels = chan(ENDCH).ListIndex - chan(STARTCH).ListIndex
dataText.Text = Format$(dataBuffer(0))

For i = 1 To NumberOfChannels
dataText.Text = dataText.Text + NL + Format$(dataBuffer(i))

Next i
End Sub

Sub Chan_Click (Index As Integer)
’Adjust the StartChan and EndChan properties using the

ADC1 Form

Visual Basic VBX Support Chapter 6

6-34 Programmer’s Manual

’ListIndex property of the combobox.
If Index = STARTCH Then

adc1.StartChan = chan(STARTCH).ListIndex
Else

adc1.EndChan = chan(ENDCH).ListIndex
End If

End Sub

Sub Form_Load ()
Dim i As Integer

’Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

 ’Open DaqBook driver and allocate a data buffer
dbk1.Open = True
adc1.Buffer = addressOf(dataBuffer(0)) ’dataBuffer is has global scope
adc1.BufferLength = MAXBUF

’Put channel choices in combos
For i = 0 To 15

chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)

Next i
chan(STARTCH).ListIndex = 0
chan(ENDCH).ListIndex = 0

’Put gain choices in combo
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.ListIndex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

Sub gain_Click ()
’Use the combo’s lisIndex property to set the GlobalGain.
’GlobalGain will be used on all the channels in the scan. To
’assign independent gains to each channel, use the ChanArray
’property rather than StartChan and EndChan.
adc1.GlobalGain = gain.ListIndex

End Sub

Sub GetVal_Click ()
’Start the acquisition
adc1.Arm = True

’Since the trigger source is Software, issue the software
’trigger command. If the trigger source is external, this
’command should not be issued.
adc1.SoftTrig = True

End Sub

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-35

ADC2

Begin ADC Adc1
 BufferLength = 1

EndChan = 0
Frequency = 10000
GlobalBipolar = 0 ’False
GlobalGain = 0 ’ 0 - Base Unit X1
GlobalSE = 0 ’False
Left = 60
NumChannels = 1
NumScans = 1
OneShot = 0 ’False
StartChan = 0
Top = 90
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 ’Software
TrigSourceRising = -1 ’True
UseChanArray = 0 ’False

End
Begin DBK Dbk1

IntLevel = 7
Left = 45
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 540

End

Const MAXBUF = 32000 ’Set the analog input buffer length
Const STARTCH = 0 ’Mnemonic to identify the index in the control array
Const ENDCH = 1 ’Mnemonic to identify the index in the control array
Const IMMEDIATE = 0 ’Mnemonic to identify trigger source from combo listIndex
Const TTL = 1 ’Mnemonic to identify trigger source from combo listIndex
Const ANALOG = 2 ’Mnemonic to identify trigger source from combo listIndex

Dim NL As String ’(Newline) used to separate the channels in the text box
Dim dataBuffer(MAXBUF) As Integer ’The data buffer for all analog input operations
Dim bigString As String ’Intermediate string for the data destined for the text box. It’s

’faster to manipulate the string data in a string variable
’than in a textbox.

Sub Adc1_AcquisitionComplete ()
’At this point, the collected data is in the integer array, dataBuffer.
’This subroutine organizes the data in rows and columns for printing
’in the textbox.

ADC2 Form

Visual Basic VBX Support Chapter 6

6-36 Programmer’s Manual

Dim i As Integer
Dim scan As Integer
Dim chans As Integer
Dim unsigned As Long

’All of the string manipulation takes place in bigString, then
’bigString is transferred in to the textbox. This is much faster
’than manipulating the string directly in the textbox.

’Put the channel labels across the top
bigString = Chr$(9)
For i = chan(STARTCH).ListIndex To chan(ENDCH).ListIndex

bigString = bigString + “CH” + Format$(i) + Chr$(9)
Next i
bigString = bigString + NL

’Put each scan in a single row, separating the channels with a tab
’character. Separate each scan with a newline.
chans = chan(ENDCH).ListIndex -chan(STARTCH).ListIndex + 1
For scan = 0 To adc1.Buffered - 1

bigString = bigString + Format$(scan + 1) + Chr$(9)
For i = 0 To chans - 1

’Since the A/D converter is a full 16 bits, VB’s integer type
’incorrectly interprets the MSB as a sign bit. The next
’two lines create an unsigned value from 0 to 65535.
unsigned = dataBuffer(i + scan * chans)
If unsigned 0 Then unsigned = unsigned + 65536
bigString = bigString + Format$(unsigned) + Chr$(9)

Next i
bigString = bigString + NL

Next scan
dataText.Text = bigString

’Update status textbox
statusLabel.Caption = “Idle”

End Sub

Sub Adc1_Triggered ()
’Update the status textbox
statusLabel.Caption = “Triggered”

End Sub

Sub Chan_Click (Index As Integer)
’Update the startChan and endChan properties of ADC1.

’Keep the startChan from being higher that endChan.
If chan(STARTCH).ListIndex chan(ENDCH).ListIndex Then

MsgBox “End channel must be greater than Start channel”
chan(STARTCH).ListIndex = 0
chan(ENDCH).ListIndex = 0
Exit Sub

End If
’Start and End combos are indices 0 and 1 in a control array. Depending
’on the index argument, update the ADC1 property.
If Index = STARTCH Then

adc1.StartChan = chan(STARTCH).ListIndex
Else

adc1.EndChan = chan(ENDCH).ListIndex
End If

End Sub

Sub Form_Load ()
Dim i As Integer

’Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

’Open DaqBook driver and allocate a data buffer
dbk1.Open = True
adc1.Buffer = addressOf(dataBuffer(0))

’Set bufferLength so the ADC VBX can perform boundary checking
adc1.BufferLength = MAXBUF

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-37

’Set the default frequency and number of scans
numScansText.Text = “10"
freqText = “100"

 ’Put channel choices in combos
For i = 0 To 15

chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)

Next i
chan(ENDCH).ListIndex = 0
chan(STARTCH).ListIndex = 0

’Put gain choices in combo
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.ListIndex = 0

’Put trigger source choices in combo
trigSourceCombo.AddItem “Immediate”
trigSourceCombo.AddItem “TTL”
trigSourceCombo.AddItem “Analog”
trigSourceCombo.ListIndex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

Sub FreqText_Change ()
’Set the frequency property of ADC1
If freqText.Text “” Then

adc1.Frequency = Int(Val(freqText.Text))
End If

End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub gain_Click ()
’Set the GlobalGain of ADC1. To set the gain of each channel independently,
’use the ChanArray property rather than the startChan and endChan properties.
adc1.GlobalGain = gain.ListIndex

End Sub

Sub GetVal_Click ()
’Start the acquisition.

If getVal.Caption = “Acquire” Then
’Turn the button into a Disarm button for the duration of the acquisition
getVal.Caption = “Disarm”

’Update the status textbox
statusLabel.Caption = “Waiting for trigger”
statusLabel.Refresh

’Arm the system
adc1.Arm = True

’If the trigger source in Software, issue the software trigger.
If trigSourceCombo.ListIndex = 0 Then adc1.SoftTrig = True

’Enable a timer to read the number of scans that have been collected.
statusTimer.Enabled = True

Else
’Disarm the acquisition. The statusTimer will sense that the acquisition

Visual Basic VBX Support Chapter 6

6-38 Programmer’s Manual

’has been disabled and will set the caption of the button back to “Acquire”.
adc1.Arm = False

End If
End Sub

Sub NumScansText_Change ()
’Set the numberScans property of ADC1.
If numScansText.Text “” Then

adc1.NumScans = Int(Val(numScansText))
End If

End Sub

Sub NumScansText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub RiseFall_Click (Index As Integer)
 ’Set the trigger edge to rising or falling.

If riseFall(0).Value = True Then
adc1.TrigSourceRising = True

Else
adc1.TrigSourceRising = False

End If
End Sub

Sub StatusTimer_Timer ()
’Post the number of scans that have been collected.

’If the acquisition is no longer active, disable this timer.
If adc1.Active = 0 Then

statusTimer.Enabled = False
getVal.Caption = “Acquire”
statusLabel.Caption = “Idle”

End If

’Use the ADC1’s Buffered property to get the number of buffered scans,
’then post the number in the label.
BufferedLabel.Caption = Str$(adc1.Buffered)

End Sub

Sub TrigLevelScroll_Change ()
’The DaqBook trigger level can range from -5 to +5 volts.
’The scrollbar min and max are -50 to +50.
’Dividing the scroll bar value by 10 allows the user 0.1 volt resolution
’in setting the trigger value.

’As the scrollbar is operated, post the value in the label below.
trigLevelLabel.Caption = Format$(trigLevelScroll.Value / 10) + “V”

’Set the trigLevel property.
adc1.TrigLevel = trigLevelScroll.Value / 10

End Sub

Sub TrigLevelScroll_Scroll ()
Call TrigLevelScroll_Change

End Sub

Sub TrigSourceCombo_Click ()
’Set the trigSource property.
adc1.TrigSource = trigSourceCombo.ListIndex

’If the trigger source is analog, enable the trigger level scrollbar.
If trigSourceCombo.ListIndex = IMMEDIATE Then

trigLevelScroll.Enabled = False
riseFall(0).Enabled = False
riseFall(1).Enabled = False

ElseIf trigSourceCombo.ListIndex = ANALOG Then
trigLevelScroll.Enabled = True

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-39

riseFall(0).Enabled = True
riseFall(1).Enabled = True

Else
riseFall(0).Enabled = True
riseFall(1).Enabled = True

End If
End Sub

ADC3

Begin ADC Adc1
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 ’False
GlobalGain = 0 ’ 0 - Base Unit X1
GlobalSE = 0 ’False
Left = 3360
NumChannels = 1
NumScans = 1
OneShot = 0 ’False
StartChan = 0
Top = 600
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 ’Software
TrigSourceRising = -1 ’True
UseChanArray = -1 ’True

End
Begin DBK Dbk1

IntLevel = 7
Left = 3360
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1080

End
Const MAXBUF = 32000 ’The analog input buffer size
Dim NL As String ’(Newline), used to separate channel readings in textbox

 Dim dataBuffer(MAXBUF) As Integer
’The analog input data buffer integer array

Dim bigString As String ’The string destined for the textbox is manipulated in
’bigString. This is faster than performing character
’manipulation in a textbox.

Sub Adc1_AcquisitionComplete ()
’At this point, the analog input data is in the buffer, dataBuffer. This subroutine pulls the values

out of the integer array, formats them, then places them into the textbox for viewing. Since

ADC3 Form

Visual Basic VBX Support Chapter 6

6-40 Programmer’s Manual

the data destination in this program is a string, the number of scans is limited by the
maximum string size of VB.

Dim i As Integer
Dim scan As Integer
Dim chans As Integer
 ’Put up the hour glass. Moving the data into the string is time-consuming.
mousePointer = 11
DoEvents

’Put tabs between channels and newlines between scans, then put entire
’string into the textbox.

bigString = “”
chans = adc1.NumChannels
For scan = 0 To adc1.Buffered - 1

bigString = bigString + Format$(scan + 1) + Chr$(9)
For i = 0 To chans - 1

bigString = bigString + Format$(dataBuffer(i + scan * chans)) + Chr$(9)
Next i

bigString = bigString + NL
Next scan
dataText.Text = bigString

’Update status box
StatusLabel.Caption = “Idle”

’Get rid of the hourglass
mousePointer = 0

End Sub

Sub Adc1_Triggered ()
’Update the status box
StatusLabel.Caption = “Triggered”

End Sub

Sub Chan_Click (Index As Integer)
’Make sure there are no holes in the channel list.

Dim i As Integer
’If a channel combo is set to “none”, then all channels below should be “none” also.
If chan(Index).ListIndex = 0 Then

For i = Index To 15
chan(i).ListIndex = 0

Next i
Else

For i = Index To 0 Step -1
If chan(i).ListIndex = 0 Then

MsgBox “Fill in empty sequencer locations above first”
chan(Index).ListIndex = 0
Exit Sub

End If
Next i

End If
End Sub

Sub Form_Load ()
Dim i As Integer
Dim l As Integer

’Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

’Open DaqBook driver and allocate a data buffer
dbk1.Open = True
adc1.Buffer = addressOf(dataBuffer(0))

’Set bufferLength to all adc1 to check buffer boundaries
adc1.BufferLength = MAXBUF

’Set the default frequency and number of scans
numScansText.Text = “10"
freqText = “100"

’Load the combo boxes with channel, gain and pole choices
For l = 0 To 15

chan(l).AddItem “None”
For i = 0 To 15

 chan(l).AddItem Format$(i)
Next i
gain(l).AddItem “X1"
gain(l).AddItem “X2"
gain(l).AddItem “X4"
gain(l).AddItem “X8"
polar(l).AddItem “Bipolar”

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-41

polar(l).AddItem “Unipolar”
Next l

’Initialize the combos
For l = 0 To 15

chan(l).ListIndex = l + 1
gain(l).ListIndex = 0
polar(l).ListIndex = 0

Next l
End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

Sub FreqText_Change ()
’Set the frequency property of ADC1.

If freqText.Text “” Then
adc1.Frequency = Int(Val(freqText.Text))

End If
End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub GetVal_Click ()
’Arm the system

Dim i As Integer
If getVal.Caption = “Acquire” Then

’Set the button caption to “Disarm” for the duration of the acquisition.
getVal.Caption = “Disarm”
’Set the chanArray, gainArray, and BipolarArray properties of ADC1.
For i = 0 To 15
’Find out how many channels are configured (not set to NONE).

If chan(i).ListIndex = 0 Then
If i = 0 Then Exit Sub
 ’If the 1st channel combo is set to NONE, exit
Exit For

End If
adc1.ChanArray(i) = chan(i).ListIndex - 1
adc1.GainArray(i) = gain(i).ListIndex
adc1.BipolarArray(i) = polar(i).ListIndex

Next i
adc1.NumChannels = i

’When NONE is detected, set the NumChannels property
’Update the status box

StatusLabel.Caption = “Waiting for trigger”
StatusLabel.Refresh

’Arm the acquisition
adc1.Arm = True

’Send the software trigger.
adc1.SoftTrig = True

’Enable the timer that checks how many scans have been collected.
statusTimer.Enabled = True

Else
’Disarm the acquisition. The status timer will detect the disarm and set the button caption back

to “Acquire”
adc1.Arm = False

End If
End Sub

Sub NumScansText_Change ()
’Set the numScans property.

If numScansText.Text “” Then
adc1.NumScans = Int(Val(numScansText))

End If
End Sub

Visual Basic VBX Support Chapter 6

6-42 Programmer’s Manual

Sub NumScansText_KeyPress (keyascii As Integer)
Select Case keyascii

 Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub StatusTimer_Timer ()
If adc1.Active = 0 Then

statusTimer.Enabled = False
getVal.Caption = “Acquire”

End If
BufferedLabel.Caption = Str$(adc1.Buffered)

End Sub

ADC4

Begin ADC Adc1
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 ’False
GlobalGain = 0 ’ 0 - Base Unit X1
GlobalSE = 0 ’False
Left = 2580
NumChannels = 1
NumScans = -1
OneShot = 0 ’False
StartChan = 0
Top = 2520
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 ’Software
TrigSourceRising = -1 ’True
UseChanArray = 0 ’False

End
Begin DBK Dbk1

IntLevel = 7
Left = 3060
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 2520

End

ADC4 Form

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-43

Const MAXBUF = 16000 ’Maximum buffer size
Const STARTCH = 0 ’Index of start channel in control array
Const ENDCH = 1 ’Index of end channel in control array
Const IMMEDIATE = 0 ’Trigger source mnemonic
Const TTL = 1 ’Trigger source mnemonic
Const ANALOG = 2 ’Trigger source mnemonic

Dim dataBuffer(MAXBUF) As Integer ’The data buffer for all incoming data
Dim scansProcessed As Long’keeps track of how many scans in dataBuffer have been sent to disk
Dim scanSize As Integer ’the number of bytes in a scan
Dim MaxBufIndex As Integer ’the max scan index in the buffer
Dim readIndex As Integer ’the array index from which to read the next value
Dim fHandle As Integer ’the file handle of the data destination file
Dim er As Integer ’error return variable

’fWrite is a Windows API function that allows us to write an integer array to disk quickly
Declare Function fWrite Lib “kernel” Alias “_lwrite” (ByVal hFile As Integer, lpBuff As Any, ByVal wBytes As Integer) As Integer

Sub Adc1_Triggered ()
’Update the status box.
statusLabel.Caption = “Triggered”
’Enable the timer that checks for new data and stores it away.
collectDataTimer.Enabled = True

End Sub

Sub Chan_Click (Index As Integer)
’Set the startChan and endChan properties of ADC1.

If chan(STARTCH).ListIndex chan(ENDCH).ListIndex Then
MsgBox “End channel must be greater than Start channel”
chan(STARTCH).ListIndex = 0
chan(ENDCH).ListIndex = 0
Exit Sub

End If
If Index = STARTCH Then

adc1.StartChan = chan(STARTCH).ListIndex
Else

adc1.EndChan = chan(ENDCH).ListIndex
 End If

End Sub

Sub CollectDataTimer_Timer ()
’If there is new data, append it to the disk file.

Dim cnt As Long
Dim unprocessed As Long
Dim ints As Long
Dim firstBufSize As Long
Dim secondBufSize As Long

’Check for buffer overrun
If adc1.BufferOverrun Then

disarmAcq
MsgBox “DaqBook FIFO buffer overrun”
Exit Sub

End If
’Get the number of scans collected

cnt = adc1.Buffered
’If more scans collected than processed, process the new scans.
If cnt scansProcessed Then

unprocessed = cnt - scansProcessed
’Calculate the number of unprocessed scans
’Calculate the number of integers are unprocessed
ints = unprocessed * scanSize

’Check to see if integer array has overflowed
If ints = MAXBUF Then

disarmAcq
MsgBox “Internal buffer overrun”
Exit Sub

End If
’If ints + readIndex MaxBufIndex, the buffer has wrapped around and we have to

process the data in two chunks  from the present readIndex to the end of the
buffer, and from the beginning of the buffer until all of the unprocessed scans are
processed. The readIndex keeps track of our read pointer in the data buffer.

If ints + readIndex MaxBufIndex Then
’The buffer has wrapped around, so 2 buffers must be transferred.

Visual Basic VBX Support Chapter 6

6-44 Programmer’s Manual

 ’Calculate the size of the 1st chunk.
firstBufSize = MaxBufIndex -readIndex + 1
’Write the chunk to disk
er = fWrite(fHandle, dataBuffer(readIndex), firstBufSize * 2)
’Init the readIndex to the beginning.
readIndex = 1
’Calculate the size of the 2nd chunk.
secondBufSize = ints -firstBufSize
’Write the chunk to disk
er = fWrite(fHandle, dataBuffer(readIndex), secondBufSize * 2)
’Set the new readIndex
readIndex = readIndex + secondBufSize

Else
’The buffer has not wrapped around, so only one buffer must be transferred.
’Write the buffer to disk.
er = fWrite(fHandle, dataBuffer(readIndex), ints * 2)
’Set the new readIndex
readIndex = readIndex + ints

End If
End If

’Record the new number of scans processed.
scansProcessed = cnt
’If we’ve processed more scans that specifed by the user, then quit.
If scansProcessed = Val(numScansText.text) Then

disarmAcq
End If
’Post the number of processed scans.
BufferedLabel.Caption = Str$(cnt)

End Sub

Sub disarmAcq ()
 ’Disarm the acquisition

adc1.Arm = False ’Stop sampling
statusLabel.Caption = “idle” ’Update the status box
Close #1 ’Close the output file
getVal.Caption = “Acquire” ’Update the caption of the button
collectDataTimer.Enabled = False ’Disable the data collection timer

End Sub

Sub Form_Load ()
Dim i As Integer
’Open DaqBook driver and allocate a data buffer
dbk1.Open = True
adc1.Buffer = addressOf(dataBuffer(0))
’Set bufferLength to all adc1 to check buffer boundaries
adc1.BufferLength = MAXBUF
’Set the default frequency and number of scans
numScansText.text = “10"
freqText.text = “100"
’Put channel choices in combos
For i = 0 To 15

chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)

Next i
chan(ENDCH).ListIndex = 0
chan(STARTCH).ListIndex = 0
’Put gain choices in combo
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.ListIndex = 0
’Put trigger source choices in combo
trigSourceCombo.AddItem “Immediate”
trigSourceCombo.AddItem “TTL”
trigSourceCombo.AddItem “Analog”
trigSourceCombo.ListIndex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-45

Sub FreqText_Change ()
’Set the frequency property of ADC1

If Val(freqText.text) 0 And Val(freqText.text) 100000 Then
adc1.Frequency = Int(Val(freqText.text))

End If
End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub gain_Click ()
’Set the globalGain property of ADC1. To set independent gains for each channel, use the

ChanArray property rather than the startChan and endChan properties.
adc1.GlobalGain = gain.ListIndex

End Sub

Sub GetVal_Click ()
’Arm the system

Dim MaxScansInBuf As Integer
Dim bytesInFile As Long
Dim i As Long

’Disarm the acquisition if the button is labeled “Abort”
If getVal.Caption = “Abort” Then

disarmAcq
Exit Sub

End If
’Update the status box
statusLabel.Caption = “Waiting for trigger”
statusLabel.Refresh
’Initialize the acquisition variables
scansProcessed = 0

 getVal.Caption = “Abort”
readIndex = 1
scanSize = adc1.EndChan - adc1.StartChan + 1
MaxScansInBuf = Int(MAXBUF / scanSize)
MaxBufIndex = MaxScansInBuf * scanSize

’Open the data destination file, and get its handle
Open “c:\ADCDATA.BIN” For Output As #1
fHandle = FileAttr(1, 2)

’Pre-write the file so that all of the required disk blocks
’are allocated before the acquisition begins. This allows the
’file output to be performed faster.

bytesInFile = (scanSize * 2) * Val(numScansText.text)
For i = 1 To bytesInFile / 256 + 1

er = fWrite(fHandle, dataBuffer(0), 256)
Next i
Seek 1, 1 ’Set the file pointer back to the beginning

’Start the acquisition
adc1.Arm = True

’If the trigger source is Software, send the software trigger.
If trigSourceCombo.ListIndex = 0 Then adc1.SoftTrig = True

End Sub

Sub NumScansText_KeyPress (keyascii As Integer)
’Filter non-numeric keystrokes.

Select Case keyascii
Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Sub RiseFall_Click (Index As Integer)
’Set the trigger edge to rising or falling.

 If riseFall(0).Value = True Then
adc1.TrigSourceRising = True

Else

Visual Basic VBX Support Chapter 6

6-46 Programmer’s Manual

adc1.TrigSourceRising = False
End If

End Sub

Sub TrigLevelScroll_Change ()
’Set the trigger level for analog triggering. The DaqBook allows a trigger value of -5 to +5. The

scrollbar has a min and max of -50 to +50 to allow for 0.1 volt resolution when divided by 10.
trigLevelLabel.Caption = Format$(trigLevelScroll.Value / 10) + “V”
adc1.TrigLevel = trigLevelScroll.Value / 10

End Sub

Sub TrigLevelScroll_Scroll ()
Call TrigLevelScroll_Change

End Sub

Sub TrigSourceCombo_Click ()
’Set the trigSource property of ADC1.

adc1.TrigSource = trigSourceCombo.ListIndex
If trigSourceCombo.ListIndex = IMMEDIATE Then

trigLevelScroll.Enabled = False
riseFall(0).Enabled = False
riseFall(1).Enabled = False

ElseIf trigSourceCombo.ListIndex = ANALOG Then
trigLevelScroll.Enabled = True
riseFall(0).Enabled = True
riseFall(1).Enabled = True

Else
trigLevelScroll.Enabled = False
riseFall(0).Enabled = True
riseFall(1).Enabled = True

End If
End Sub

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-47

ADC5

Begin ADC Adc1
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 ’False
GlobalGain = 0 ’ 0 - Base Unit X1
GlobalSE = 0 ’False
Left = 30
NumChannels = 1
NumScans = 1
OneShot = 0 ’False
StartChan = 0
Top = 165
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 ’Software
TrigSourceRising = -1 ’True
UseChanArray = 0 ’False

End
Begin DBK Dbk1

IntLevel = 7
Left = 30
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 810

End

Const MAXBUF = 10 ’The size of my data buffer
’For code readability, these are used to identify the index of the
’two dimensional card information arrays below.

Const SETTING = 0
Const BITWEIGHT = 1
Const BIPOLAROFFSET = 2
 ’For code readability, these are used to identify the selected expansion card.
Const A_BASEUNIT = 0
Const A_DBK12 = 1
Const A_DBK13 = 2
Const A_DBK14 = 3

’This is the data buffer for all of the analog input data
Dim dataBuffer(MAXBUF) As Integer
’These arrays hold expansion card information. See the subroutine, loadGainArrays for more information.
Dim BASEUNIT(3, 10) As Single
Dim DBK12(3, 10) As Single
Dim DBK13(3, 10) As Single
Dim DBK14(3, 10) As Single

Sub boardType_click ()
’Depending of the board type selected, update the gain combo with the available gains.
Select Case boardType.ListIndex

Case 0 ’None
gain.Clear
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
chan.Enabled = False

Case 1 ’DKB12

ADC5 Form

Visual Basic VBX Support Chapter 6

6-48 Programmer’s Manual

gain.Clear
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.AddItem “X16"
gain.AddItem “X32"
gain.AddItem “X64"
chan.Enabled = True

Case 2 ’DBK13
gain.Clear
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.AddItem “X10"
gain.AddItem “X100"
gain.AddItem “X1000"
chan.Enabled = True

Case 3 ’DBK14
gain.Clear
gain.AddItem “X1"
gain.AddItem “X2"
gain.AddItem “X4"
gain.AddItem “X8"
gain.AddItem “X10"
gain.AddItem “X100"
gain.AddItem “X1000"
chan.Enabled = True

End Select
gain.ListIndex = 0
Call chan_click

End Sub

Sub chan_click ()
’Set the startChan and endChan to the desired channel
’If the listindex = 0, no expansion boards are attached

If boardType.ListIndex = 0 Then
’Set the channel equal to the base unit channel number
adc1.StartChan = expBoard.ListIndex
adc1.EndChan = adc1.StartChan

Else
’Calculate then set the channel number for the expansion board.
adc1.StartChan = (expBoard.ListIndex + 1) * 16 + chan.ListIndex
adc1.EndChan = adc1.StartChan

End If
End Sub

Sub expBoard_Click ()
’When the DaqBook base unit channel has changed, set the board type back to NONE.

If boardType.ListIndex = 0 Then
Call chan_click

Else
boardType.ListIndex = 0

End If
End Sub

Sub Form_Load ()
Dim i As Integer

’Open DaqBook driver and allocate a data buffer
dbk1.Open = True
adc1.Buffer = addressOf(dataBuffer(0)) ’dataBuffer has global scope
adc1.BufferLength = MAXBUF
Call loadGainArrays

’Put channel choices in combos
For i = 0 To 15

chan.AddItem Format$(i)
expBoard.AddItem Format$(i)

Next i
’Put DBK boards in combo

boardType.AddItem “None”
boardType.AddItem “DBK12"
boardType.AddItem “DBK13"
boardType.AddItem “DBK14"

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-49

stopper.Value = True ’Click the Stop button
chan.ListIndex = 0 ’Set the expansion channel to 0
expBoard.ListIndex = 0 ’Set the base unit channel to 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

Sub gain_Click ()
’Use the gain tables to set the gain for the desired expansion board
Select Case boardType.ListIndex

Case A_BASEUNIT
adc1.GlobalGain = BASEUNIT(SETTING, gain.ListIndex)

Case A_DBK12
adc1.GlobalGain = DBK12(SETTING, gain.ListIndex)

Case A_DBK13
adc1.GlobalGain = DBK13(SETTING, gain.ListIndex)

Case A_DBK14
adc1.GlobalGain = DBK14(SETTING, gain.ListIndex)

End Select
End Sub

Sub GetVal_Click ()
’Enable sampling. Disable all of the controls so parameters can not be adjusted during sampling.

getVal.Enabled = False
boardType.Enabled = False
expBoard.Enabled = False
gain.Enabled = False
chan.Enabled = False
timer1.Enabled = True
stopper.Enabled = True

End Sub

Sub loadGainArrays ()
’Load the 2-dimensional arrays with gain information for each expansion card. Each card has an array of

available gains. The gain combo listindex identifies the gain chosen. Associated with each listindex is a
SETTING which is assigned to the globalGain property of the ADC1 control, and a BITWEIGHT and a
BIPOLAROFFSET, which is used later to convert the raw binary values to volts.

’The BITWEIGHT and BIPOLAROFFSET are calculated as follows:
’ BITWEIGHT = 65536 / inputVoltageRange
’ BIPOLAROFFSET = bipolarRange

 ’ For example: X2 gain, bipolar mode, yields a range of +/-2.5 volts.
’ BITWEIGHT = 65536 / 5volts = 13107.2
’ BIPOLAROFFSET = 2.5
’ X1, X2, X4, X8 available
BASEUNIT(SETTING, 0) = &H0
BASEUNIT(SETTING, 1) = &H1
BASEUNIT(SETTING, 2) = &H2
BASEUNIT(SETTING, 3) = &H3
BASEUNIT(BITWEIGHT, 0) = 6553.6
BASEUNIT(BITWEIGHT, 1) = 13107.2
BASEUNIT(BITWEIGHT, 2) = 26214.4
BASEUNIT(BITWEIGHT, 3) = 52428.8
BASEUNIT(BIPOLAROFFSET, 0) = 5
BASEUNIT(BIPOLAROFFSET, 1) = 2.5
BASEUNIT(BIPOLAROFFSET, 2) = 1.25
BASEUNIT(BIPOLAROFFSET, 3) = .625

’X1, X2, X4, X8, X16, X32, X64 available
DBK12(SETTING, 0) = &H0
DBK12(SETTING, 1) = &H1
DBK12(SETTING, 2) = &H2
DBK12(SETTING, 3) = &H3
DBK12(SETTING, 4) = &H13
DBK12(SETTING, 5) = &H23
DBK12(SETTING, 6) = &H33
DBK12(BITWEIGHT, 0) = 6553.6
DBK12(BITWEIGHT, 1) = 13107.2
DBK12(BITWEIGHT, 2) = 26214.4
DBK12(BITWEIGHT, 3) = 52428.8
DBK12(BITWEIGHT, 4) = 104857.6
DBK12(BITWEIGHT, 5) = 209715.2
DBK12(BITWEIGHT, 6) = 419430.4

Visual Basic VBX Support Chapter 6

6-50 Programmer’s Manual

DBK12(BIPOLAROFFSET, 0) = 5
DBK12(BIPOLAROFFSET, 1) = 2.5
DBK12(BIPOLAROFFSET, 2) = 1.25
DBK12(BIPOLAROFFSET, 3) = .625
DBK12(BIPOLAROFFSET, 4) = .3125
DBK12(BIPOLAROFFSET, 5) = .15625
DBK12(BIPOLAROFFSET, 6) = .078125

’X1, X2, X4, X8, X10, X100, X1000 available
DBK13(SETTING, 0) = &H00
DBK13(SETTING, 1) = &H10
DBK13(SETTING, 2) = &H20
DBK13(SETTING, 3) = &H30
DBK13(SETTING, 4) = &H01
DBK13(SETTING, 5) = &H02
DBK13(SETTING, 6) = &H03
DBK13(BITWEIGHT, 0) = 6553.6
DBK13(BITWEIGHT, 1) = 13107.2

 DBK13(BITWEIGHT, 2) = 26214.4
DBK13(BITWEIGHT, 3) = 52428.8
DBK13(BITWEIGHT, 4) = 65536
DBK13(BITWEIGHT, 5) = 655360
DBK13(BITWEIGHT, 6) = 6553600
DBK13(BIPOLAROFFSET, 0) = 5
DBK13(BIPOLAROFFSET, 1) = 2.5
DBK13(BIPOLAROFFSET, 2) = 1.25
DBK13(BIPOLAROFFSET, 3) = .625
DBK13(BIPOLAROFFSET, 4) = .5
DBK13(BIPOLAROFFSET, 5) = .05
DBK13(BIPOLAROFFSET, 6) = .005

’X1, X2, X4, X8, X10, X100, X1000 available
DBK14(SETTING, 0) = &H0
DBK14(SETTING, 1) = &H1
DBK14(SETTING, 2) = &H2
DBK14(SETTING, 3) = &H3
DBK14(SETTING, 4) = &H1
DBK14(SETTING, 5) = &H2
DBK14(SETTING, 6) = &H3
DBK14(BITWEIGHT, 0) = 6553.6
DBK14(BITWEIGHT, 1) = 13107.2
DBK14(BITWEIGHT, 2) = 26214.4
DBK14(BITWEIGHT, 3) = 52428.8
DBK14(BITWEIGHT, 4) = 65536
DBK14(BITWEIGHT, 5) = 655360
DBK14(BITWEIGHT, 6) = 6553600
DBK14(BIPOLAROFFSET, 0) = 5
DBK14(BIPOLAROFFSET, 1) = 2.5
DBK14(BIPOLAROFFSET, 2) = 1.25
DBK14(BIPOLAROFFSET, 3) = .625
DBK14(BIPOLAROFFSET, 4) = .5
DBK14(BIPOLAROFFSET, 5) = .05
DBK14(BIPOLAROFFSET, 6) = .005

End Sub

Sub Stopper_Click ()
’Enable the acquisition parameter controls, and disable the stop button.

getVal.Enabled = True
boardType.Enabled = True
expBoard.Enabled = True
gain.Enabled = True
chan.Enabled = True
timer1.Enabled = False
stopper.Enabled = False

End Sub

Sub Timer1_Timer ()
’Get a reading and post it in the GUI in raw counts and volts

 Dim bitsPerVolt As Single
Dim offset As Single
Dim goodInt As Long

’Start the acquisition and wait for one scan to be collected
adc1.Arm = True
adc1.SoftTrig = True
While adc1.Active: Wend

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-51

’Convert the 16 bit value in the integer array to a long. VB will interpret the value as a signed number with
the MSB as the sign bit. In VB’s integer format, a 0 from the A/D converter looks like -32767, and
65535 from the A/D looks like 32766. The following lines convert the signed integer value into a
continuous value ranging from 0 - 65535.

goodInt = dataBuffer(0)
If goodInt 0 Then goodInt = goodInt + 65536

’Put the raw count into the textbox dataText.
dataText.Text = Format$(goodInt)

’Scale the raw data into volts
Select Case boardType.ListIndex

Case A_BASEUNIT
bitsPerVolt = BASEUNIT(BITWEIGHT, gain.ListIndex)
offset = BASEUNIT(BIPOLAROFFSET, gain.ListIndex)

Case A_DBK12
bitsPerVolt = DBK12(BITWEIGHT, gain.ListIndex)
offset = DBK12(BIPOLAROFFSET, gain.ListIndex)

Case A_DBK13
bitsPerVolt = DBK13(BITWEIGHT, gain.ListIndex)
offset = DBK13(BIPOLAROFFSET, gain.ListIndex)

Case A_DBK14
bitsPerVolt = DBK14(BITWEIGHT, gain.ListIndex)
offset = DBK14(BIPOLAROFFSET, gain.ListIndex)

End Select
’Put the volts value into the textbox voltsText.

voltsText.Text = Format$(goodInt / bitsPerVolt - offset, “0.000000")
 End Sub

DAC1

Begin DBK Dbk1
IntLevel = 7
Left = 2700
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 180

End
Begin DAC Dac1

Left = 2100
Top = 180

End

DAC1 Form

Visual Basic VBX Support Chapter 6

6-52 Programmer’s Manual

Sub DacScroll_Change (Index As Integer)
’Scroll bar max is set to 4096, min to 0 in prop window

dac1.ChVoltage(Index) = dacScroll(Index).Value
voltsLabel(Index).Caption = Format$(dacScroll(Index).Value * .0012207, “0.000")

End Sub

Sub DacScroll_Scroll (Index As Integer)
Call DacScroll_Change(Index)

End Sub

Sub Form_Load ()
’Open DaqBook driver
dbk1.Open = True

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

DIO1

Begin DIO Dio1
ByteIn = 0
ByteOut = 0
IndexIn = 0
IndexOut = 0
Left = 2160
Local = -1 ’True
LocalAByte = 0
LocalASetAsInput = -1 ’True
LocalBByte = 0
LocalBSetAsInput = -1 ’True
LocalCHiNibble = 0
LocalCHiSetAsInput= -1 ’True
LocalCLoNibble = 0
LocalCLoSetAsInput= -1 ’True
Top = 660

 End

DIO1 Form

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-53

Begin DBK Dbk1
IntLevel = 7
Left = 2160
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1140

End

Dim connectorSelect As Integer

Const INPUTMODE = True
Const OUTPUTMODE = False
Const BASEUNIT = 0
Const A1 = 1
Const A2 = 2
Const B1 = 3
Const B2 = 4
Const C1 = 5
Const C2 = 6
Const D1 = 7
Const D2 = 8
Const PORTA = 0
Const PORTB = 1
Const PORTCHI = 2
Const PORTCLO = 3

Sub Connector_Click (index As Integer)
Dim i As Integer
If index = 0 Then

dio1.Local = True
Else

dio1.Local = False
End If
connectorSelect = index
For i = 0 To 3

inputRadio(i).Value = True
Next i

End Sub

Sub Form_Load ()
Dim i As Integer

’Open DaqBook driver
dbk1.Open = True

’Select the base unit connector
connector(0).Value = True

’Set all of the ports as inputs
For i = 0 To 3

inputRadio(i).Value = True
 Next i

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False
End

End Sub

Function getByteFromPort (whichPort As Integer) As Integer
Dim theVal As Integer
If connectorSelect = BASEUNIT Then

Select Case whichPort
Case PORTA

theVal = dio1.LocalAByte
Case PORTB

theVal = dio1.LocalBByte
Case PORTCHI

theVal = dio1.LocalCHiNibble
Case PORTCLO

theVal = dio1.LocalCLoNibble
End Select

Else
Select Case whichPort

Case PORTA

Visual Basic VBX Support Chapter 6

6-54 Programmer’s Manual

theVal = dio1.ExpAByte(connectorSelect - 1)
Case PORTB

theVal = dio1.ExpBByte(connectorSelect - 1)
Case PORTCHI

theVal = dio1.ExpCHiNibble(connectorSelect - 1)
Case PORTCLO

theVal = dio1.ExpCLoNibble(connectorSelect - 1)
End Select

End If
getByteFromPort = theVal

End Function

Sub GetInputDataTimer_Timer ()
Dim i As Integer
For i = 0 To 3

If inputRadio(i).Value = True Then
ioText(i).text = Hex$(getByteFromPort(i))

End If
 Next i

End Sub

Function hexVal (hexString As String) As Integer
Dim hiChar As Integer
Dim loChar As Integer
If Len(hexString) = 0 Then

hexVal = 0
Exit Function

End If
If Len(hexString) = 2 Then

hiChar = Asc(hexString) - &H30
If hiChar 10 Then hiChar = hiChar -7

End If
loChar = Asc(Mid$(hexString, Len(hexString), 1)) - &H30
If loChar 10 Then loChar = loChar -7
hexVal = hiChar * 16 + loChar

End Function

Sub InputRadio_click (index As Integer)
Call setupPortIo(index, INPUTMODE)

End Sub

Sub ioText_Change (index As Integer)
Dim maxLen As Integer
Dim byteString As String
If index = 0 Or index = 1 Then

maxLen = 2
Else

maxLen = 1
End If
If Len(ioText(index).text) = maxLen Then

ioText(index).SelStart = 0
ioText(index).SelLength = Len(ioText(index).text)

End If
If outputRadio(index).Value = True Then

byteString = ioText(index).text
Call putByteToPort(index, byteString)

End If
End Sub

Sub ioText_GotFocus (index As Integer)
ioText(index).SelStart = 0

 ioText(index).SelLength = Len(ioText(index).text)
End Sub

Sub ioText_KeyPress (index As Integer, keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case &H61 To &H66 ’Chars a to f

keyascii = keyascii - &H20 ’make upper
Case &H41 To &H46 ’Chars A to F
Case Else

keyascii = 0
End Select

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-55

End Sub

Sub OutputRadio_Click (index As Integer)
ioText(index).text = “00"
Call setupPortIo(index, OUTPUTMODE)

End Sub

Sub putByteToPort (whichPort As Integer, textVal As String)
Dim outputVal As Integer
outputVal = hexVal(textVal)
If connectorSelect = BASEUNIT Then

Select Case whichPort
Case PORTA

dio1.LocalAByte = outputVal
Case PORTB

dio1.LocalBByte = outputVal
Case PORTCHI

dio1.LocalCHiNibble = outputVal
Case PORTCLO

dio1.LocalCLoNibble = outputVal
End Select

Else
Select Case whichPort

Case PORTA
 dio1.ExpAByte(connectorSelect - 1) = outputVal

Case PORTB
 dio1.ExpBByte(connectorSelect - 1) = outputVal

Case PORTCHI
 dio1.ExpCHiNibble(connectorSelect - 1) = outputVal

Case PORTCLO
 dio1.ExpCLoNibble(connectorSelect - 1) = outputVal

End Select
End If

End Sub

Sub setupPortIo (whichPort As Integer, ioMode As Integer)
If connectorSelect = BASEUNIT Then

Select Case whichPort
Case PORTA

dio1.LocalASetAsInput = ioMode
Case PORTB

dio1.LocalBSetAsInput = ioMode
Case PORTCHI

dio1.LocalCHiSetAsInput = ioMode
Case PORTCLO

dio1.LocalCLoSetAsInput = ioMode
End Select

Else
Select Case whichPort

Case PORTA
 dio1.ExpASetAsInput(connectorSelect - 1) = ioMode

Case PORTB
 dio1.ExpBSetAsInput(connectorSelect - 1) = ioMode

Case PORTCHI
 dio1.ExpCHiSetAsInput(connectorSelect - 1) = ioMode

Case PORTCLO
 dio1.ExpCLoSetAsInput(connectorSelect - 1) = ioMode

End Select
End If

End Sub

Visual Basic VBX Support Chapter 6

6-56 Programmer’s Manual

DIO2

Begin DIO Dio1
ByteIn = 0
ByteOut = 0
IndexIn = 0
IndexOut = 0
Left = 60
Local = -1 ’True
LocalAByte = 0

 LocalASetAsInput = -1 ’True
LocalBByte = 0
LocalBSetAsInput = -1 ’True
LocalCHiNibble = 0
LocalCHiSetAsInput= -1 ’True
LocalCLoNibble = 0
LocalCLoSetAsInput= -1 ’True
Top = 3120

End
Begin DBK Dbk1

IntLevel = 7
Left = 1020
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 3120

End

Const INPUTMODE = True
Const OUTPUTMODE = False
Const BASEUNIT = 0
Const A1 = 1
Const A2 = 2
Const B1 = 3
Const B2 = 4
Const C1 = 5
Const C2 = 6
Const D1 = 7
Const D2 = 8
Const PORTA = 0
Const PORTB = 1
Const PORTCHI = 2

DIO2 Form

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-57

Const PORTCLO = 3

Sub aBitCheck_Click (Index As Integer)
’If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTA).Value = False Then Exit Sub
theVal = aBitCheck(Index).Value
Call checkChange(PORTA, Index, theVal)

End Sub

Sub bBitCheck_Click (Index As Integer)
’If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTB).Value = False Then Exit Sub
theVal = bBitCheck(Index).Value

 Call checkChange(PORTB, Index, theVal)
End Sub

Sub checkChange (port As Integer, bit As Integer, theValue As Integer)
’Change the value of the selected output bit on the selected port to the selected value. Only

change the bit if the port is configured for output
If outputRadio(port).Value = True Then ’Only change the bit if the

Select Case port
Case 0

dio1.LocalABit(bit) = theValue
Case 1

dio1.LocalBBit(bit) = theValue
Case 2

dio1.LocalCHiBit(bit) = theValue
Case 3

dio1.LocalCLoBit(bit) = theValue
End Select

End If
End Sub

Sub cHiBitCheck_Click (Index As Integer)
’If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTCHI).Value = False Then Exit Sub
theVal = cHiBitCheck(Index).Value
Call checkChange(PORTCHI, Index, theVal)

End Sub

Sub cLoBitCheck_Click (Index As Integer)
’If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTCLO).Value = False Then Exit Sub
theVal = cLoBitCheck(Index).Value
Call checkChange(PORTCLO, Index, theVal)

 End Sub

Sub Form_Load ()
Dim i As Integer

’Open DaqBook driver and allocate a data buffer
dbk1.Open = True

’Set all of the ports as inputs
For i = 0 To 3

inputRadio(i).Value = True
Next i

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

Sub GetInputDataTimer_Timer ()
’Every time the timer ticks, test all of the bits on ports configured

’as inputs and post the results in the associated check boxes.
Dim i As Integer
For i = 0 To 3 ’Loop through all of the ports

If inputRadio(i).Value = True Then
’If configured as an input, post the bit values for this port

putBitsInCheckBoxes (i)
End If

Visual Basic VBX Support Chapter 6

6-58 Programmer’s Manual

Next i
End Sub

Sub InputRadio_click (Index As Integer)
’Configure the specified port as an input.

Call setupPortIo(Index, INPUTMODE)
Call resetCheckBoxes

End Sub

Sub OutputRadio_Click (Index As Integer)
’Configure the specified port as an output.

Call setupPortIo(Index, OUTPUTMODE)
Call resetCheckBoxes

End Sub

Sub putBitsInCheckBoxes (whichPort As Integer)
’For the selected port, scan the input bits and place the result of each

’bit test in the associated check box
Dim i As Integer
Dim maxBits As Integer

’Ports A and B have bits 0-7, C hi and C lo have 0-3.
If whichPort 2 Then

maxBits = 7
Else

maxBits = 3
End If

’The DIO property LocalxBits(i) returns a 0 or a -1, the check boxes accept either a 0
or a 1 for their value. That’s why the bit test is multiplied by -1.

Select Case whichPort
Case PORTA

For i = 0 To maxBits
aBitCheck(i).Value = dio1.LocalABit(i) * -1

Next i
Case PORTB

For i = 0 To maxBits
bBitCheck(i).Value = dio1.LocalBBit(i) * -1

Next i
Case PORTCHI

For i = 0 To maxBits
cHiBitCheck(i).Value = dio1.LocalCHiBit(i) * -1

Next i
Case PORTCLO

For i = 0 To maxBits
cLoBitCheck(i).Value = dio1.LocalCLoBit(i) * -1

Next i
End Select

End Sub

Sub resetCheckBoxes ()
’Set all of the check boxes back to 0.

Dim i As Integer
For i = 0 To 7

aBitCheck(i).Value = False
bBitCheck(i).Value = False
If i 4 Then

cHiBitCheck(i).Value = False
cLoBitCheck(i).Value = False

End If
Next i

End Sub

Sub setupPortIo (whichPort As Integer, ioMode As Integer)
’Configure the selected port as either an input or an output.
Select Case whichPort

Case PORTA
dio1.LocalASetAsInput = ioMode

Case PORTB
dio1.LocalBSetAsInput = ioMode

Case PORTCHI
dio1.LocalCHiSetAsInput = ioMode

Case PORTCLO
dio1.LocalCLoSetAsInput = ioMode

End Select
End Sub

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-59

CTR1

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr

 C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False
C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load

CTR1 Form

Visual Basic VBX Support Chapter 6

6-60 Programmer’s Manual

C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 1500

End
Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1500

End
Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long

’ converts a string to a long integer number
’ and makes sure that the number is within bounds

If CvtStr = “” Then
CvtMinMax = min

Else
Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then

CvtVal = Max
ElseIf CvtVal min Then

CvtVal = min
End If
CvtMinMax = CvtVal

End If
End Function

Sub Duty_KeyPress (Index As Integer, keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space

 Case Else
keyascii = 0 ’Reject all other characters

End Select
End Sub

Sub ExecuteButton_Click ()
Dim userduty%, userfreq&, srcfreq&, src%
Dim i As Integer

’ Disarm all 5 counters
ctr1.Disarm = True
For i = 1 To 5

’ Read user input
userduty% = CvtMinMax(Duty(i -1).Text, 1, 99)
userfreq& = CvtMinMax(Freq(i -1).Text, 1, 1000000)

’ Decide which internal source to use as an input
If userfreq 20 Then

’ for faster waveforms, use the 1MHz clock
src% = 11
srcfreq& = 1000000

Else
’ for slower waveforms, use the 10kHz clock
src% = 13
srcfreq& = 10000

End If
’ Set hold and load registers and input source

Select Case i
Case 1

ctr1.C1CntSource = src%
ctr1.C1Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)
ctr1.C1Load = Max(CInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

Case 2
ctr1.C2CntSource = src%
ctr1.C2Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)
ctr1.C2Load = Max(CInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-61

Case 3
ctr1.C3CntSource = src%
ctr1.C3Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)
ctr1.C3Load = Max(CInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

Case 4
ctr1.C4CntSource = src%
ctr1.C4Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)
ctr1.C4Load = Max(CInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

Case 5
ctr1.C5CntSource = src%
ctr1.C5Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)
ctr1.C5Load = Max(CInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

End Select
’ Initialize all 5 counters
ctr1.SetCounterMode = i

Next i
’ Start all 5 counters

ctr1.LoadArm = True
End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’ Set non-changing properties of each counter. These properties are set here and

never change. Alternatively, they could be set in the properties window
ctr1.C1Enable = True ’ counter enabled for arm/disarm, save/load commands
ctr1.C1CntDir = 0 ’ count down
ctr1.C1CntEdge = 1 ’ count on positive edge
ctr1.C1CntRepeat = True ’ repeat enabled
ctr1.C1CntType = 0 ’ binary counting
ctr1.C1GateCtrl = 0 ’ no gating
ctr1.C1OutputCtrl = 2 ’ TC toggled output
ctr1.C1Reload = 1 ’ reload from load or hold
ctr1.C1SpecialGate = 0 ’ special gate disabled
ctr1.C2Enable = True ’ counter enabled for arm/disarm, save/load commands
ctr1.C2CntDir = 0 ’ count down
ctr1.C2CntEdge = 1 ’ count on positive edge
ctr1.C2CntRepeat = True ’ repeat enabled
ctr1.C2CntType = 0 ’ binary counting
ctr1.C2GateCtrl = 0 ’ no gating
ctr1.C2OutputCtrl = 2 ’ TC toggled output
ctr1.C2Reload = 1 ’ reload from load or hold
ctr1.C2SpecialGate = 0 ’ special gate disabled
ctr1.C3Enable = True ’ counter enabled for arm/disarm, save/load commands
ctr1.C3CntDir = 0 ’ count down
ctr1.C3CntEdge = 1 ’ count on positive edge
ctr1.C3CntRepeat = True ’ repeat enabled
ctr1.C3CntType = 0 ’ binary counting
ctr1.C3GateCtrl = 0 ’ no gating
ctr1.C3OutputCtrl = 2 ’ TC toggled output
ctr1.C3Reload = 1 ’ reload from load or hold
ctr1.C3SpecialGate = 0 ’ special gate disabled
ctr1.C4Enable = True ’ counter enabled for arm/disarm, save/load commands
ctr1.C4CntDir = 0 ’ count down
ctr1.C4CntEdge = 1 ’ count on positive edge
ctr1.C4CntRepeat = True ’ repeat enabled
ctr1.C4CntType = 0 ’ binary counting
ctr1.C4GateCtrl = 0 ’ no gating
ctr1.C4OutputCtrl = 2 ’ TC toggled output
ctr1.C4Reload = 1 ’ reload from load or hold
ctr1.C4SpecialGate = 0 ’ special gate disabled

 ctr1.C5Enable = True ’ counter enabled for arm/disarm, save/load commands
ctr1.C5CntDir = 0 ’ count down
ctr1.C5CntEdge = 1 ’ count on positive edge
ctr1.C5CntRepeat = True ’ repeat enabled
ctr1.C5CntType = 0 ’ binary counting
ctr1.C5GateCtrl = 0 ’ no gating
ctr1.C5OutputCtrl = 2 ’ TC toggled output
ctr1.C5Reload = 1 ’ reload from load or hold
ctr1.C5SpecialGate = 0 ’ special gate disabled

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

Visual Basic VBX Support Chapter 6

6-62 Programmer’s Manual

End Sub

Sub Freq_KeyPress (Index As Integer, keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

Function Max (ByVal a As Long, ByVal b As Long) As Long
If a b Then

Max = a
Else

Max = b
End If

End Function

CTR2

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low

CTR2 Form

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-63

C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False

 C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 1 ’ Divide by 1
FoutSource = 15 ’100 Hz Clock
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 1500

End
Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1500

End

Sub ExecuteButton_Click ()
’ enable all counters to execute the save command

ctr1.C1Enable = True
ctr1.C2Enable = True
ctr1.C3Enable = True
ctr1.C4Enable = True

 ctr1.C5Enable = True
’ save the count value to the hold register

ctr1.Save = True
’ print the contents of the hold register

Total(0).Caption = CStr(ctr1.C1Hold)
Total(1).Caption = CStr(ctr1.C2Hold)
Total(2).Caption = CStr(ctr1.C3Hold)
Total(3).Caption = CStr(ctr1.C4Hold)
Total(4).Caption = CStr(ctr1.C5Hold)

End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’ enable all counters to execute the disarm/arm and load commands
ctr1.C1Enable = True
ctr1.C2Enable = True
ctr1.C3Enable = True
ctr1.C4Enable = True
ctr1.C5Enable = True

’ Halt all counters
ctr1.Disarm = True

’ Set non-changing properties of each counter
’ These properties are set here and never change
’ Alternatively, they could be set in the properties window

ctr1.C1CntDir = 1 ’ count up
ctr1.C1CntEdge = 1 ’ count on positive edge

Visual Basic VBX Support Chapter 6

6-64 Programmer’s Manual

ctr1.C1CntRepeat = True ’ repeat enabled
ctr1.C1CntType = 0 ’ binary counting
ctr1.C1GateCtrl = 0 ’ no gating
ctr1.C1OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C1Reload = 0 ’ reload from load
ctr1.C1SpecialGate = 0 ’ special gate disabled
ctr1.C1CntSource = 1 ’ use counter 1 input as source
ctr1.C1Load = 0 ’ initial load register value is 0

 ctr1.C2CntDir = 1 ’ count up
ctr1.C2CntEdge = 1 ’ count on positive edge
ctr1.C2CntRepeat = True ’ repeat enabled
ctr1.C2CntType = 0 ’ binary counting
ctr1.C2GateCtrl = 0 ’ no gating
ctr1.C2OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C2Reload = 0 ’ reload from load
ctr1.C2SpecialGate = 0 ’ special gate disabled
ctr1.C2CntSource = 2 ’ use counter 1 input as source
ctr1.C2Load = 0 ’ initial load register value is 0
ctr1.C3CntDir = 1 ’ count up
ctr1.C3CntEdge = 1 ’ count on positive edge
ctr1.C3CntRepeat = True ’ repeat enabled
ctr1.C3CntType = 0 ’ binary counting
ctr1.C3GateCtrl = 0 ’ no gating
ctr1.C3OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C3Reload = 0 ’ reload from load
ctr1.C3SpecialGate = 0 ’ special gate disabled
ctr1.C3CntSource = 3 ’ use counter 1 input as source
ctr1.C3Load = 0 ’ initial load register value is 0
ctr1.C4CntDir = 1 ’ count up
ctr1.C4CntEdge = 1 ’ count on positive edge
ctr1.C4CntRepeat = True ’ repeat enabled
ctr1.C4CntType = 0 ’ binary counting
ctr1.C4GateCtrl = 0 ’ no gating
ctr1.C4OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C4Reload = 0 ’ reload from load
ctr1.C4SpecialGate = 0 ’ special gate disabled
ctr1.C4CntSource = 4 ’ use counter 1 input as source
ctr1.C4Load = 0 ’ initial load register value is 0
ctr1.C5CntDir = 1 ’ count up
ctr1.C5CntEdge = 1 ’ count on positive edge
ctr1.C5CntRepeat = True ’ repeat enabled
ctr1.C5CntType = 0 ’ binary counting
ctr1.C5GateCtrl = 0 ’ no gating
ctr1.C5OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C5Reload = 0 ’ reload from load
ctr1.C5SpecialGate = 0 ’ special gate disabled
ctr1.C5CntSource = 5 ’ use counter 1 input as source
ctr1.C5Load = 0 ’ initial load register value is 0

’ program the counters with the previous set parameters
ctr1.SetCounterMode = 1
ctr1.SetCounterMode = 2
ctr1.SetCounterMode = 3
ctr1.SetCounterMode = 4
ctr1.SetCounterMode = 5

’ initialize the counter values and start the counters
ctr1.LoadArm = True

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

Sub ResetButton_Click (Index As Integer)
’ Reset the corresponding counter’s load register

ctr1.C1Enable = False
ctr1.C2Enable = False
ctr1.C3Enable = False
ctr1.C4Enable = False
ctr1.C5Enable = False
Select Case Index
Case 0

ctr1.C1Enable = True
Case 1

ctr1.C2Enable = True

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-65

Case 2
ctr1.C3Enable = True

Case 3
ctr1.C4Enable = True

 Case 4
ctr1.C5Enable = True

End Select
ctr1.Load = True

End Sub

CTR3

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled

 C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False

CTR3 Form

Visual Basic VBX Support Chapter 6

6-66 Programmer’s Manual

C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 1140

End
 Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1140

End

Sub ExecuteButton_Click ()
Dim i As Integer
’ Setup counter 1 to read a known source (1MHz) that will be used as a timebase for counter 2.

Counter 2 will read the frequency of all 5 counter inputs. This source can be set to
frequencies slower than 1MHz to read slower frequencies.

ctr1.C1CntSource = 11
ctr1.SetCounterMode = 1
For i = 1 To 5

’ Halt counters 1 and 2
ctr1.Disarm = True

’ Program counter 2 to read the current source
ctr1.C2CntSource = i
ctr1.SetCounterMode = 2

’ Reset the counters 1 and 2 to 0 and start counting
ctr1.LoadArm = True

’ Wait for counter 1 to accumulate 10000 counts
’ At 1MHz, this translates to 0.01 seconds

Do
’ Transfer the count value of counters 1 and 2
’ to the hold register
ctr1.Save = True

Loop While ctr1.C1Hold 10000
’ Now use the known timebase (counter 1) to calculate the frequency of the unknown

timebase (counter 2). If an input other than 1MHz is used for counter 1, change the
constant 1000000 in the following line to the input frequency of counter 1

Freq(i - 1).Caption = CStr(ctr1.C2Hold * 1000000 / ctr1.C1Hold)
Next i

End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’enable counters 1 and 2 to execute the disarm/arm and load commands

ctr1.C1Enable = True
ctr1.C2Enable = True
ctr1.C3Enable = False
ctr1.C4Enable = False
ctr1.C5Enable = False

’ Set non-changing properties of each counter
’ These properties are set here and never change
’ Alternatively, they could be set in the properties window

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-67

ctr1.C1CntDir = 1 ’ count up
ctr1.C1CntEdge = 1 ’ count on positive edge
ctr1.C1CntRepeat = False ’ repeat enabled
ctr1.C1CntType = 0 ’ binary counting
ctr1.C1GateCtrl = 0 ’ no gating
ctr1.C1OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C1Reload = 0 ’ reload from load
ctr1.C1SpecialGate = 0 ’ special gate disabled
ctr1.C1CntSource = 11 ’ use 1MHz clock as source
ctr1.C1Load = 0 ’ initial load register value is 0
ctr1.C2CntDir = 1 ’ count up
ctr1.C2CntEdge = 1 ’ count on positive edge
ctr1.C2CntRepeat = False ’ repeat enabled
ctr1.C2CntType = 0 ’ binary counting
ctr1.C2GateCtrl = 0 ’ no gating
ctr1.C2OutputCtrl = 3 ’ output disabled, high impedance

 ctr1.C2Reload = 0 ’ reload from load
ctr1.C2SpecialGate = 0 ’ special gate disabled
ctr1.C2Load = 0 ’ initial load register value is 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

CTR4

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False

CTR4 Form

Visual Basic VBX Support Chapter 6

6-68 Programmer’s Manual

C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False

 C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False
C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 1260

End
Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 1260

End

Sub Divider_Click ()
ctr1.FoutDivider = Divider.ListIndex
ctr1.SetMasterMode = True

End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.open = True
’ initialize the selection lists

Dim i As Integer
For i = 1 To 16

Divider.AddItem CStr(i)
Next i
Source.AddItem “FOUT Disabled”
Source.AddItem “Counter 1 Input”
Source.AddItem “Counter 2 Input”
Source.AddItem “Counter 3 Input”
Source.AddItem “Counter 4 Input”
Source.AddItem “Counter 5 Input”
Source.AddItem “Counter 1 Gate”
Source.AddItem “Counter 2 Gate”

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-69

Source.AddItem “Counter 3 Gate”
Source.AddItem “Counter 4 Gate”
Source.AddItem “Counter 5 Gate”
Source.AddItem “1MHz”
Source.AddItem “100kHz”
Source.AddItem “10kHz”
Source.AddItem “1kHz”
Source.AddItem “100Hz”

’ select initial settings
Divider.ListIndex = 0
Source.ListIndex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.open = False

End Sub

Sub Source_Click ()
ctr1.FoutSource = Source.ListIndex
ctr1.SetMasterMode = True

End Sub

CTR5

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr

CTR5 Form

Visual Basic VBX Support Chapter 6

6-70 Programmer’s Manual

C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False
C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 1320

End
Begin DBK Dbk1

 IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O

Sub ExecuteButton_Click ()
’ Transfer count value of counters 1 and 2 to the hold register

ctr1.Save = True
’ Display the elapsed time

ElapsedTime.Caption = Format$(Hex$(ctr1.C2Hold), “00:00:”) +
Format$(Hex$(ctr1.C1Hold), “00\.00")
End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’enable counters 1 and 2 to execute the disarm/arm and load commands
ctr1.C1Enable = True
ctr1.C2Enable = True
ctr1.C3Enable = False
ctr1.C4Enable = False
ctr1.C5Enable = False

’ halt counters 1 and 2
ctr1.Disarm = True

’ Initialize time of day operation
’ Use 100Hz time of day setting and set the input
’ of counter 1 (below) to the internal 100Hz clock

ctr1.TimeOfDay = 3
ctr1.SetMasterMode = True

’ Set non-changing properties of each counter
’ These properties are set here and never change
’ Alternatively, they could be set in the properties window

ctr1.C1CntDir = 1 ’ count up
ctr1.C1CntEdge = 1 ’ count on positive edge
ctr1.C1CntRepeat = True ’ repeat enabled
ctr1.C1CntType = 1 ’ BCD counting

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-71

ctr1.C1GateCtrl = 0 ’ no gating
 ctr1.C1OutputCtrl = 3 ’ output disabled, high impedance

ctr1.C1Reload = 0 ’ reload from load
ctr1.C1SpecialGate = 0 ’ special gate disabled
ctr1.C1CntSource = 15 ’ use 100Hz as source
ctr1.C2CntDir = 1 ’ count up
ctr1.C2CntEdge = 1 ’ count on positive edge
ctr1.C2CntRepeat = True ’ repeat enabled
ctr1.C2CntType = 1 ’ BCD counting
ctr1.C2GateCtrl = 0 ’ no gating
ctr1.C2OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C2Reload = 0 ’ reload from load
ctr1.C2SpecialGate = 0 ’ special gate disabled
ctr1.C2CntSource = 0 ’ use the TC output of the

’ previous counter (counter 1) as source
’ Program counters 1 and 2

ctr1.SetCounterMode = 1
ctr1.SetCounterMode = 2

’ Initialize counters 1 and 2 to 0
’ This will set counters 1 and 2 to read the elapsed time
’ from the start of this program

ctr1.C1Load = 0
ctr1.C2Load = 0
ctr1.LoadArm = True

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

CTR6

Begin CTR Ctr1
BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False
C1CntSource = 0 ’ 0 - TC toggled output of last ctr

 C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False

CTR6 Form

Visual Basic VBX Support Chapter 6

6-72 Programmer’s Manual

C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count
C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False
C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 ’Disabled
Top = 2700

End
Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 2700

End

Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long
’ converts a string to a long integer number
’ and makes sure that the number is within bounds

If CvtStr = “” Then
CvtMinMax = min

 Else
Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then

CvtVal = Max
ElseIf CvtVal min Then

CvtVal = min
End If
CvtMinMax = CvtVal

End If
End Function

Sub ExecuteButton_Click ()

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-73

Dim i As Integer
’ Read the user inputs

ctr1.FreqCntSource = Source.ListIndex + 1
i = CInt(CvtMinMax(Gate.Text, 1, 32767))
ctr1.FreqInterval = i

’ Display the frequency
MousePointer = 11
Freq.Caption = CStr(ctr1.FreqCnt * 1000 / i)
MousePointer = 0

End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’ Initialize source selection box

Source.AddItem “Counter 1 Input”
Source.AddItem “Counter 2 Input”
Source.AddItem “Counter 3 Input”
Source.AddItem “Counter 4 Input”
Source.AddItem “Counter 5 Input”
Source.AddItem “Counter 1 Gate”
Source.AddItem “Counter 2 Gate”
Source.AddItem “Counter 3 Gate”
Source.AddItem “Counter 4 Gate”

’ select initial settings
Source.ListIndex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.Open = False

End Sub

Sub Gate_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

End Sub

CTR7

VERSION 2.00
Begin CTR Ctr1

BufferLength = 1
C1CntDir = 0 ’Count Down
C1CntEdge = 0 ’Negative Count Edge
C1CntRepeat = 0 ’False

Visual Basic VBX Support Chapter 6

6-74 Programmer’s Manual

C1CntSource = 0 ’ 0 - TC toggled output of last ctr
C1CntType = 0 ’Binary Count
C1Enable = 0 ’False
C1GateCtrl = 0 ’Gating Disabled
C1OutputCtrl = 0 ’Inactive -Always low
C1Reload = 0 ’Reload from Load
C1SpecialGate = 0 ’False
C2CntDir = 0 ’Count Down
C2CntEdge = 0 ’Negative Count Edge
C2CntRepeat = 0 ’False
C2CntSource = 0 ’ 0 - TC toggled output of last ctr
C2CntType = 0 ’Binary Count
C2Enable = 0 ’False
C2GateCtrl = 0 ’Gating Disabled
C2OutputCtrl = 0 ’Inactive -Always low
C2Reload = 0 ’Reload from Load
C2SpecialGate = 0 ’False
C3CntDir = 0 ’Count Down
C3CntEdge = 0 ’Negative Count Edge
C3CntRepeat = 0 ’False
C3CntSource = 0 ’ 0 - TC toggled output of last ctr
C3CntType = 0 ’Binary Count

 C3Enable = 0 ’False
C3GateCtrl = 0 ’Gating Disabled
C3OutputCtrl = 0 ’Inactive -Always low
C3Reload = 0 ’Reload from Load
C3SpecialGate = 0 ’False
C4CntDir = 0 ’Count Down
C4CntEdge = 0 ’Negative Count Edge
C4CntRepeat = 0 ’False
C4CntSource = 0 ’ 0 - TC toggled output of last ctr
C4CntType = 0 ’Binary Count
C4Enable = 0 ’False
C4GateCtrl = 0 ’Gating Disabled
C4OutputCtrl = 0 ’Inactive -Always low
C4Reload = 0 ’Reload from Load
C4SpecialGate = 0 ’False
C5CntDir = 0 ’Count Down
C5CntEdge = 0 ’Negative Count Edge
C5CntRepeat = 0 ’False
C5CntSource = 0 ’ 0 - TC toggled output of last ctr
C5CntType = 0 ’Binary Count
C5Enable = 0 ’False
C5GateCtrl = 0 ’Gating Disabled
C5OutputCtrl = 0 ’Inactive -Always low
C5Reload = 0 ’Reload from Load
C5SpecialGate = 0 ’False
Comp1Enable = 0 ’False
Comp2Enable = 0 ’False
FoutDivider = 0 ’ Divide by 16
FoutSource = 0 ’ 0 - Fout Disabled
FreqCntSource = 1 ’Counter 1 Input
FreqInterval = 1
Left = 600
NumScans = 1

 TimeOfDay = 0 ’Disabled
Top = 2820

End
Begin DBK Dbk1

IntLevel = 7
Left = 180
LptPort = 0 ’LPT1
Protocol = 1 ’4 Bit I/O
Top = 2820

End

Const MAXBUF = 160

Dim dataBuffer1(MAXBUF) As Integer ’ The data buffer for counter 1
Dim dataBuffer2(MAXBUF) As Integer ’ The data buffer for counter 1
Dim dataBuffer3(MAXBUF) As Integer ’ The data buffer for counter 1
Dim dataBuffer4(MAXBUF) As Integer ’ The data buffer for counter 1
Dim dataBuffer5(MAXBUF) As Integer ’ The data buffer for counter 1
Dim scansProcessed As Long’ Keeps track of how many scans

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-75

’ read have been sent to disk
Dim totalScansToRead As Long ’ The total number of scans to read
Dim readIndex As Integer ’ The array index from which to read the next value

Sub Ctr1_Triggered ()
’ Update the status box

Status.Caption = “Triggered”
’ Enable the timer that checks for new data

Timer1.Enabled = True
End Sub

Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long
’ converts a string to a long integer number
’ and makes sure that the number is within bounds

If CvtStr = “” Then
CvtMinMax = min

Else
Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then

CvtVal = Max
ElseIf CvtVal min Then

 CvtVal = min
End If
CvtMinMax = CvtVal

End If
End Function

Sub disarmAcq ()
Close #1

’ctr1.ReadCounters = false
ctr1.Stop = True
Status.Caption = “Idle”
ExecuteButton.Caption = “Execute”
Timer1.Enabled = False
ScansToRead.Enabled = True

End Sub

Sub ExecuteButton_Click ()
’ Disarm the acquisition if the acquisition is already in process
If ExecuteButton.Caption = “Abort” Then

disarmAcq
Exit Sub

End If
’ halt the counters

ctr1.Disarm = True
’ Update the user interface

Status.Caption = “Waiting for trigger”
ScansToRead.Enabled = False

’ Initialize the acquisition variables
ExecuteButton.Caption = “Abort”
readIndex = 0
scansProcessed = 0
totalScansToRead = CvtMinMax(ScansToRead.Text, 1, 1000000)
If totalScansToRead MAXBUF Then

ctr1.NumScans = -1
Else

ctr1.NumScans = totalScansToRead
End If

’ Open the data file
Open “ctr7.txt” For Output As #1

’ start the counters
ctr1.LoadArm = True
’ Start the acquisition
ctr1.ReadCounters = True

End Sub

Sub Form_Load ()
’ Open the DaqBook driver

dbk1.Open = True
’ enable all counters to execute the disarm/arm and load commands
ctr1.C1Enable = True
ctr1.C2Enable = True

Visual Basic VBX Support Chapter 6

6-76 Programmer’s Manual

ctr1.C3Enable = True
ctr1.C4Enable = True
ctr1.C5Enable = True

’ Halt all counters
ctr1.Disarm = True

’ Set non-changing properties of each counter
’ These properties are set here and never change
’ Alternatively, they could be set in the properties window

ctr1.BufferLength = MAXBUF
ctr1.C1CntDir = 1 ’ count up
ctr1.C1CntEdge = 1 ’ count on positive edge
ctr1.C1CntRepeat = True ’ repeat enabled
ctr1.C1CntType = 0 ’ binary counting
ctr1.C1GateCtrl = 0 ’ no gating
ctr1.C1OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C1Reload = 0 ’ reload from load
ctr1.C1SpecialGate = 0 ’ special gate disabled
ctr1.C1CntSource = 1 ’ use counter 1 input as source
ctr1.C1Load = 0 ’ initial load register value is 0
ctr1.C1Buffer = addressOf(dataBuffer1(0))
ctr1.C2CntDir = 1 ’ count up
ctr1.C2CntEdge = 1 ’count on positive edge
ctr1.C2CntRepeat = True ’ repeat enabled
ctr1.C2CntType = 0 ’ binary counting

 ctr1.C2GateCtrl = 0 ’ no gating
ctr1.C2OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C2Reload = 0 ’ reload from load
ctr1.C2SpecialGate = 0 ’ special gate disabled
ctr1.C2CntSource = 2 ’ use counter 2 input as source
ctr1.C2Load = 0 ’ initial load register value is 0
ctr1.C2Buffer = addressOf(dataBuffer2(0))
ctr1.C3CntDir = 1 ’ count up
ctr1.C3CntEdge = 1 ’ count on positive edge
ctr1.C3CntRepeat = True ’ repeat enabled
ctr1.C3CntType = 0 ’ binary counting
ctr1.C3GateCtrl = 0 ’ no gating
ctr1.C3OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C3Reload = 0 ’ reload from load
ctr1.C3SpecialGate = 0 ’ special gate disabled
ctr1.C3CntSource = 3 ’ use counter 3 input as source
ctr1.C3Load = 0 ’ initial load register value is 0
ctr1.C3Buffer = addressOf(dataBuffer3(0))
ctr1.C4CntDir = 1 ’ count up
ctr1.C4CntEdge = 1 ’ count on positive edge
ctr1.C4CntRepeat = True ’ repeat enabled
ctr1.C4CntType = 0 ’ binary counting
ctr1.C4GateCtrl = 0 ’ no gating
ctr1.C4OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C4Reload = 0 ’ reload from load
ctr1.C4SpecialGate = 0 ’ special gate disabled
ctr1.C4CntSource = 4 ’ use counter 4 input as source
ctr1.C4Load = 0 ’ initial load register value is 0
ctr1.C4Buffer = addressOf(dataBuffer4(0))

 ctr1.C5CntDir = 1 ’ count up
ctr1.C5CntEdge = 1 ’ count on positive edge
ctr1.C5CntRepeat = True ’ repeat enabled
ctr1.C5CntType = 0 ’ binary counting
ctr1.C5GateCtrl = 0 ’ no gating
ctr1.C5OutputCtrl = 3 ’ output disabled, high impedance
ctr1.C5Reload = 0 ’ reload from load
ctr1.C5SpecialGate = 0 ’ special gate disabled
ctr1.C5CntSource = 5 ’ use counter 5 input as source
ctr1.C5Load = 0 ’ initial load register value is 0
ctr1.C5Buffer = addressOf(dataBuffer5(0))

’ program the counters with the previous set parameters
ctr1.SetCounterMode = 1
ctr1.SetCounterMode = 2
ctr1.SetCounterMode = 3
ctr1.SetCounterMode = 4
ctr1.SetCounterMode = 5

End Sub

Sub Form_Unload (Cancel As Integer)

Chapter 6 Visual Basic VBX Support

Programmer’s Manual 6-77

disarmAcq
dbk1.Open = False

End Sub

Function IntToUInt (ByVal i As Integer) As Long
Dim l As Long
l = i
If l 0 Then l = l + 65536
IntToUInt = l

End Function

Sub ScansToRead_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 ’All numbers
Case &H8 ’Back space
Case Else

keyascii = 0 ’Reject all other characters
End Select

 End Sub

Sub Timer1_Timer ()
Dim cnt As Long
Dim ctrStr As String
Dim unprocessed As Long
Dim i As Integer
Dim active As Integer

’ check if the transfer has stopped
active = ctr1.Active

’ get the number of scans collected
cnt = ctr1.Buffered

’ limit cnt to the number of requested scans
If cnt totalScansToRead Then

cnt = totalScansToRead
End If

’ process any new scans
unprocessed = cnt - scansProcessed
If unprocessed 0 Then

’ Check to see if the buffers are overflowed
If unprocessed MAXBUF Then

disarmAcq
MsgBox “Internal buffer overrun”
Exit Sub

End If
For i = 0 To unprocessed - 1

ctrStr = CStr(IntToUInt(dataBuffer1(readIndex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer2(readIndex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer3(readIndex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer4(readIndex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer5(readIndex)))
Print #1, ctrStr
readIndex = readIndex + 1
If readIndex = MAXBUF Then

readIndex = 0
End If

Next i
End If

’ update the number of scans processed
scansProcessed = cnt
ScansRead.Caption = CStr(cnt)

 ’ stop the acquisition if necessary
If (scansProcessed = totalScansToRead) Or Not active Then

disarmAcq
End If

End Sub

Visual Basic VBX Support Chapter 6

6-78 Programmer’s Manual

- Notes

Porting Applications A

Programmer’s Manual A-1

Overview
This appendix outlines methods for porting applications written to the 16-bit Standard API from the
original Daq* Windows 3.1 driver to either a 32-bit version of the Standard API or to the new 32-bit
Enhanced API. The Daq* Windows 95/NT driver provides 3 modes of operation:

16-bit standard API

(16STD)

(Windows 95 Only)

Identical to the Windows 3.1 driver API and documented in
chapters 4 and 5. Users that have written programs using
the Windows 3.1 driver that want to port their application to
Windows 95 in 16-bit mode should use this API. This
standard API can also be used by new developers for 16-bit
applications. Can process up to 32,767 samples at a time.

32-bit standard API

(32STD)

Identical to the Windows 3.1 driver API and documented in
chapters 4 and 5. Users that have written programs using
the Windows 3.1 driver that want to port their application to
Windows 95/NT 32-bit mode should use this API. This
API can also be used by new developers for 32-bit
applications. Can process up to 2 billion samples at a time.

32-bit enhanced API

(32ENH)

Provides enhanced features for applications running under
Windows 95 and Windows NT. This enhanced API (in
chapters 2 and 3) is not code-compatible with the
standard API (in chapters 4 and 5). Legacy applications
require modifications to use this API. 32-bit operation only.
 Can process up to 2 billion samples at a time.

Note: Daq* systems ordered for Windows 95/NT include a Win32 driver capable of
native 32-bit mode operation for both Windows NT and Windows 95 systems.
Additionally, 16-bit operation (through a thunking layer) is supported under
Windows 95.

The enhanced API is device-handle based and allows applications to run in a multi-device/multi-tasked
environment. To successfully port existing Windows 3.1 API applications to the new Windows 95/NT
enhanced API requires coding changes. In addition to the required device handles, other coding
changes may be necessary (refer to the appendix for more information on porting applications).
Applications written for this API must use these new API header files. Support files (under the
Langs\C\32ENH and Langs\VB\32ENH sub-directories of the installation directory) include,
respectively:

• For C, the DaqX.h header file should be used with the DaqX.lib import library.

• For Visual Basic, the DaqX.bas file should be used.

Porting Applications Appendix A

A-2 Programmer’s Manual

Porting Daq* Applications Written for Windows 3.1
The following sections provide information needed to support applications written for the 16-bit
standard API under the Windows 3.1 Daq* drivers. Windows 3.1 applications of the driver may be
binary compatible with the 16-bit Windows 95 version of the driver. Binary compatible means that
applications already written and compiled for the Windows 3.1 version of the driver may not require
re-compilation at all. If it is desirable or necessary to change the application in any way, Visual Basic
and C language support has been provided so that an application may be built in either 16-bit or 32-bit
modes. Compatibility and porting issues for Visual Basic and C are described in the following
sections. (Since previous driver versions did not support Delphi, there is no need to review Delphi
porting issues here.)

Windows 3.1 Binary Compatibility (16-bit)
This section refers to Windows 95 Only.

In some cases, it may be possible to run Windows applications written for the Windows 3.1 version of
the driver without re-compiling the application. It does not matter which language the application was
written in, as long as the application is a Windows application written to use DaqBook.dll. To do this,
the 16-bit Windows 3.1 version of the driver (DaqBook.dll) needs to be replaced by the 16-bit
Windows 95 binary-compatible version of the driver. To attempt this, perform the following steps:

1. Go to the Windows\System directory.
2. Copy the DaqBook.dll to a backup file outside of Windows\System.
3. Delete DaqBook.dll and make sure that there are no others in your path.
4. Copy <installation path>\Utils\DaqBookX.dll to Windows\System\DaqBook.dll.
5. Run the application.

The application should run as before. If there are problems, it may be necessary to recompile the
application as described below.

To switch back to the Windows 3.1 version of the driver:
1. Go to the Windows\System directory.
2. Delete DaqBook.dll from the Windows\System directory.
3. Copy the original DaqBook.dll to the Windows\System directory. Until this is done, the

Windows 95 version of the driver will be used by the application.
Note: Problems are likely to occur if both DaqBookX.dll and DaqBook.dll are in the
Windows\System directory at the same time.

Unsupported Windows 3.1 API Functions
The following functions have become obsolete for the 16-bit and 32-bit standard API release. The
functions are present; however, they perform no action.

daqAdcRdFore Use the daqAdcRd API function to acquire one sample from a selected
channel at a selected gain. This function always returns
"DerrNotCapable".

daqCtrRdNFore

daqCtrRdNBack

daqCtrGetBackStat

daqSetProtocol The protocol must be set through the Daq* Configuration utility. This
function always returns "DerrNoError".

Appendix A Porting Applications

Programmer’s Manual A-3

Porting Visual Basic Programs

16-bit Mode
This section refers to Windows 95 Only.

To convert existing Visual Basic applications requires very little effort. Perform the following steps,
and then run or re-compile your application. The new Daq Windows 95 Visual Basic header file,
DaqX16.bas, is compatible with Visual Basic versions 2.0 through 4.0 (16-bit).

1. Remove the DaqBook.bas file from the project, and add the DaqX16.bas file (that resides in the
<installation path>\Langs\vb\16std directory).

2. Remove or replace obsolete function calls (see Unsupported Windows 3.1 API Functions).

32-bit Mode
To convert existing Visual Basic applications requires more work. The majority of changes involve
converting integer sample or scan counts to long. Perform the following steps, and then run or re-
compile your application using the 32-bit version of Visual Basic 4.0.

1. Remove the DaqBook.bas file from the project, and add the DaqComp.bas file (that resides in
the <installation path>\Langs\vb\32std directory).

2. Remove or replace all obsolete function calls (see Unsupported Windows 3.1 API Functions).
3. Change function parameters as specified in the following table:

Function Prototype Previous Parameter Definition Change Parameter Definition To ...
VBdaq200SetScan count% count&
VBdaqAdcRdN count% count&
VBdaqAdcRdScanN count% count&
VBdaqAdcRdNFore count% count&
VBdaqAdcRdNForePreT count%

retCount%
count&
retCount&

VBdaqAdcRdNForePreTWait count%
retCount%

count&
retCount&

VBdaqAdcRdNBack count% count&
VBdaqAdcRdNBackPreT count% count&
VBdaqAdcConvertTagged count% count&
VBdaqAdcSetScan count% count&
VBdaqAdcSetTrigPreT preCount%

postCount%
preCount&
postCount&

VBdaqBrdDacPredefWave samples% samples&
VBdaqBrdDacUserWave samples% samples&
VBdaqBrdDacWriteFIFO samples% samples&
VBdaqCalConvert scans% scans&
VBdaqCalSetupConvert scans% scans&
VBdaqCtrRdNFore count% count&
VBdaqCtrRdNBack count% count&
VBdaqLinearConvert scans%

nValues%
scans&
nValues&

VBdaqLinearSetupConvert scans%
nValues%

scans&
nValues&

VBdaqRtdConvert scans%
ntemp%

scans&
ntemp&

VBdaqRtdSetupConvert scans%
ntemp%

scans&
ntemp&

VBdaqTCConvert scans%
ntemp%

scans&
ntemp&

VBdaqTCSetupConvert scans%
ntemp%

scans&
ntemp&

VBdaqZeroConvert scans% scans&
VBdaqZeroSetupConvert scans% scans&

Porting Applications Appendix A

A-4 Programmer’s Manual

Porting C Programs
16-bit Mode

This section refers to Windows 95 Only.

To convert existing C applications requires very little effort. Perform the following steps and then re-
compile your application with a 16-bit C compiler. The DaqX16.h and DaqX16.lib files reside in the
<installation path>\Langs\C\16std directory.

1. Replace all #include “DaqBook.h” lines with #include “DaqX16.h”.
2. Replace DaqBook.lib in your project file or makefile with DaqX16.lib.
3. Remove or replace obsolete function calls (see Unsupported Windows 3.1 API Functions).

32-bit Mode
To convert existing C applications requires more work. The majority of changes involve converting
integer data buffers to short data buffers. Integers are 16 bits in 16-bit C compilers, but are 32 bits in
32-bit C compilers. Short integers are 16 bits for both. Perform the following steps and then re-
compile your application with a 32-bit C compiler. The DaqComp.h and Daqcomp.lib files reside in
the <installation path>\Langs\C\32std directory.

1. Replace all #include “DaqBook.h” lines with #include “DaqComp.h”.
2. Replace DaqBook.lib in your project file or makefile with DaqComp.lib.
3. Remove or replace obsolete function calls (see Unsupported Windows 3.1 API Functions).
4. Change function parameters as specified in the following table:

Function Prototype Previous Parameter Definition Change Parameter Definition To ...
daqAdcConvertTagged unsigned int *taggedData

unsigned int *buf
unsigned short *taggedData
unsigned short *buf

daqAdcRd unsigned int *sample unsigned short *sample
daqAdcRdFore unsigned int *sample unsigned short *sample
daqAdcRdN unsigned int *buf

unsigned short *buf

daqAdcRdNBack unsigned int *buf unsigned short *buf
daqAdcRdNBackPreT unsigned int *buf unsigned short *buf
daqAdcRdNFore unsigned int *buf unsigned short *buf
daqAdcRdNForePreT unsigned int *buf unsigned short *buf
daqAdcRdNForePreTWait unsigned int *buf unsigned short *buf
daqAdcRdScan unsigned int *buf unsigned short *buf
daqAdcRdScanN unsigned int *buf unsigned short *buf
daqAdcStopBack_LV unsigned int *bufP unsigned short *bufP
daqBrdDacUserWave unsigned int *buf unsigned short *buf
daqBrdDacWriteFIFO unsigned int *storage unsigned short *storage
daqCalConvert unsigned int *counts unsigned short *counts
daqCalSetupConvert unsigned int *counts unsigned short *counts
daqCtrGetHold unsigned int *ctrVal unsigned short *ctrVal
daqCtrRdFreq unsigned int *count unsigned short *count
daqCtrRdNBack unsigned int *ctr1Buf

unsigned int *ctr2Buf
unsigned int *ctr3Buf
unsigned int *ctr4Buf
unsigned int *ctr5Buf

unsigned short *ctr1Buf
unsigned short *ctr2Buf
unsigned short *ctr3Buf
unsigned short *ctr4Buf
unsigned short *ctr5Buf

daqCtrRdNFore unsigned int *ctr1Buf
unsigned int *ctr2Buf
unsigned int *ctr3Buf
unsigned int *ctr4Buf
unsigned int *ctr5Buf

unsigned short *ctr1Buf
unsigned short *ctr2Buf
unsigned short *ctr3Buf
unsigned short *ctr4Buf
unsigned short *ctr5Buf

daqDacWtMany unsigned int *dataVals unsigned short *dataVals
daqDbkSetChanOption double optionValue float optionValue
daqLinearConvert unsigned *counts unsigned short *counts
daqLinearSetupConvert unsigned *counts unsigned short *counts
daqRtdConvert unsigned *counts

int *temp
unsigned short *counts
short *temp

daqRtdSetupConvert unsigned *counts
int *temp

unsigned short *counts
short *temp

daqTCConvert unsigned *counts
int *temp

unsigned short *counts
short *temp

daqTCSetupConvert unsigned *counts
int *temp

unsigned short *counts
short *temp

daqZeroConvert unsigned int *counts unsigned short *counts
daqZeroSetupConvert unsigned int *counts unsigned short *counts

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace
period to the normal one (1) year product warrantyone (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.
If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer
Service Department will issue an Authorized Return (AR) number immediately upon phone or written
request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at
no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not limited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or
current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components which wear are not warranted, including but not
limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However,OMEGA is pleased to offer suggestions on the use of its various products. However,
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for anyOMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided bydamages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will beOMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES ORas specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OFREPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITYTITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OFAND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability ofLIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of theindemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable forcomponent upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic
Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.
FOR WARRANTYWARRANTY RETURNS, please have the
following information available BEFORE
contacting OMEGA:
1. P.O. number under which the product was

PURCHASED,
2. Model and serial number of the product under

warranty, and
3. Repair instructions and/or specific problems

relative to the product.

FOR NON-WARRANTYNON-WARRANTY REPAIRS, consult OMEGA
for current repair charges. Have the following
information available BEFORE contacting OMEGA:
1. P.O. number to cover the COST

of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems

relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1996 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior
written consent of OMEGA ENGINEERING, INC.

TEMPERATURE
þ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
þ Wire: Thermocouple, RTD & Thermistor
þ Calibrators & Ice Point References
þ Recorders, Controllers & Process Monitors
þ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
þ Transducers & Strain Gauges
þ Load Cells & Pressure Gauges
þ Displacement Transducers
þ Instrumentation & Accessories

FLOW/LEVEL
þ Rotameters, Gas Mass Flowmeters & Flow Computers
þ Air Velocity Indicators
þ Turbine/Paddlewheel Systems
þ Totalizers & Batch Controllers

pH/CONDUCTIVITY
þ pH Electrodes, Testers & Accessories
þ Benchtop/Laboratory Meters
þ Controllers, Calibrators, Simulators & Pumps
þ Industrial pH & Conductivity Equipment

DATA ACQUISITION
þ Data Acquisition & Engineering Software
þ Communications-Based Acquisition Systems
þ Plug-in Cards for Apple, IBM & Compatibles
þ Datalogging Systems
þ Recorders, Printers & Plotters

HEATERS
þ Heating Cable
þ Cartridge & Strip Heaters
þ Immersion & Band Heaters
þ Flexible Heaters
þ Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL
þ Metering & Control Instrumentation
þ Refractometers
þ Pumps & Tubing
þ Air, Soil & Water Monitors
þ Industrial Water & Wastewater Treatment
þ pH, Conductivity & Dissolved Oxygen Instruments

M1855

