
" ':I | |-- -1 I';. | = I—_'n I'iEl
| | : L F A

A, __I_I -_--‘l._| _;rl_. S | -_.-'I__J_ -}
An AHEGA Technologhes Campamy

http://www.omega.com
e-mail: info@omega.com

OMB-DAQBOOK/DAQBOARD
Volume 2 - Programmer’s Guide

Producing Custom Software
for Data Acquisition Systems

omega.com"

LEOMEGA-
OMEGAnRets" On-Line Service Internet e-mail
http://www.omega.com info@omega.com

USA:
ISO 9001 Certified

Canada:

Servicing North America:

One Omega Drive, Box 4047
Stamford, CT 06907-0047

Tel: (203) 359-1660 FAX: (203) 359-7700
e-mail: info@omega.com

976 Berger

Laval (Quebec) H7L 5A1

Tel: (514) 856-6928 FAX: (514) 856-6886

e-mail: canada@omega.com

For immediate technical or application assistance:

USA and Canada:

Mexico and
Latin America:

Benelux:

Czech Republic:

France:

Germany/Austria:

United Kingdom:
ISO 9002 Certified

Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASV
Customer Service: 1-800-622-2378 / 1-800-622-BESTSV
Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM
TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Tel: (95) 800-TC-OMEGASM FAX: (95) 203-359-7807
En Espanol: (95) 203-359-7803 e-mail: espanol @omega.com

Servicing Europe:

Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405 FAX: (31) 20 6434643
Toll Freein Benelux: 06 0993344

e-mail: nl@omega.com

ul. Rude armady 1868

733 01 Karvina-Hranice

Tel: 420 (69) 6311899 FAX: 420 (69) 6311114
e-mail:czech@omega.com

9, rue Denis Papin, 78190 Trappes

Tel: (33) 130-621-400 FAX: (33) 130-699-120
Toll Freein France: 0800-4-06342

e-mail: france@omega.com

Daimlerstrasse 26, D-75392 Deckenpfronn, Germany

Tel: 49 (07056) 3017 FAX: 49 (07056) 8540
Toll Freein Germany: 0130 11 21 66
e-mail: germany@omega.com

25 Swannington Road, P.O. Box 7, Omega Drive,
Broughton Astley, Leicestershire, Irlam, Manchester,

LE9 6TU, England M44 5EX, England

Tel: 44 (1455) 285520 Tel: 44 (161) 777-6611
FAX: 44 (1455) 283912 FAX: 44 (161) 777-6622

Toll Freein England: 0800-488-488
e-mail: uk@omega.com

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of its products to the European New Approach
Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts
no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

How To Use This Programmer s Manual

Note: If you prefer to use DagView, DagViewXL, DASY Lab, SnapMaster, or other out-of-the-box
data acquisition software, you do not need to read this manual .

This manual explains how to program data acquisition systems using various APIs and programming
languages. Besides the information in this manual, you must also read the user’s manuals for your
hardware. 1t may be helpful to read the DagView chapter of the user’s manual to appreciate how a
user-friendly data acquisition system appears to the user. Also, you may need to consult documentation
for your computer system and programming environment.

Everyone should read chapter 1 and then only the chapter(s) relevant to your programming
environment.

After the table of contents, this manual is divided into a6 chapters and an appendix as follows:

1

6.

Introduction - The manual begins with an overview of issues related to programming a data
acquisition system and what options are available to make thistask as easy as possible. The
various APIs and supported languages are introduced so you can determine which best fits your
needs.

Enhanced API Programming Models describes the fundamental building blocks for data
acquisition software. These programming blocks can then be arranged and filled with your
parameters to make your system do as you please. Program excerpts illustrate the basic concepts
and can often (with modifications) be used in your code.

Dag* Command Reference (Enhanced API) describes the commands and parameters of the
“enhanced” API including useful reference tables.

Standard API Programming Models describes the fundamental building blocks for data
acquisition software. These programming blocks can then be arranged and filled with your
parameters to make your system do as you please. Program excerpts illustrate the basic concepts
and can often (with modifications) be used in your code.

Dag* Command Reference (Standard API) describes the commands and parameters of the
“standard” API including useful reference tables.

Visual Basic VBX Support explains the use of icon-based VBX programming tools.

Appendix. Porting Applications explains compatibility issues between APIsfor Windows 3.1 and

Windows 95/NT.

Programmer’'s Manual (Program-901 rev 1) i

Table of Contents

1 Introduction

Overview 1-1
Driver Options 1-2
Standard API 1-2
Enhanced API 1-2
Language Support 1-2
16-Bit Standard API Languages 1-2
32-Bit Standard API Languages 1-3
Enhanced APl Languages 1-3
Setup 1-4
Configuration 1-4
2 Enhanced API Programming Models
Overview 2-1
Data Acquisition Environment 2-1
Application Programming Interface (API) 2-1
Enhanced vs Standard API 2-1
Hardware Capabilities and Constraints 2-1
Signal Environment 2-2
Basic Models 2-2
Initialization and Error Handling 2-3
Foreground Acquisition with One-Step Commands 2-5
Counted Acquisitions Using Linear Buffers 2-6
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers 2-8
Analog Output 2-11
Generating DAC FIFO Waveforms (DagBoard Only) 2-12
Variable Rate, Variable Duty-Cycle Square-Wave Output 2-13
Digital 1/0 on P2 2-15
Temperature Measurements Using Single TC Type on a Single DBK19 Card --------------------- 2-17
Temperature Measurements Using Multiple TC Types on Multiple DBK 19 Cards---------------- 2-25
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card 2-29
Using DBK Card Calibration Files 2-31
Zero Compensation 2-34
Linear Conversion 2-36
Summary Guide of Selected Enhanced APl Functions 2-38
3 Daq* Command Reference (Enhanced API)
Overview 31
Commands in Alphabetical Order 33
API Reference Tables 3-73
A/D Channel Descriptions 3-74
Daq Device Property Definitions 3-74
Digital 1/0 Port Connection 375
Event-Handling Definitions 3-76
Hardware Information Definitions 3-76
DBK Card Definitions 3-76
ADC Gain Definitions 3-77
ADC Trigger Source Definitions 3-78
ADC Miscellaneous Definitions 3-78
DAC Definitions 3-79
Data Conversion Definitions 3-79
WBK Card Definitions 3-80
General 1/0 Definitions 3-81
9513 Counter/Timer Definitions 3-82
dagTest Command Definitions 3-82
Calibration Input Signal Sources 3-82
API Error Codes 3-83
4 Standard API Programming Models
Overview 4-1
Data Acquisition Environment 4-1

Programmer’'s Manual (Program-901 rev 1)

Application Programming Interface (API) 4-1

Standard vs Enhanced API 4-1
Hardware Capabilities and Constraints 4-2
Signal Environment 4-2
Basic Models 4-3
Initialization and Error Handling 4-4
Foreground Acquisition with User-Level Commands 4-5
Foreground Acquisition with Low-Level Commands 4-7
Foreground Acquisition, High-Speed Digital Input 4-8
Background Acquisition, Multi-Channel, Multi-Scan 4-9
Background Acquisition, Direct-To-Disk In Cycle Mode 4-11
Analog Output 4-13
Generating DAC FIFO Waveforms with User-Level Commands (DagBoard Only) --------------- 4-14
Generating DAC FIFO Waveforms with Hardware-Level Commands (DagBoard) --------------- 4-16
Background Counter Acquisition Using Interrupts 4-18
Variable Rate, Variable Duty-Cycle Square-Wave Output 4-20
Single Square-Wave Output 4-22
Digital 1/0 on P2 4-23
Temperature Measurements Using Single TC Type on a Single DBK19 Card --------------------- 4-24
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards---------------- 4-32
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card 4-35
Using DBK Card Calibration Files 4-37
Zero Compensation 4-40
Linear Conversion 4-42
Summary Guide of Selected APl Functions 4-44
5 Daq* Command Reference (Standard API)
Overview 5-1
Commands in Alphabetical Order 5-2
A/D Channel Descriptions 5-65
Thermocouple Types 5-65
A/D Trigger Source Definitions 5-65
A/D Gain Definitions 5-66
Digital 1/0 Port Connection 5-67
API Error Codes 5-68

6 Visual Basic VBX Support

Overview 6-1
DBK VBX 6-1
Event Routines - DBK 6-2
DBK Properties 6-2
ADCVBX 6-5
Event Routines - ADC 6-5
ADC Properties 6-6
CTRVBX 6-13
Event Routines - CTR 6-15
CTR Properties 6-16
DACVBX 6-27
Event Routines - DAC 6-27
DAC Properties 6-27
DIO VBX 6-28
Event Routines - DIO 6-28
DIO Properties 6-28
Programming Examples- 6-31
Example Summary 6-31
Appendix: Porting Applications
Overview A-1
Porting Dag* Applications Written for Windows 3.1 A-2
Windows 3.1 Binary Compatibility (16-bit) A-2
Unsupported Windows 3.1 API Functions A-2
Porting Visual Basic Programs A-3
Porting C Programs A-4

Programmer’'s Manual (Program-901 rev 1)

ﬁn Notes

iv Programmer’s Manual (Program-901 rev 1)

Introduction 1

Overview

New operating systems and new hardware have led to a new Application Programming Interface (API)
for Dag* and related products (the enhanced API). For users building on previously written programs,
the standard APl will continue to be supported.

The User s Manual describes hardware installation and setup, theory of operation,
troubleshooting, and ready-to-run software. If you plan to use the DagView software shipped
with the system (or other ready-to-run software such as DASY Lab or SnapMaster), the user’s
manual is all you need.

The Programmer s Manual describes the API for programmers who are creating custom
software for their particular application. Note: to create effective programs, programmers must
also be familiar with the hardware and operation as described in the user’s manual.

This Programmer s Manual covers several APIs used with various products. Often, aproduct is
shipped with several APIsto accommodate various hardware environments and programming
preferences. Thus, not all of this manual will apply to your system. After reading this introduction,
you can then read only the relevant chapters. Note: the readme files on the driver disks will keep you
up-to-date as the APIs continue to evolve.

This manual currently covers several APIs and programming environments for the Dag* product line
including all models of DagBook, DagBoard, Dag PCMCIA, and DBK Option Cards and Modules.
Note: As of thiswriting, the Dag PCMCIA is not supported under Windows95/NT drivers (the
enhanced API).

This manual serves both novice and experienced programmers.

Asatutorid - The Programming Models chapters (enhanced and standard) explain how to
combine commands to do useful work in atypical data acquisition environment. Program
excerptsillustrate the concepts and can be modified as needed to use in your programs.

As areference - Much of this manual is a detailed description of the APl commands. These
details and the related tables of parameter values and definitions are important to ensure proper
syntax and that your programs run as intended.

Note: Thismanual isnot atutorial on computer programming in general. Y ou may need to consult
other texts for such information.

Programmer’'s Manual

11

Introduction Chapter 1

Driver Options
This section isintended to help you decide which API and programming language to use in devel oping
your application. Theinstall disksinclude several “drivers’ to accommodate various programming
environments.

Standard API

The standard API was originally written for the Dag* Windows 3.1 driver. However, it can be used
under Windows 95 in 16- or 32-bit mode or under Windows NT in 32-bit mode. The standard AP is
the only API option available for Windows 3.1 or DOS applications. Use the Standard API:

When developing a new or existing DOS application

When developing a new or existing Windows 3.1 application

When a quick port of an existing 16-bit mode (Windows 3.1) application to 32-bit mode

(Windows95/NT) isrequired

Enhanced API

The Enhanced API has several features that are not present in the standard API:
- Multi-device - can concurrently handle up to 4 devices of the Dag* family
Larger buffer - can handle up to 2 billion samples at atime
Enhanced acquisition and trigger modes
Direct-to-disk capabilities
Wait-on-event features
Uses multi-tasking advantages of Windows 95/NT

Because of these new features and other improvements, it is recommended to use the Enhanced API,
when feasible. Use the Enhanced API:
When developing new or existing Windows 95 applications
When developing new or existing Windows NT applications
When porting an existing Standard API application to 32-bit mode to take advantage of the
Enhanced API features

Language Support

The following table shows language support for the standard and enhanced API drivers.

Standard API (16-bit) Supported Languages Enhanced API (or 32-bit Standard) Supported Languages
C/C++ C/C++
Microsoft Visual C++ Microsoft Visual C++
Borland C++ (v4.0 and greater) Borland C++ (v4.0 and greater)
BASIC BASIC
Microsoft Visual Basic (v4.0 and greater) Microsoft Visual Basic (v4.0 and greater)
QuickBASIC
Pascal Delphi
Turbo Pascal Borland Delphi (v2.0)

16-bit Standard API Languages

C (for Windows)

Thereis onelibrary and one header file located in the DAQBOOK\WIN\C directory. The header file,
DAQBOOK_.H, must be included at the top of a C program using the #include command. Thiswill
allow the compiler to know what Dag* functions and constants are available.

Thelibrary, DAQBOOK_.LIB, must be included in the applications makefile or project file so that the
linker will find the Dag* functions. See the documentation for your specific C compiler for a
description on using header files and libraries.

To use the example program located in the DAQBOOK\DOS\C directory, create a makefile or project
file which consists of the DAQEX.C source file, DAQEX.RC resource file, DAQEX.DEF definition
file, DAQEX.ICQicon file, and the DAQBOOK.LIB library. Note: The file DAQBOOK.DLL must
be present in the WINDOWS directory. (If necessary, the file DAQBOOK.DLL can be copied from
the DAQBOOK\WIN directory.)

1-2 Programmer’s Manual

Chapter 1

Introduction

QuickBASIC

Basic interface, library, and quick library files are located in the DAQBOOK\DOS\QB directory.
The Basic interface file DAQBOOK.BI must be included at the top of a QuickBASIC program
using the > $ INCLUDE command (*$INCLUDE: ~dagbook.-bi~). Thiswill alow
QuickBASIC to know what Dag* functions and constants are available.
Thelibrary DAQBOOK.LIB must be included during the link process when creating a program
from the DOS command line. The /NOE option of the linker may be necessary when linking the
Dag* library.
Alternatively, the quick library DAQBOOK.QLB can be used to access the Dag* from within the
QuickBASIC environment. Use the /L option of QuickBASIC to load the appropriate Quick
Library. Seethe QuickBASIC documentation for the various command line options.

To run an example program located in the DAQBOOK\DOS\QB directory, start QuickBASIC using
the /L option, such as QB /[LDAQBOOK.QLB. Then load and run the desired program. The example
program could also be compiled using QuickBASIC's BC.EXE compiler to create an .OBJfile. This
.OBJ could then be linked to the DAQBOOK_.LIB file using QuickBASIC's LINK.EXE linker.

If you need to use more than one quick library with your application program, you will need to create a
combined library. Thefirst step isto extract the object modules from DAQBOOK.LIB usingthe LIB
program provided with QuickBASIC:

C:\QB45 LIB dagbook *lowgb *highgb *highcgb *stubstb *tcgb

Next, you need to link the object modules along with your other libraries into the combined Quick
Library using the LINK program provided with QuickBASIC. The following example creates a Quick
Library called COMBINED.QLB from the Dag* object modules and USEROBJ.OBJ:

C:\QB45LINK

Object Modules [.0BJ]: lowgb+highbgb+hgihcgb+stubsgb+tcgb+userobj
Run File [LOWQB.EXE]: combined.gbl /g

List File [NUL.MAP]: /noe

Libraries [-LIB]: bqlb45

Turbo Pascal

To use the example programs located in the DAQBOOK\DOS\TP?7 directory, make sure that your
program specifies DAQBOOK.TPU unit in the uses clause. Also be sure that the DAQBOOK.TPU
unit fileisin the Turbo Pascal search path.

32-bit Standard API Languages

C/C++ For native Microsoft Visua C++, support islocated in <installationpath>\C\32Std. For
Borland C++ (v4.0 and greater) via dynamic linking, support islocated in
<installationpath>\C\32Std\Dynamic.

Visual Basic For Microsoft Visual Basic (v4.0 and greater), support islocated in
<installationpath>\VB\32Std.

Delphi For Borland Delphi (v2.0), support islocated in <installation path>\Delphi\32Std.

Enhanced API Languages

C/C++ For native Microsoft Visual C++, find enhanced API support in
<installationpath>\C\32Enh. For Borland C++ (v4.0 and greater) via dynamic linking, support is
located in <installationpath>\C\32Enh\Dynamic.

Visual Basic For Microsoft Visual Basic (v4.0 and greater), support islocated in
<installationpath>\VB\32Enh.

Delphi For Borland Delphi (v2.0), support islocated in <installationpath>\Delphi\32Enh.

Programmer’'s Manual 1-3

Introduction Chapter 1

Setup

Driver installation uses one of two disk sets:
If installing on a DOS or Windows 3.1 system, use the DagBook/DagBoard Software disk set
(#232-0601).
If installing on a Windows 95 or Windows NT system, use the DagBook/DagBoard Software for
Windows95/NT disk set (#443-0601).

In either case, the setup (Serup. Exe) routine is located on Disk 1 of the respective disk set. When run,
the setup routine will automatically detect on which operating system the installation is being
performed and will install the appropriate driver. For more details on the setup process, see sections
that discuss installation for the specific Dag* device (in the User s Manual: chapter 2 for DagBook,
chapter 3 for DagBoard, chapter 5 for specific DBK cards and modules).

Configuration

For details on configuring specific Dag* devices, see related sections that discuss that specific Dag*
device (in the User s Manual: chapter 2 for DagBook, chapter 3 for DagBoard, chapter 5 for specific
DBK cards and modules).

1-4 Programmer’s Manual

Enhanced APl Programming Models 2

Overview

By using the Application Programming Interface (API) with Dag* systems, you can create custom
software to satisfy your data acquisition requirements. Chapter 3 explains the enhanced API functions
in detail. This chapter shows how to combine API functions to perform typical tasks. When you
understand how the API works with the hardware, you are ready to program for optimum data
acqwsmon To help you get this perspective, this chapter is divided into 3 parts:
Data Acquisition Environment outlines related concepts and defines Dag* capabilities the
programmer must work with (the API, hardware features, and signal management).
Programming Models explains the sequence and type of operations necessary for data
acquisition. These models provide the software building blocks to develop more complex and
specialized programs. The description for each model has a flowchart and program excerpt to
show how the API functions work.
Summary Guide of Selected API Functions is an easy-to-read table that describes when to use
the basic API functions.

Data Acquisition Environment

In order to write effective data acquisition software, programmers must understand:
Software tools (the API documented in this manual and the programming language—you may
need to consult documentation for your chosen language)
Hardware capabilities and constraints
General concepts of data acquisition and signal management

Application Programming Interface (API)

The API includes all the software functions needed for building a data acquisition system with the
hardware described in thismanual. Chapter 3 (Daq* Command Reference Enhanced API) supplies
the details about how each function is used (parameters, hardware applicability, etc). In addition, you
may need to consult your language and computer documentation.

Enhanced vs Standard API

Major differences between the enhanced and standard APIs were described in the introductory chapter.
Language support varies as follows:
The enhanced APl (32-bit only) accommodates C, Visual Basic, and Delphi.
The standard APl accommodates C (16- or 32-hit), QuickBASIC (16-hit only), Visual Basic
(16- or 32-hit), and Turbo Pascal 7 (16-bit only).
Note: Coding for the enhanced and standard APl cannot be used together; enhanced and standard
models are dightly different (this chapter is for the enhanced APl models; chapter 4 is for the standard
APl models).

Hardware Capabilities and Constraints

To program the system effectively, you must understand your Dag* and DBK hardware capabilities.
Obvioudly you cannot program the hardware to perform beyond its design and specifications, but you
also want to take full advantage of the system’s power and features. In the User s Manual, you may
need to refer to sections that describe your hardware’ s capability. In addition, you may need to consult
your computer documentation. In some cases, you may need to verify the hardware setup, use of
channels, and signal conditioning options (some hardware devices have jumpers and DIP switches that
must match the programming, especially as the system evolves).

Programmer’'s Manual 2-1

Enhanced API Programming Models

Chapter 2

Signal Environment

Important data acquisition concepts for programmers are listed here and explained in the chapter Signal
Management and Troubleshooting Tips in the User s Manual. Y ou must apply these concepts as
needed in your situation. Some of these conceptsinclude:

Channel Identification. Refer to Signal Management

chapter 3.

and the related reference table in

Scan Rates and Sequencing. With multiple scans, the time between scans becomes a
parameter. Thistime can be aconstant or can be dependent upon atrigger. Refer to Signal

Management

Counter/Timer Operation. Refer to Signal Management

chapter 3.

and dag9513.. functionsin

Triggering Options. Triggering starts the A/D conversion. Thetrigger can be an external
analog or TTL trigger, or a program controlled software trigger. Refer to Signal Management
and the trigger functionsin chapter 3.
Foreground/Background. Foreground transfer routines require the entire transfer to occur
before returning control to the application program. Background routines start the A/D
acquisition and return control to the application program before the transfer occurs. Datais
transferred while the application program isrunning. Datawill be transferred to the user
memory buffer during program execution in 1 sample or 256 sample blocks, depending on the
configuration. The programmer must determine what tasks can proceed in the background while
other tasks perform in the foreground and how often the status of the background operations
should be checked.

Parameters in the various A/D routines include: number of channels, number of scans, start of
conversion triggering, timing between scans, and mode of datatransfer. Up to 512 A/D channels can
be sampled in asingle scan. These channels can be consecutive or non-consecutive with the same or
different gains. The scan sequence makes no distinction between local and expansion channels.

Basic Models

This section outlines basic programming steps commonly used for data acquisition. Consider the
models as building blocks that can be put together in different ways or modified as needed. Asa
general tutorial, these examples use Visua Basic since most programmers know BASIC and can

trandate to other languages as needed. The enhanced API programming models discussed in this

chapter include:

Model Type Model Name Page
Configuration Initialization and Error Handling 2-3
Acquisition Foreground Acquisition with One-Step Commands 2-5

Counted Acquisition Using Linear Buffers 2-6

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers 2-8

Analog Output Analog Output 2-11
Generating DAC FIFO Waveforms (DagBoard Only) 2-12

Use of P3 s Counter/Timer Variable Rate, Variable Duty-Cycle Square-Wave Output 2-13
Use of 8255 Ch|p Digital I/O on P2 2-15
Temperature Measurements | Temperature Measurements Using Single TC Type on Single DBK19 Card 2-17
Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards 2-25

Temperature Measurements Using Multiple RTDs on a Single DBK9 Card 2-29

Calibration Using DBK Card Calibration Files 2-31
Zero Compensation Zero Compensation 2-34
Conversion Linear Conversion 2-36
2-2 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

Initialization and Error Handling

This section demonstrates how to initialize the Dag* daqOpen Openadata
and use various methods of error handling. Most of the acquisition session.
example programs use similar coding as detailed here.

Functions used include: ‘daqSetErrorHandler‘ Setup error handling
VBdagOpen&(dagName$) (optional).
VBdagSetErrorHandler&(errHandlerg&) /

VBdagClose&(handle&) User Code
All Visual Basic programs should include the DagX.bas
fileinto their project. The DagX.bas file providesthe daqClose Close the session.

necessary definitions and function prototyping for the
DAQX driver DLL.

handle& = VBdaqOpen&(“DaqgBook0’”)
ret& = VBdaqCloseé&(handle&)

The Dag* deviceis opened and initialized with the daqOpen function. dagOpen takes one
parameter—the name of the device to be opened. The device name information can be accessed or
changed via the Dag* Configuration utility located in the operating system’s Control Panel. The
daqOpen call, if successful, will return a handle to the opened device. This handle may then be used
by other functions to configure or perform other operations on the device. When operations with the
device are complete, the device may then be closed using the daqClose function. If the device could
not be found or opened, dagOpen will return -1.

The DAQX library has adefault error handler defined upon loading. However; if it isdesirable to
change the error handler or to disable error handling, then the dagSetErrorHandler function may
be used to setup an error handler for the driver. In the following example the error handler is set to O
(no handler defined) which disables error handling.

ret& = VBdagSetErrorHandler&(0&)

If thereisaDag* error, the program will continue. The function’s return value (an error number or O if
no error) can help you debug a program.

1T (VBdagOpen&(““DagBook0™) < 0) Then
“Cannot open DaqgBookO”

Dag* functions return dagErrnoé&.

Print “dagErrno& : ’; HEX$(dagErrno&)
End If

The next statement defines an error handling routine that frees us from checking the return value of
every Dag* function call. Although not necessary, this sample program transfers program control to a
user-defined routine when an error is detected. Without a Dag* error handler, Visual Basic will receive
and handle the error, post it on the screen and terminate the program. Visual Basic provides an integer
variable (ERR) that contains the most recent error code. This variable can be used to detect the error
source and take the appropriate action. The function dagSetErrorHandler tellsVisual Basic to
assign ERR to a specific value when a Dag* error is encountered. The following linetells Visual Basic
to set ERR to 100 when a Dag* error is encountered. (Other languages work similarly; refer to specific
language documentation as needed.)

handle& = VBdaqOpen&(““DaqgBook0’”)
ret& = VBdaqgSetErrorHandler&(handleé&, 100)

On Error GoTo ErrorHandler
TheOn Error GoTo command in Visua Basic allows a user-defined error handler to be provided,

rather than the standard error handler that Visual Basic uses automatically. The program uses On
Error GoTo to transfer program control to the label ErrorHandler if an error is encountered.

Dag* errors will send the program into the error handling routine. Thisisthe error handler. Program
control is sent here on error.

Programmer’'s Manual 2-3

Enhanced API Programming Models Chapter 2

ErrorHandler:

errorString$ = "ERROR in ADC1"

errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)

If Err = 100 Then errorString$ = errorString$ & Chr(10) & ""DagBook
Error : " + Hex$(dagErrno&)

MsgBox errorString$, , "Error!"

End Sub

2-4 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

Foreground Acquisition with One-Step Commands

This section shows the use of several one-step analog

input routines. These commands are easier to use than Read 1 sample from
. . dagAdcRd
low-level commands but less flexible in scan 1 channel.

configuration. These commands provide asingle '

[t

; ; ; ; t this point, the data is in
fundlon call to configure and acquire analog input data. User Code the buffer provided by the
This example demonstrates the use of the 4 Dag*’s one- | user in binary format.
step ADC functions. Functions used include:

- VBdagAdcRd&(handle&,chan&, sample%, dagAdcRdN Read multiple samples from
gain&) 1 channel.
VBdagAdcRdN&(handle&,chan&, Buf%(), V‘\At this point, the data is in
count&, trigger%, level%, freq!, User Code the buffer provided by the
gain&, flags&) user in binary format.

VBdagAdcRdScan&(handleé&, startChan&,
endChané&, Buf%(), gain&, flags&)
VBdagAdcRdScanN&(handle&, startChan&,
endChan&, Buf%(), countg&,
triggerSourceé&, level%, freq!,
gain&, flags&)

Read 1 sample from multiple
@ channels.

At this point, the data is in
User @ the buffer provided by the

user in binary format.

P et m

gAdcRdScann | Read multiple samples from

This program will initialize the Dag* hardware, then multiple channels.

take readings from the analog input channels in the base f\ o o
unit (not the expansion cards). For transporting datain User Code| 4piinis e"r'gtr'g\t‘ig g;tt‘)’y'fh'g
and out of the Dag* driver, arrays are dimensioned. user in binary format.
Dim sample%(1), buf%(80), handle&,
ret&, flags&, gain&

The following code assumes that the Dag* device has been successfully opened and the handle&
valueisavalid handle to the device. All the following one-step functions define the channel scan
groups to be analog unipolar input channels. Specifying this configuration uses the DafAnalog and
the DafUnipolar valuesin the Flags parameter. The Flags parameter is abit-mask field in
which each hit specifies the characteristics of the channel(s) specified. In this case, the DafAnalog
and the DafUnipolar vaues are added together to form the appropriate bit mask for the specified
flags parameter.

The next line requests 1 reading from 1 channel with again of x1. The variable DgainX1& is actually
a defined constant from DagX .bas, included at the beginning of this program.

ret& = VBdagAdcRd&(handle& 0, sample%(0), DgainX1&,
DafAnalog&+DafUnipolaré&)
Print Format$“& ####”; “Result of AdcRd:”; sample%(0)

The next line requests 10 readings from channel 0 at again of x1, using immediate triggering at 1 kHz.

ret& = VBdagAdcRdN&(handle&,0, buf%(), 10, Datslmmediate&, 0O, 1000!,
DgainX1&, DafAnalog&+DafUnipolarg)

Print “Results of AdcRdN: ”’;

For x& = 0 To 9
Print Format$ “#### 7; bufh(x&);

Next x&

The program will then collect one sample of channels 0 through 7 using the VBdagAdcRdScan
function.

ret& = VBdagAdcRdScan&(handle&,0, 7, buf%(), DgainXié&,
DafAnalog&+DafUnipolaré&)

Print “Results of AdcRdscan:”
For x& = 0 To 7

Print Format$“& # & ####7; “Channel:”; buf%(x); “Data:; bufh(x)
Next x&: Print

Programmer’'s Manual 2-5

Enhanced API Programming Models

Chapter 2

Counted Acquisitions Using Linear Buffers

This section sets up an acquisition that
collects post-trigger A/D scans. This
particular example demonstrates the setting
up and collection of afixed-length A/D
acquisition in alinear buffer.

First, the acquisition is configured by setting
up the channel scan group configuration, the
acquisition frequency, the acquisition trigger
and the acquisition mode. When configured,
the acquisition is then armed by calling the

dagAdcSetMux

dagAdcSetFreq

dagAdcSetAcq

dagAdcSetTrig

Define a channel
scan group.

Set the sampling
frequency.

Configure a counted
acquisition for 10
post-trigger scans.

Set the trigger event

to be immediate.

dagAdcArm function.
q | Configure an ADC transfer

‘dandcTransferSetBuffer‘ data buffer to be 10 scans
long and terminate once the
\ end of the buffer is reached.
Initiate a transfer into the
configured buffer.

At this point, the Dag* devicetrigger is
armed and A/D acquisition will begin upon
trigger detection. If the trigger source has
been configured to be Dats Immediateg&,
A/D data collection will begin immediately. \ Arm the acquisition. Since

dagAdcArm trigger source is immediate,
the acquisition begins now.

‘dandcTransferStart‘

This example will retrieve 10 samples from
channels 0 through 7, triggered immediately
with a 1000 Hz sampling frequency and unity
gain. Functions used include: ¢

‘ danaitForEvent‘ Xvii: pflort the acquisition to
omplete.

Process the data.

VBdagAdcSetMux&(handle&, User program code

startChané&, endChan&, gain&,
flagsé&)

VBdagAdcSetFreqg&(handle&, freq!)

VBdagAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

VBdagAdcSetAcq&(handle&,mode&,preTrigCounté&,postTrigCountd&)
VBdagAdcTransferSetBuffer&(handle&,buf(), scanCount&, transferMaskg)
VBdagAdcTransferStart&(handle&)
VBdagAdcWaitForEvent&(handle&,dagEvents)

This program will initialize the Dag* hardware, then take readings from the analog input channelsin
the base unit (not the expansion cards). The functions used in this program are of alower level than
those used in the previous section and provide more flexibility.

Dim buf%(80), handle&, ret&, flags&

The following function defines the channel scan group. The function specifies a channel scan group
from channel 0 through 7 with all channels being analog unipolar input channels with again of x1.
Specifying this configuration uses DgainX1 in the gain parameter and the DafAnal og and the
DafUnipolar valuesin the Flags parameter. The flags parameter is a bit-mask field in which
each bit specifies the characteristics of the specified channel(s). In this case, the DaFAnal og and the
DafUnipolar values are added together to form the appropriate bit mask for the specified flags
parameter.

ret& = VBdagAdcSetMux&(handle&,0, 7, DgainXl1l&, DafAnalog&+DafUnipolaré&)

Next, set the internal sasmplerateto 1 kHz.

ret& = VBdagAdcSetFreq&(handle&,1000!)
The acquisition mode needs to be configured to be fixed length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamNShoté&, which will configure

the acquisition as a fixed-length acquisition that will terminate automatically upon the satisfaction of
the post-trigger count of 10.

ret& = VBdagAdcSetAcg&(handle&,DaamNShot&, 0, 10)

2-6

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

The acquisition begins upon detection of the trigger event. The trigger event is configured with
dagAdcSetTrig. The next line definesthe trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsImmediate& isaconstant defined in
DagX.bas. Since thetrigger source is configured as immediate, the other trigger parameters are not
needed.

ret& = VBdagAdcSetTrig&(handle&,Datslmmediate&, 0, 0, 0, 0O)

A buffer now is configured to hold the A/D datato be acquired. Since thisisto be afixed length
transfer to alinear buffer, the buffer cycle mode should be turned off with DatmCycleOfFfé&. For
efficiency, block update mode is specified with DatmUpdateBlock&. The buffer sizeis set to 10
scans. Note: the user-defined buffer must have been allocated with sufficient storage to hold the entire
transfer prior to invoking the following line.

ret& = VBdagAdcTransferSetBuffer&(handle&,bufu(), 10,
DatmUpDateBlocké&+DatmCycleOff&)

With all acquisition parameters being configured, the acquisition can now be armed. Once armed, the
acquisition will begin immediately upon detection of the trigger event. Asin the case of the immediate
trigger, the acquisition will begin immediately upon execution of the dagAdcArm function.

ret& = VBdagAdcArm&(handle&)

After setting up and arming the acquisition, the datais immediately ready to be collected. Had the
trigger source been anything other than immediate, the data would only be ready after the trigger had
been satisfied. The following line initiates an A/D transfer from the Dag* device to the defined user
buffer.

ret& = VBdagAdcTransferStart&(handle&)

Wait for the transfer to complete in its entirety, then proceed with normal application processing.
This can be accomplished with the dagWai tForEvent command. ThedagWaitForEvent
allows the application processing to become blocked until the specified event has occurred.
DteAdcDone, indicates that the event to wait for is the completion of the transfer.

ret& = VBdagWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; al data from the acquisition is available for further processing.

Print “Results of Transfer”
For 1& = 0 To 10
Print "Scan "; Format$(Str$(i& + 1), "00"™); " -->";
For k& = k& To k& + 7
Print Format$(IntToUint&(buf%(k&)), '00000");
Next k&
Print
Next i&

Programmer’'s Manual 2-7

Enhanced API Programming Models

Chapter 2

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers

This program demonstrates the use of
circular buffersin cycle mode to collect
analog input datadirectly to disk. Incycle
mode, this data transfer can continue
indefinitely. When the transfer reaches the
end of the physical data array, it will reset
its array pointer back to the beginning of
the array and continue writing datato it.
Thus, the allocated buffer can be used
repeatedly like a FIFO buffer.

Unlike the Standard API, the Enhanced
API has built-in direct-to-disk
functionality. Therefore, very little needs
to be done by the application to configure
direct-to-disk operations.

First, the acquisition is configured by
setting up the channel scan group
configuration, the acquisition frequency,
the acquisition trigger and the acquisition
mode. Once configured, the transfer to
disk is set up and the acquisition is then
armed by calling the dagAdcArm
function.

At this point, the Dag* devicetrigger is
armed and A/D acquisition to disk will
begin immediately upon trigger detection.

This example will retrieve an indefinite
amount of scans for channels 0 through 7,
triggered via software with a 3000 Hz
sampling frequency and unity gain.
Functions used include:
VBdagAdcSetScan&(handleé&,
startChan&, endChané&,
gain&, flags&)
VBdagAdcSetFreqg&(handle&, fr
eql)

J

Configure a scan

‘ daghdcSetScan ‘ group of channels.

| dagAdcsetFreq | fSr:;Lheis; mpling
Configure the acquisition

‘ daqhdcSetAcq ‘ to be indefinite post-trigger.

‘ daaa chetTrig‘ Configure the trigger event

to be software trigger.

‘ dagAdcTransferSetBuf fer‘

Configure a circular acquisition

buffer 10,000 scans in length.
Y

Open the disk file and make it

‘dandcsetDlSkFlle‘ ready to receive A/D Data.
Y
dagAdcArm Arm the acquisition.

|

Initiate data transfer to disk

‘dandCTra“SferStart‘ (no data will transfer until

trigger event occurs).

|

[dagAdcSoftTrig| Trigger the acquisition.

\

‘ dagAdcWaitForEvent ‘

Wait for data to
become available.

‘dandcTransferGetStat‘ Check status of transfer.

User code to determine
if transfer should stop.

Transfer is complete;
disarm the acquisition.

VBdagAdcSetTrig&(handle&, triggerSource&, rising&, level%,

hysteresis%,channel&)

VBdagAdcSetAcq&(handle&,mode&,preTrigCounté&,postTrigCount&)
VBdagAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMaskg)

VBdagAdcTransferStart&(handle&)

VBdagAdcTransferGetStat&(handleé&,status&, retCountd)

VBdagAdcWaitForEvent&(handle&,dagEvents)

VBdagAdcSetDiskFile&(handle&, filename$, openMode&, preWrited)

This program will initialize the Dag* hardware, then take readings from the analog input channelsin
the base unit (not the expansion cards) and store them to disk automatically. The following lines
demonstrate channel scan group configuration using the dagAdcSetScan command. Note: flags

may be channel-specific.

Dim handle&, ret&, channels&(8), gains&(8) flags&(8)

Dim buf%(80000), active&, count&

Dim bufsize& = 10000

In scans

2-8

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

" Define arrays of channels and gains : 0-7 , unity gain
For x& = 0 To 7

channels&(x&) = x&

gains&(x&) = DgainXl&

flags&(x&) = DafAnalog& + DafSingleEnded& + DafUnipolaré&
Next Xx&

" Load scan sequence FIFO
ret& = VBdagAdcSetScan&(handle&,channels&(), gains&(), flags&(), 8)

Next, set the internal samplerate to 3 kHz.
ret& = VBdagAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamInfinitePosté&, which will
configure the acquisition as having indefinite length and, as such, will be terminated by the application.
In this mode, the pre- and post-trigger count values are ignored.

ret& = VBdagAdcSetAcg&(handle&,DaamInfinitePost&, 0, 0)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
dagAdcSetTrig. The next line definesthe trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsSoftware& isa constant defined in
DagX.bas. Since thetrigger source is configured as immediate, the other trigger parameters are not
needed.

ret& = VBdagAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold
incoming A/D datawhileit is being prepared for disk 1/0. Since thisisto be an indefinite-length
transfer to a circular buffer, the buffer cycle mode should be turned on with DatmCycleOné&. For
efficiency, block update modeis specified with DatmUpdateBlocké&. The buffer sizeis set to
10,000 scans. The buffer size indicates only the size of the circular buffer, not the total number of
scans to be taken.

ret& = VBdagAdcTransferSetBuffer&(handle&,bufh(), bufsized,
DatmUpDateBlocké&+DatmCycleOn&)

Now the destination disk file is configured and opened. For this example, the disk fileis anew fileto
be created by the driver. After the following line has been executed, the specified file will be opened
and ready to accept data.

ret& = VBdagAdcSetDiskFile&(handle&,”c:dasqdata.bin”, DaomCreateFile&, 0)

With al acquisition parameters being configured and the acquisition transfer to disk configured, the
acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of
the trigger event. Asin the case of the immediate trigger, the acquisition will begin immediately upon
execution of the dagAdcArm function.

ret& = VBdagAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger
event. Since the trigger source is software, the trigger event will not take place until the application
issues the software trigger event. To prepare for the trigger event, the following lineinitiatesan A/D
transfer from the Dag* device to the defined user buffer and, subsequently, to the specified disk file.
No dataistransferred at this point, however.

ret& = VBdagAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The
following line will signal the software trigger event to the driver; then A/D input data will be
transferred to the specified disk file asit is being collected.

ret& = VBdagAdcSoftTrig&(handle&)

Programmer’'s Manual 2-9

Enhanced API Programming Models Chapter 2

Both the acquisition and the transfer are now currently active. The transfer to disk will continue
indefinitely until terminated by the application. The application can monitor the transfer process with
the following lines of code:

acqTermination& = 0O
Do
“ Wait here for new data to arrive
ret& = VBdagWaitForEvent(handle&,DteAdcDatas&)

“ New data has been transferred - Check status
ret& = VBdagAdcTransferGetStat&(handleé&,active&, retCount&)

Code may be placed here which will process the buffered data or
perform other application activities.

At some point the application needs to determine the event on which
the direct-to-disk acquisition is to be halted and set the
acqTermination flag.

Loop While acqTermination& = 0O

At this point the application is ready to terminate the acquisition to disk. The following line will
terminate the acquisition to disk and will close the disk file.

ret& = VBdagAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to
get the total number of scans actually transferred to disk.

ret& = VBdagAdcTransferGetStat(handle&,active&,retCountd&)

The specified disk fileis now available. The retCounté& parameter will indicate the total number
of scans transferred to disk.

2-10

Programmer’s Manual

Chapter 2 Enhanced API Programming Models

Analog Output

The program DACEX1.BAS shows how to output analog
voltages on analog output channels 0 and 1. These

Set output mode

commands only have to be issued one time unless a related ‘danacsetOUtpum‘)de‘ to voltage.
parameter is explicity changed. The output voltages will
be sustained. This example demonstrates the use of the dagDacWt gp‘gg#itc"é’r"fr?fe‘l’"
two digital-to-analog converters (values used assume '
bi polar mode). Functions used include: ‘j

@Code

VBdagDacSetOutputMode&(handle&,
DddtLocal&, 0, DdomVoltage&) \

VBdagDacWt&(handle&, deviceTypeé&, [dagpacsetoutputMode) S‘;t\ %E:ﬁ;gls
chan&, dataval%) :
VBdagDacWtMany&(handle, [i} Outout volt n
deviceTypes&(),chans&(), datavals¥%()) dagacWtMany| HPD 09SOk,
Assuming the voltage reference is connected to the |
internal default of 5V, the next function will set channel 0 User Code

to an output voltage of 5V. Thevaluesare set for a
digital-to-analog converter with 16 bit resolution; 65535
represents full-scale. Channel 1isequal to 0.

VBdagDacSetOutputMode&(handle&, DddtLocal&, O, DdomVoltage&)
VBdagDacWt&(handle&, DddtLocal, 0, 65535)

ret&
ret&

The dagDacWtMany writes to both analog outputs simultaneoudly. The following lines sets channel
0to5V and channel 1to 2.5V. At full-scale, adigital value of 65535 correspondsto 5 V; adigital
value of 49152 correspondsto %2 of 5V.

Dim deviceTypes&(1l)

Dim chans&(1)

Dim datavals%(l)

The VBdagSetOutputMode puts the channel in a voltage mode.

ret& = VBdaqSetOutputMode&(handleé&, DddtLocal&, 0, DdomVoltage&)
ret& = VBdaqSetOutputMode&(handle&, DddtLocalé&, 1, DdomVoltage&)
deviceTypes&(0) = DddtLocal&

deviceTypes&(1l) DddtLocal&
chans&(0) =

chans&(1) =

datavals&(0) = 65535
datavVals&(1l) = 49152

ret& = VBdagDacWtMany&(handle&, deviceTypes&(), chans&(), datavVals%(),2)

The following sets the outputsto 0 V.

Dim deviceTypes&(l)
Dim chans&(1)
Dim datavals%(l)

deviceTypes&(0) = DddtLocal&

deviceTypes&(1l) = DddtLocal&

chans&(0) =

chans&(1) =

datavals&(0) = 32768

datavals&(1l) = 32768

ret& = VBdaqSetOutputMode&(handleé&, DddtLocal&, 0, DdomVoltage&)

ret&
ret&

VBdagSetOutputMode&(handleé&, DddtLocal&, 1, DdomVoltageé&)
VBdagDacWtMany&(handle&, deviceTypes&(), chans&(), datavals%(),2)

Programmer’'s Manual 2-11

Enhanced API Programming Models

Chapter 2

Generating DAC FIFO Waveforms (DaqBoard

Only) >{danacSet0utputMode Configu_re DACs;
This program demonstrates the use of the DAC use defined constant
prog . DdomStaticWave for
FIFO to generate waveforms. The DAC is ' both channels 0 and 1.
configured for (_)utput on both channels, an_d the Set trigger frequency,
user waveform is constructed. Output begins etc, for both channels
after the waveform is assigned to a channel. At
this point, the program continues while the Specify predefined wave-
waveforms are generated. ‘ danacSetPredeﬂVave‘ form for channel 1;
use defined constant
The following example shows how to generate a Pdwtsine for sine wave.
: . A 1
pre-defined waveform using these functions: ‘ I —— ‘ Start waveformms
- VBdagDacWaveSetTrig&(handle&, & wavetorms.
deviceTypeé&, chané&, *
triggerSource&, rising%)
VBdagDacWaveSetClockSource&(handle&, deviceType&, chan&, clockSourceg&)
VBdagDacWaveSetFreqg&(handle&, deviceType&, chan&, freql!)
VBdagDacWaveSetMode&(handle&, deviceType&, chan&, mode&, updateCount&)
VBdagDacWaveSetBuffer&(handle&, deviceType&, chan&, bufu(), scanCount&,
transferMaskg&)
VBdagDacWaveSetPredefWave&(handleé&, deviceType&, chan&, waveTypeé&,
amplitude&, offset&, dutyCycle&, phaseShift&)
VBdagDacWaveArm&(ByVal handle&, ByVal deviceType&)
When using the pre-defined waveform generation, program the waveform parameters common to both
channels. The double star (**) indicates the value must be the same on both channels of a DagBoard.
For chan = 0 To 1 Step 1
" set the output mode to static waveform
ret& = VBdagDacSetOutputMode&(handle&, DddtLocalé&, chané&,
DdomStaticWave&)
" The trigger source must be set to immediate for static waveform.**
err& = VBdagDacWaveSetTrig&(handle&, DddtLocalé&, chané&, Ddtslmmediateé&,
1
" set the internal dac clock
ret& = VBdagDacWaveSetClockSource&(handleé&, DddtLocal&, chan&,
DdcsDacClock&)
" the frequency of the internal clock. **
ret& = VBdagDacWaveSetFreqg&(handle&, DddtLocal&, chan&, 101)
" must be infinite for static mode
ret& = VBdagDacWaveSetMode&(handle&, DddtLocal&, chan&, DdwmInfinite&,
0)
Next chan
" buffer cylce on, retransmit mode. **
" update count is the buffer length. **
ret& = VBdagDacWaveSetBuffer&(handle&, DddtLocal&, chan&, bufon(),
updateCounté&, DdtmCycleOn&)
" set the buffer for channel 1
ret& = VBdagDacWaveSetBuffer&(handle&, DddtLocal&, chan&, bufli%(),
updateCount&, DdtmCycleOn&)
" program the waveform parameters specific to dac channel 0
ret& = VBdagDacWaveSetPredefWave&(handle&, DddtLocal&, O, DdwtTriangle&,
32768, 32768, 90, 0)
" program the waveform parameters specific to dac channel 1
ret& = VBdagDacWaveSetPredefWave&(handle&, DddtLocal&, 1, DdwtSquareé&,
32768, 32768, 40, 0)
* buffer must be configured before the arm command is called. All
channels
" will be armed.
ret& = VBdagDacWaveArm(handle&, DddtLocal&)
2-12 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

Variable Rate, Variable Duty-Cycle Square-Wave Output

This section demonstrates the use of the ‘

counter/timer section of a DagBook/100/200 or

DagBoard/100A/200A with the P3 port. After ‘ Daq9513SetMasterMode ‘ Initialize 9_513 master
configuring the counter and setting the load and mode register.

hold registers, the counter isarmed. At this ‘ _

point, program execution continues while the ‘ dag9513SetCtrMode ‘ Configure the counter.
counter outputs the signal. This example Y

generates a variable rate, variable duty-cycle @@ Set the load register.

square wave. Functions used include;
- Vbdag9513SetMasterMode&(handle& '

. - _)
ESZVIgﬁPS/gﬁiLévevgl ngﬁg;ge&’fOUtD dag9513SetHold Set the hold register.

comp2&, tod&)

Vbdaq9513SetCtrMode&(handle&,de
viceTypeé&,whichDeviceg&,
ctrNumé&,gayeCtrl&, cntEdgeé&,
cntSource&, specGate&, reload&,

V?
User program code
outputCtlg)

cntRepeat&, cntType&, cntDiré&,
Vbdag9513SetHold&(handle&,

deviceTypeé&,whichDevice&, No ,
ctrNum&, ctrval%) Stop counter?
Vbdaq9513SetLoad&(handle&,devic Ves

eType&,whichDevice&, ctrNum&,

\
‘daq9513MultCtr1‘ Load and arm counter 1.

ctrVval%)

- dag9513MultCtrl .
Vbdaq9513MultCtri&(handle&,devi Disable counter output.
ceType&,whichDevice&, ctrCmd&, daq9513SetMasterMode
ctrl&, ctr2&, ctr3&, ctr4&, ‘
ctr5&)

Initialize the 9513 master mode register fout divider: 10, fout source: DcsF2 (100 kHz), comparel: no,
compare 2: no, time of day disabled. Thiswill place a 10 kHz pulse on the oscillator output. The
dag9513SetMasterMode function will initialize the counter/timer section and configure several of
its parameters. Thisisasystem-wide function which affectsall 5 counter timers. Note: for acomplete
understanding of counter/timer operation, read the data book on the 9513 chip supplied by AMD.
Aside from initializing the counter/timer section, this application does not use most of the capabilities
of the dag9513SetMasterMode function. The first two argumentsin this function select a clock
source for the fout signal found on connector P3, then select adivider for that signal. F2 inthis
application is afixed, internal frequency source of 100 kHz. Our example divides this fixed frequency
by 10 yielding asignal on fout of 10 kHz.

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 10, DcsF2&,
0, 0, DtodDisabled&)

The daq9513SetCtrMode function configures an individual counter in the 9513. Thefirst
argument specifies the counter to be configured; the second argument specifies the internal operation of
the gate control. Our application does not use the gate, so it isdisabled. The fixed 100 kHz internal
clock (F1) is used as the source. By setting the reload parameter to 1, the counter will use the 'load’
register and the "hold’ register to generate the pulse train. When the counter is armed, the ’load’
register value is loaded then decremented on every edge of the F1 clock. The output signal will be high
during this phase. When the terminal count is reached, the"hold’ register isloaded then decremented
on every edge of the F1 clock. The output signal islow during this phase. |If the reload argument is set
to 0, only the'load’ register is used, always yielding a 50% duty-cycle pulsetrain. The cntRepeat
argument specifies whether the pulse train should execute once or repeat continuously. The counter
interprets the load and load register as either binary or BCD, depending on the value of the cntType
argument. The cntDi r specifies whether the internal counter should count up or down to reach the
terminal count. A value of 5 counted down has the same effect as a value of 65,530 counted up.

ret& = VBdaq9513SetCtrMode&(handle&, DiodtLocal9513&, 0, 1, DgcNoGatingé&,
1, DcsF1&, 0, 1, 1, 0, O, DocTCToggled&)

Programmer’'s Manual 2-13

Enhanced API Programming Models Chapter 2

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and
(with 100 total countsto count down) a frequency of 10 kHz.

" Load the load register: 75 low counts & hold register with 25
counts
ret& VBdaq9513SetLoad&(handle&, DiodtLocal9513, 0, 1, 75)
ret& = VBdaq9513SetHold&(handle&, DiodtLocal9513, 0, 1, 25)

The daq9513MultCtr 1 function will arm counter 1.

ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, 0, DmccLoadArm&, 1,
0, 0, 0, 0)

Continue the pulse train until user terminates it.

Print "A 10Khz 25% duty cycle square wave is on the counter 1 output.':
Print

MsgBox ""Click to halt counter 1 output.™, , "Counter 1"

" Halt all output

ret& = VBdaq9513MultCtrl&(handle&, DiodtLocal9513&, O, DmccDisarm&, 1, O,
0, 0, 0)

ret& = VBdaq9513SetMasterMode&(handle&, DiodtLocal9513&, 0, 0, DcsF2&, O,
0, DtodDisabled&)

Print "Outputs disabled.”

2-14 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

Digital 1/0 on P2

This program demonstrates the functions controlling
digital 1/0 on connector P2 of the DagBook/100/200
and DagBoard/100A/200A. First, the 3 digital ports ‘ daqIoGets2 55C°nf‘ Configure mode of ports

on the 8255 are configured as input, output, or both in A, B, & C on 8255 chip.
the case of port C; then, appropriate 1/O commands 1
areissued. Functions used include: daqIOWrite Set configuration.

VBdaglOReadBit&(handle&, devTypeé&,
devPorté&, whichDevice&,
whichExpPort&, bitNum&, bitValue&) da

VBdaglORead&(handleé&, devType&,
devPorté&, whichDevice&,
whichExpPorté&, value&)

VBdaqlOWwriteBit&(handle&, devType&, (use defined constant
devPorté&, whichDevice&, | DdpLocalB).
whichExpPort&, bitNum&, bitvalue&) qIoWriteBit | Write to high nibble of

VBdaqlOwrite&(handle&, devType&, port C (use defined
devPort&, whichDevice&, constant DdpLocalCHigh)
whichExpPort&, value&) (repeat for each bit).

VBdaql0Get8255Conf&(handleé&, dagIORead Read from low nibble of
portA&, portB&, portCHigh&, port C (use defined
portCLow&, config&) constant DdpLocalCLow)

(repeat for each bit).
Dim config&, byteval&, bitval&, x%
Dim buf(10) As Byte, active&, retCount&
handle& = VBdagOpen&(““DagBook0’”)
ret& = VBdagSetErrorHandleré&(handle&, 100)
On Error GoTo ErrorHandlerDIG1
ret& = VBdaqlOGet8255Conf&(handle&, 0, 1, 0, 1, config&)

Q
H

(use defined constant
DdplLocalA).

|
OWrite Write to port A
i

ORead Read from port B

1

The function daq10Get8255ConT returns the appropriate configuration value to use in
daglOWrite. Asshown above, the handle of the opened Dag* device isthe first parameter passed.
The second, third, fourth, and fifth parameters respectively indicate: the 8255 port A value, the port B
value, the high-nibble value of port C, and the low-nibble value of port C. The valuesfor the
parameters passed in the call shown above will return the configuration value (port A = OUTPUT, port
B = INPUT, port C/ high nibble = output, port C / low nibble = INPUT) in the config& parameter,
which matches the current configuration of the 8255.

The daq10Wr i te function writes the obtained configuration value to the selected port.

ret& = VBdaqlOWrite&(handle&, DiodtLocal8255&, Diodp82551R&, 0, O,_
config&)

Write hex 55 to port A on the Dag*’ s base unit.

ret& = VBdaqlOWrite&(handle&, DiodtLocal8255&, Diodp8255A&, 0, O, _
&H55)

Read port B and put the value into the variable byteVal %.

ret& = VBdaqlORead&(handle&, DiodtLocal8255&, Diodp8255B&, 0, 0O,
byteval&)

Print "The value on digital port B : &H"; Hex$(byteVal&): Print

The following lines write to the high nibble of port C.

ret& = VBdaqlOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, O,
0, 0, 1)
ret& = VBdaqlOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, O,
0, 1, 0)

ret& = VBdaqlOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, O,
0, 2, 1)

Programmer’'s Manual 2-15

Enhanced API Programming Models Chapter 2

ret& = VBdaqlOWriteBit&(handle&, DiodtLocal8255&, Diodp8255CHigh&, O,
0, 3, 0)

Print "The high nibble of digital port C set to : 0101 (&H5)"™ Print

The next lines read the low nibble of port C on the base unit.

For x% = 0 To 3
ret& = VBdaqlOReadBit&(handle&, DiodtLocal8255&,
Diodp8255CLow&, 0, 0, x%, bitval&)
Print "The value on bit "; x%; "™ of digital port C : &H";_
Hex$(bitval&)

Next x%

2-16 Programmer’s Manual

Enhanced API Programming Models

The 4 examples follow the same command

sequence except for their arguments or

program code for data output:

- Example 1 demonstrates repeated

measurements of TC inputs.
Example 2 demonstrates block
averaging of the same TC inputs as
example one. This example performs
each reading 5 times and averages them
together.
Example 3 uses the same data as
example 2; but rather than averaging
the 5 scans, it outputs each of them to
the screen.
Example 4 gathers the same data as the
previous examples but applies a moving
averageto that data.

DBK19 Example 1: Type J
Thermocouples

In this example, we wish to repeatedly
measure the temperatures sensed by 2 type J
thermocouples attached to channels 18 and 19
through a DBK19 card. The DBK19 CJC
signal isawaysthefirst signal on the card.
The shorted channel (used for zero
compensation) is always the second signal on
the card. Inthis case, they are on channels 16
and 17. First welist the configuration (see
table).

Card Channel Channel Type
DBK19 16 cJC
17 Shorted (zero)
18 Type J
19 Type J
Local 0 Used for DBK19
1-15 Free for other uses

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; the scan must first
include the CJC zero, thermocouple zero and
CJC, and then the temperature channels (see
table).

Scan
Position Channel Type Channel
0 CJC Zero 17
1 Type J Zero 17
2 CJC 16
3 Type J 18
4 Type J 19

‘ dagOpen ‘

+

User variable
definitions

!

‘daqReadCalFile‘

!

‘ dagAdcSetScan ‘

!

‘ dagZeroDbk19

!

| dagCvtTCSetup |

!

| dagAdcSetTrig |

!

| dagAdcSetAcq |

!

\danchetClockSource

!

| dagAdcSetFreq |

!

\dandcTransferSetBuffer

!

‘dandcTransferstart

!

‘ dagAdcArm ‘

!

‘danaitForEvent

!

\danalSetupConvert

‘danalSetupConvert

!

\danvtTCConvert\

I

‘ daqgClose

%

Temperature Measurements Using Single TC Type on a Single DBK19 Card

Open a Daq* device.

Define arrays of channels,
gains, and flags.

Read calibration constants
from the specified file.

Configure scans.

Configure TC conversion
functions to perform
zero compensation.

Configure parameters for
subsequent temperature
conversions.

Set trigger type (use
defined constant

DatsImmediate to
trigger when armed).

Set acquisition mode.

Configure the ADC
clock source.

Set the scan frequency.

Configure user-allocated
buffer to receive raw data.

Begin the data transfer.

Arm the acquisition triggers
(immediately if using
DatsImmediate trigger).

Wait for transfer event
DteAdcDone
(acquisition complete).

Configure order and type of
data to calibrate and then
calibrate the CJC channels.

Configure order and type of
data to calibrate and then
calibrate the TC channels.

Convert raw A/D readings
to temperature in tenths of
a degree Celsius.

At this point, the data is in
a user buffer in degrees
Celsius (data type is
integer).

The thermocouples need not be scanned in any particular order. We might have specified channel 18

before channel 17, but keeping things in order will make the calibration easier.

Programmer’'s Manual

2-17

Enhanced API Programming Models Chapter 2
For each scan position, we must specify the S o |
. : * can anne
PGA gan code. _Assum| ng the Dag* is Position Type Channel Gain Code
configured for bipolar operation (to allow 0 CIC Zero 17 DBKL9BICIC
measurement of temperatures below the 1 Type J Zero 17 Dbk19BiTypelJ
temperature at the DBK 19 card), we choose 2 cJC 16 Dbk19BiCJC
the gain codes from the table and add them to 3 Type J 18 Dbk19BiTypeJ
the scan deSCI’iption. 4 Type J 19 Dbk19BiTypeJ

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement 0 1 2 3 4
1 CJC Zero Type J Zero CJC Type J Type J
2 CJC Zero Type J Zero CJC Type J Type J
3 CJC Zero Type J Zero CJC Type J Type J
10 CJC Zero Type J Zero CJC Type J Type J

Results After daqgTCConvert

Results
Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
10 Temp °C Temp °C

Now we can configure the Dag* with this information:

Public Sub MeasureTC(Q)
Const ScanLength& = 5
Const ScanCount& = 10
Const TCcounté& = 2

Dim chan&(ScanLength), gain&(ScanLength)

Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount * ScanCount), ret&, dagAlias$
Dim dagHandle&, i&

"Total channels per scan

"Open the device.
dagHandle& = VBdagOpen&(*'dagbook0™)

" Read calibration file
ret& = VBdaqReadCalFile&(dagHandle&, "‘dagbook.cal')

" Set arrays of channels, gains, and flags
" Grounded channel with CJC gain

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolaré&

* Grounded channel with TC gain

"Number of scans to be acquired
"Number of thermocouples per scan

chan&(l) = 17: gain&(1) = Dbk19BiTypeJd&: flag&(l) = DafBipolar&

" CJC channel

chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolaré&

"TC channel
chan&(3) = 18: gain&(3) = Dbk19BiTypeJd&: Fflag&(3)

"TC channel

DafBipolar&

chan&(4) = 19: gain&(4) = Dbk19BiTypeJd&: Flag&(4) = DafBipolar&

" Load scan sequence FIFO.

2-18

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(),
ScanLength)

" Configure the TC convert functions for zero compensation.
ret& = VBdaqZeroDbk19&(1)

" Configure temperature conversion without averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTyped&, 1, 1)

" Configure the trigger for an immediate trigger.
ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)

" Set the acquisition mode.
ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot&, 0, ScanCount)

" Set the Adc clock source.
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

" Set the scan frequency to 100 Hz.
ret& = VBdagAdcSetFreqg&(dagHandle&, 1001)

" Configure user-allocated buffer for ADC data collection.
ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateBlock&)

" Setup and start the data transfer.
ret& = VBdagAdcTransferStart&(dagHandle&)

" Arm the acquisition. Also triggers iIf immediate trigger set.
ret& = VBdagAdcArm&(dagHandle&)

" Wait until the transfer is complete.
ret& = VBdaqgWaitForEvent&(dagHandle&, DteAdcDone&)

" Calibrate CJC: 1 chan. starting at position 2 for 10 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

" Calibrate TCs: 2 chans. starting at position 3 for 10 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbkl19BiTyped&, 18, 1, 1, buf%(), ScanCount)

" Convert "scans” scans of counts to two temperatures.
ret& = VBdaqCvtTCConvert&(buf®(), ScanCount, temp%(), TCcount *
ScanCount)

" Print the temperatures for 10 scans on the current form.
For i =0 To 9
Print ""Channel 18: "; 0.1 * temp%(i * TCcount); " Channel 19: ";
0.1 * temp%(i * TCcount + 1)
Next i

"Close the device.
ret& = VBdaqClose&(dagHandle&)
End Sub

Programmer’'s Manual

2-19

Enhanced API Programming Models Chapter 2

DBK19 Example 2: Block-Averaged TC readings

In this example, we want to acquire the same information as in example 1; however, we wish to use the
Dag*’ s speed to reduce noise by taking each reading 5 times and averaging them together.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement | Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CcJC Type J Type J
1 2 CJC Zero Type J Zero CcJC Type J Type J
1 3 CJC Zero Type J Zero CcJC Type J Type J
1 4 CJC Zero Type J Zero CcJC Type J Type J
1 5 CJC Zero Type J Zero CcJC Type J Type J
2 1 CJC Zero Type J Zero cJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
10 5 CJC Zero Type J Zero CcJC Type J Type J
Results After daqTCConvert
Results
Measurement | O 1
1 Temp °C | Temp °C
2 Temp °C | Temp °C
3 Temp °C | Temp °C
10 Temp °C | Temp °C

Assuming we are using the same thermocoupl es connected in the same way, the scan configuration is
like example 1:

Public Sub BlockAvgTc()

" Block averages scans of Type J thermocouple readings

Const ScanLength& = 5 "Total channels per scan

Const ScanCount& = 5 "Number of scans acquired per acquisition.
Const TCcount& = 2 “"Number of thermocouples per scan

Dim chan&(ScanLength), gain&(ScanLength)

Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount), ret&, dagAlias$

Dim dagHandle&, i&

"Open the device.
dagHandle& = VBdagOpen&(*'dagbook0™)

" Read calibration file
ret& = VBdaqReadCalFile&(dagHandle&, 'dagbook.cal™)

" Set arrays of channels, gains, and flags
® Grounded channel with CJC gain
chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolaré&

" Grounded channel with TC gain
chan&(l) = 17: gain&(1l) = Dbk19BiTypeJd&: Fflag&(l) = DafBipolar&

" CJC channel
chan&(2) = 16: gain&(2)

Dbk19BiCJC: flag&(2) = DafBipolar&

"TC channel
chan&(3) = 18: gain&(3) = Dbk19BiTypeJd&: Flag&(3) = DafBipolar&

"TC channel
chan&(4) = 19: gain&(4) = Dbk19BiTypeJd&: flag&(4)

DafBipolar&

" Load scan sequence FIFO.

2-20 Programmer’s Manual

Chapter 2

Enhanced API Programming Models

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(),
ScanLength)

" Configure the TC convert functions for zero compensation.
ret& = VBdaqZeroDbk19&(1)

" Configure temperature conversion with block averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeld&, 1, 0)

" Configure the trigger for an immediate trigger.
ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)

" Set the acquisition mode.
ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot&, 0, ScanCount)

" Set the Adc clock source.
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

" Set the scan frequency to 100 Hz.
ret& = VBdagAdcSetFreqg&(dagHandle&, 1001)

" Configure user-allocated buffer for ADC data collection.
ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,
DatmCycleOff& + DatmUpdateSingle&)

" Setup and start the data transfer.
ret& = VBdagAdcTransferStart&(dagHandle&)

" Arm the acquisition. Also triggers iIf immediate trigger set.
ret& = VBdagAdcArm(dagHandle&)

"Acquire 10 groups of 5 scans. Average each group and convert to temp.
For i = 1 To 10

" Wait until the transfer is complete.
ret& = VBdagWaitForEvent&(dagHandle&, DteAdcDoneé&)

" Calibrate CJC: 1 chan. starting at position 2 for 5 scans.
ret& = VBdaqCalSetupConverté&(dagHandle&, ScanlLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

" Calibrate TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbkl19BiTyped&, 18, 1, 1, buf%(), ScanCount)

" Convert "scans” scans of counts to two temperatures
ret& = VBdaqCvtTCConvert&(buf%(), ScanCount, temp%(), TCcount)

"Display the averaged temperatures
Print "Channel 18: "; 0.1 * temp%(0); ™ Channel 19: "; 0.1 * temp%(1)

" Start transfer & rearm for the next group of 5 scans
ret& = VBdagAdcTransferStart(dagHandle&)
ret& = VBdagAdcArm(dagHandle&)

Next i

" Close the device
ret& = VBdaqClose&(dagHandle&)

End Sub

Programmer’'s Manual

2-21

Enhanced API Programming Models Chapter 2

DBK19 Example 3: Multiple Sequential Measurement

In this example, we wish to collect the same data as in example 2; but instead of averaging the groups
of 10 consecutive scans, we want to convert each scan’s measurements into individual temperature
values.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement | Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
10 5 CJC Zero Type J Zero CJC Type J Type J
Results After daqTCConvert
Results
Measurement Scan | O 1
1 1 Temp °C Temp °C
1 2 Temp °C Temp °C
1 3 Temp °C Temp °C
1 4 Temp °C Temp °C
1 5 Temp °C Temp °C
2 1 Temp °C Temp °C
2 2 Temp °C Temp °C
10 5 Temp °C Temp °C

The scan setup isthe same asin examples 1 and 2. We again configure for the conversion to
temperatures, this time (asin example 1) specifying no averaging (for brevity, some comments have
been removed from the code):

Public Sub SequentialTC(Q)

Const ScanLength& = 5 "Total channels per scan

Const ScanCount& = 5 "Number of scans to be acquired
Const TCcount& = 2 "Number of thermocouples per scan

Dim chan&(ScanLength), gain&(ScanLength)

Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim temp%(TCcount * ScanCount), ret&, dagAlias$
Dim dagHandle&, 1&, j&

“ Open the DagBook
dagHandle& = VBdagOpen&(*'dagbook0'™)

ret& = VBdaqReadCalFile&(dagHandle&, 'dagbook.cal™)

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolaré&
chan&(1l) = 17: gain&(1l) = Dbk19BiTypeJd&: Flag&(l) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolaré&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJd&: Flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJd&: flag&(4) = DafBipolar&

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(),
ScanLength)
ret& = VBdaqZeroDbk19&(1)

" Configure temperature conversion without averaging.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeld&, 1, 1)

ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)

2-22

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

ret& = VBdagAdcSetAcg&(dagHandle&, DaamNShot&, O, ScanCount)
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

ret& = VBdagAdcSetFreq&(daqgHandle&, 1001)

ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,

DatmCycleOff& + DatmUpdateSingle&)

ret&
ret&

VBdagAdcTransferStart&(daqgHandle&)
VBdagAdcArm&(dagHandle&)

"Acquire 10 groups of 5 scans and convert to temperature.
For i = 1 To 10
ret& = VBdagWaitForEvent&(dagHandle&, DteAdcDone)

ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbkl19BiTyped&, 18, 1, 1, buf%(), ScanCount)

ret& = VBdaqCvtTCConvert&(buf®(), ScanCount, temp%(), TCcount *
ScanCount)

"Display the temperatures
For j =0 To 4

Print "Channel 18: '; 0.1 * temp%(TCcount * j); " Channel 19: ';
0.1 * temp%(TCcount * j + 1)
Next j

"Rearm the device for the next group of 10 scans

ret& = VBdagAdcArm&(dagHandle&)
ret& = VBdagAdcTransferStart&(dagHandle&)
Next i

" Close the device
ret& = VBdaqClose&(dagHandle&)
End Sub

DBK19 Example 4: Moving Averaged Measurements

In this example, we wish to collect the same data asin example 3; but to reduce noise, we will use a
moving average to average consecutive triplets of scans.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement | Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CcJC Type J Type J
1 2 CJC Zero Type J Zero CcJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CcJC Type J Type J
1 5 CJC Zero Type J Zero CcJC Type J Type J
2 1 CJC Zero Type J Zero CcJC Type J Type J
2 2 CJC Zero Type J Zero CcJC Type J Type J
10 5 CJC Zero Type J Zero CcJC Type J Type J

Results After daqTCConvert

Measurement | O 1

Results

1

Temp °C | Temp °C

2

Temp °C | Temp °C

3

Temp °C | Temp °C

10

Temp °C | Temp °C

Programmer’'s Manual

2-23

Enhanced API Programming Models Chapter 2

The scan setup is the same as in the previous examples. Some comments have been omitted here for
brevity. We again configure for the conversion to temperatures, thistime (asin example 1) specifying
moving averaging of 3 scans.

Public Sub MovingAvgTC(Q)

" Applies a three-sample moving average to

" blocks of Type J thermocouple readings

Const ScanLength& = 5 "Total channels per scan

Const ScanCount& = 5 "Number of scans to be acquired
Const TCcount& = 2 "Number of thermocouples per scan
Dim chan&(ScanLength), gain&(ScanLength)

Dim flag&(ScanLength), buf%(ScanLength * ScanCount)

Dim temp%(TCcount * ScanCount), ret&, dagAlias$

Dim dagHandle&, i1&, j&

dagHandle& = VBdagOpen&(*'dagbook0™)
ret& = VBdaqReadCalFile&(dagHandle&, "‘dagbook.cal')

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolaré&
chan&(l) = 17: gain&(1l) = Dbk19BiTypeJd&: flag&(l) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolaré&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJd&: flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJd&: Flag&(4) = DafBipolar&

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(),
ScanLength)
ret& = VBdagZeroDbk19&(1)

" Configure TC conversion with 3-sample moving average.
ret& = VBdaqCvtTCSetup&(ScanLength, 2, TCcount, Dbk19TCTypeJd&, 1, 3)

ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)
ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

ret& = VBdagAdcSetFreqg&(dagHandle&, 1001)

ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,

DatmCycleOff& + DatmUpdateSingle&)
ret& = VBdagAdcTransferStart&(dagHandle&)
ret& = VBdagAdcArm&(dagHandle&)

"Acquire 10 groups of 5 scans and convert to temperature
For i = 1 To 10
ret& = VBdagWaitForEvent&(dagHandle&, DteAdcDoneé&)

ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbkl19BiTyped&, 18, 1, 1, buf%(), ScanCount)

ret& = VBdaqCvtTCConvert&(buf®(), ScanCount, temp%(), TCcount *
ScanCount)

"Display the temperatures
For j =0 To 4

Print "Channel 18: '; 0.1 * temp%(TCcount * j); " Channel 19: ";
0.1 * temp%(TCcount * j + 1)
Next j

"Rearm the device for the next group of 10 scans

ret& = VBdagAdcArm&(dagHandle&)
ret& = VBdagAdcTransferStart(dagHandle&)
Next i

" Close the device
ret& = VBdaqClose&(dagHandle&)
End Sub

2-24 Programmer’s Manual

Chapter 2

Enhanced API Programming Models

Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards

This program demonstrates temperature
acquisitions using multiple TC types and
multiple DBK19 cards. The two commands
dagTCSetup and daqTCConvert have
been combined into the one
dagTCSetupConvert command. The
sequence of the last 3 blocks on the flow chart
must be used multiple times, once for each
card (also, if there are multiple TC typeson a
card, once for each TC type on that card).

In this example, we wish to repeatedly
measure the temperatures sensed by 2 Type J
and 2 Type K thermocouples attached through
1 DBK19 card and 2 more Type J
thermocouples attached through another
DBK19. The DBK19 CJC signd isaways
the first signal on the card, and the shorted
channel (used for zero compensation) is
always the second channel onthe card. First
we list the configuration:

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; and so, the scan must
first include the CJC and then immediately the
temperature channels (see table).

Card Channel Channel Type

DBK19 16 cJc
17 Shorted (zero)
18 Type J
19 Type J
20 Type K
21 Type K

DBK19 32 cJc
33 Shorted (zero)
34 Type J
35 Type J

Local 0-1 Used for DBK19
2-15 Free for other uses

Note: repeat call to dagCalSetupConvert and
daqgCvtTCConvert for each DBK19/52 card and for
each type of TC attached to the card.

dagOpen

%

User variable
definitions

‘ dagReadCalFile ‘

!

‘ dagAdcSetScan ‘

!

| daqZeroDbk19 |

!

| dagCvtTCSetup |

!

‘ dagAdcSetTrig ‘

!

‘ dagAdcSetAcq ‘

\ danchetClockSource\

!

‘ dagAdcSetFreq ‘

!

\ dagAdcTransferSetBuf fer\

!

‘ dagAdcTransf erstart‘

!

‘ dagAdcArm ‘

!

‘ dagWai tForEvent‘

\ daqgCal SetupConvert\

‘danal SetupConvert‘

!

\ dagCvtTCConvert \

I

‘ daqgClose ‘

%

Open a Daqg* device.

Define arrays of channels,
gains, and flags.

Read calibration constants
from the specified file.

Configure scans.

Configure TC conversion
functions to perform
zero compensation.

Configure parameters for
subsequent temperature
conversions.

Set trigger type (use
defined constant

DatsImmediate to
trigger when armed).

Set acquisition mode

Configure the ADC
clock source.

Set the scan frequency.

Configure user-allocated
buffer to receive raw data.

Begin the data transfer.

Arm the acquisition triggers
(immediately if using
DatsImmediate trigger).

Wait for transfer event
DteAdcDone
(acquisition complete).

Configure order and type of
data to calibrate and then
calibrate the CJC channels.

Configure order and type of
data to calibrate and then
calibrate the TC channels.

Convert raw A/D readings
to temperature in tenths of
a degree Celsius.

At this point, the data is in
a user buffer in degrees
Celsius (data type is
integer).

The thermocouples are separated in the scan by type. The readings from each type are consecutive and
immediately preceded by their CJC Zero, thermocouple zero, and CJC readings for calculation
reference. It isnot appropriate to consolidate the 4 Type J thermocouples because they are connected
through 2 different DBK19s. Each DBK 19 hasits own CJC and offset errors as a reference for

thermocouples attached to that DBK 19.

Programmer’'s Manual

2-25

Enhanced API Programming Models Chapter 2
Scan
For each scan position we must specify the Position Channel Type [Channel Gain Code
. o . 0 CJC Zero 17 Dbk19BiCJC
PGA gain. Assuming the Dag is 1 Type J Zero 17 | Dbki9BiTypel
configured for bipolar operation (to allow 2 cic 16 Dbk19BICIC
measurement of temperatures below the 3 Type J 18 Dbk19BiTypeJ
temperature at the DBK 19 cards), we ‘5" (T%F(’:e zJ ig Bgﬁgg!gi’:‘”
: ero I
choose the gain codes from the table and 6 Type K 17 DbK19BiTypek
add them to the scan description. 7 ZeroCJC 16 Dbk19BICIC
8 Type K 20 Dbk19BiTypeK
9 Type K 21 Dbk19BiTypeK
10 CJC Zero 33 Dbk19BiCJC
11 Type J Zero 33 Dbk19BiTypeJ
12 cJc 32 Dbk19BiCJC
13 Type J 34 Dbk19BiTypeJ
14 Type J 35 Dbk19BiTypeJ

The following tables show the raw data input and the resulting temperature data output for this sample program.Raw Data Input

Readings)
Measure- | Scan | O 1 2 3 4 5 6 7 8 9 10 (2-3) 14
ment
1 1 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
1 2 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
1 3 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
1 4 cJC Typed | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
1 5 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
2 1 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
2 2 cJC TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
10 5 cJC Typed | CJC | Type | Type | CIC | TypeK | CIC | Type | Type | CIC Type
Zero Zero J J Zero Zero K K Zero J
Results After daqTCConvert
Results
Measurement 0 1 2 3 4 5
1 Temp°C | Temp°C [Temp°C | Temp°C | Temp°C [Temp °C
2 Temp°C | Temp°C [Temp°C [Temp°C | Temp °C | Temp °C
10 Temp °C | Temp°C [Temp°C [Temp°C | Temp °C | Temp °C
Now we can configure the DagBook/DagBoard with this information:
Public Sub MultDbk19()
Const ScanLength& = 15 "Total channels per scan
Const ScanCount& = 5 "Number of scans to be acquired
Const TCcountl& = 2 “"Number of Type J TCs on first Dbk19
Const TCcount2& = 2 "Number of Type K TCs on first Dbk19
Const TCcount3& = 2 "Number of Type J TCs on second Dbk19
Dim chan&(ScanLength), gain&(ScanLength)
Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim templ%(TCcountl), temp2%(TCcount2)
Dim temp3%(TCcount3)
Dim dagHandle&, 1&, j&, ret&
dagHandle& = VBdagOpen&(*'dagbook0™)
2-26 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

ret& = VBdaqReadCalFile&(dagHandle&, "‘dagbook.cal')

chan&(0) = 17: gain&(0) = Dbk19BiCJC&: flag&(0) = DafBipolaré&
chan&(l) = 17: gain&(1l) = Dbk19BiTypeJd&: flag&(l) = DafBipolar&
chan&(2) = 16: gain&(2) = Dbk19BiCJC&: flag&(2) = DafBipolaré&
chan&(3) = 18: gain&(3) = Dbk19BiTypeJd&: flag&(3) = DafBipolar&
chan&(4) = 19: gain&(4) = Dbk19BiTypeJd&: Flag&(4) = DafBipolar&
chan&(5) = 17: gain&(5) = Dbk19BiCJC&: flag&(5) = DafBipolaré&
chan&(6) = 17: gain&(6) = Dbk19BiTypeK&: flag&(6) = DafBipolar&
chan&(7) = 16: gain&(7) = Dbk19BiCJC&: flag&(7) = DafBipolaré&
chan&(8) = 20: gain&(8) = Dbk19BiTypeK&: flag&(8) = DafBipolar&
chan&(9) = 21: gain&(9) = Dbk19BiTypeK&: Flag&(9) = DafBipolar&
chan&(10) = 33: gain&(10) = Dbk19BiCJC&: flag&(10) = DafBipolaré&
chan&(11) = 33: gain&(11l) = Dbk19BiTypel&: flag&(1ll) = DafBipolar&
chan&(12) = 32: gain&(12) = Dbk19BiCJC&: flag&(1l2) = DafBipolaré&
chan&(13) = 34: gain&(13) = Dbk19BiTypel&: flag&(13) = DafBipolar&
chan&(14) = 35: gain&(14) = Dbk19BiTypeld&: flag&(14) = DafBipolar&

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(),
ScanLength)
ret& = VBdagZeroDbk19&(1)

ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)
ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot&, 0, ScanCount)
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

ret& = VBdagAdcSetFreqg&(dagHandle&, 1001)

ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,

DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdagAdcTransferStart&(dagHandle&)
ret& = VBdagAdcArm(dagHandleé&)
ret& = VBdagWaitForEvent(dagHandle&, DteAdcDone&)

For i =1 To 10

" Calibrate CJC: 1 chan. starting at position 2 for 5 scans.
ret& = VBdaqCalSetupConverté&(dagHandleé&, ScanLength, 2, 1, DcalTypeCJC&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

" Calibrate type J TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 3, 2,
DcalTypeDefault&, Dbk19BiTyped&, 18, 1, 1, buf%(), ScanCount)

" Calibrate CJC: 1 chan. starting at position 7 for 5 scans.
ret& = VBdaqCalSetupConverté&(dagHandle&, ScanlLength, 7, 1, DcalTypeCJCé&,
Dbk19BiCJC&, 16, 1, 1, buf%(), ScanCount)

" Calibrate type K TCs: 2 chans. starting at position 3 for 5 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 8, 2,
Dcal TypeDefault&, Dbk19BiTypeK&, 20, 1, 1, bufk(), ScanCount)

" Calibrate CJC: 1 chan. starting at position 12 for 5 scans.
ret& = VBdaqCalSetupConvert&(dagHandle&, ScanLength, 12, 1, DcalTypeCJCé&,
Dbk19BiCJC&, 32, 1, 1, buf%(), ScanCount)

" Calibrate type J TCs: 2 chans. starting at position 13 for 5 scans.
ret& = VBdaqCalSetupConverté&(dagHandle&, ScanlLength, 13, 2,
DcalTypeDefault&, Dbkl19BiTyped&, 34, 1, 1, buf%(), ScanCount)

" Convert the first type J TC readings to temperatures

ret& = VBdaqCvtTCSetupConvert&(ScanLength, 2, TCcountl, Dbk19TCTyped&, 1,
0, buf%(), ScanCount, templ%(), TCcountl)

Print ""Channel 18: "; 0.1 * templ(0); " Channel 19: "; 0.1 * templ(l)

" Convert the first type K TC readings to temperatures

Programmer’'s Manual 2-27

Enhanced API Programming Models Chapter 2

ret& = VBdaqCvtTCSetupConvert&(ScanLength, 7, TCcount2, Dbk19TCTypeK&, 1,
0, buf%(), ScanCount, temp2%(), TCcount2)
Print ""Channel 20: "; 0.1 * temp2(0); " Channel 21: "; 0.1 * temp2(l)

" Convert the first type J TC readings to temperatures

ret& = VBdaqCvtTCSetupConvert&(ScanLength, 12, TCcount3, Dbk19TCTypeJdé&,
1, 0, buf%(), ScanCount, temp3%(), TCcount3)

Print ""Channel 34: "; 0.1 * temp3(0); " Channel 35: "; 0.1 * temp3(1)

ret& = VBdagAdcArm(dagHandle&)

ret& = VBdagWaitForEvent(dagHandleé&, DteAdcDone&)
Next i

End Sub

2-28 Programmer’s Manual

Enhanced API Programming Models

Temperature Measurements Using Multiple
RTDs on a Single DBK9 Card

This program demonstrates temperature
acquisitions using multiple RTD types and a
single DBK9 card. After this program
configures and arms the DBK card, it begins
acquiring data. At this point, program
execution is suspended until all the datais
gathered. The program demonstrates the
conversion of data as both a two-step process
and asingle-step process. Note the
conversion routines need to be called for each
type of RTD in the scan. The temperature at
the RTD is derived from 4 voltage values.

In this example, we wish to acquire some
temperature readings from 3 RTDs. There
are two 100-ohm RTDs attached to channels
16 and 17 of the DBK9 and one 1000-ohm
RTD attached to channel 18. The
configuration looks like this:

Card Channel Channel Type
DBK9 16 100 ohm RTD
17 100 ohm RTD
18 1000 ohm RTD
Local 0 Used for DBK9
1-15 Free for other uses

First we must specify the scan sequence of
channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the RTD
channels. The scan must include the 4
voltage readings in the correct order for each
channel (seetable).

Note that the RTDs need not be scanned in any
particular order, but the 4 readings for each
RTD must be placed in the scan sequentially.
We might have specified channel 17 before
channel 16. It isbest to group all the RTD
reading groups of the same value together
because this makes using the temperature
conversion functions easier.

Now we can configure the Dag* with this
information. First we will define some
congtants that will make the program easier to
modify.

Public Sub MeasureRTD()
Const RdsPerRTD = 4
Const nRTDs 3
Const FirstRTDChanNo
Const Nscans 10
Const vaOffset =
Const vbOffset

16

0
1

dagOpen

User variable
definitions

dagAdcSetScan

!
dagAdcSetTrig

Y
dagAdcSetAcq

Y

‘danchetClockSource

Y
dagAdcSetFreq

Y

‘dandcTransferSetBuffer

Y

‘dandcTransferStart‘

Y

| dagAdcArm |

\danaitForEvent\

Y

|dagCvtRtdsetup|

Y

‘danvthdConvert

Y

‘danvthdSetupConvert‘

Open a Daq* device.

Define arrays of channels,
gains, and flags.

Configure scans.

Set trigger type (use
defined constant
DtsImmediate to
trigger when armed).

Set acquisition mode.

Configure the ADC
clock source.

Set the scan frequency.

Configure user-allocated
buffer to receive raw data.

Begin the data transfer.

Arm the acquisition triggers
(immediately if using
DtsImmediate trigger).

Wait for transfer event
DteAdcDone
(acquisition complete).

Setup conversion for first
RTD type.

Convert RTD data and
place in user-defined
buffer.

Setup and convert data for
second RTD type and place
in user-defined buffer (this
function performs setup and
conversion in one call).

Scan Position Channel *Channel Gain
Number
0 16 Dbk9VoltageA
1 16 Dbk9VoltageB
2 16 Dbk9VoltageD
3 16 Dbk9VoltageD
4 17 Dbk9VoltageA
5 17 Dbk9VoltageB
6 17 Dbk9VoltageD
7 17 Dbk9VoltageD
8 18 Dbk9VoltageA
9 18 Dbk9VoltageB
10 18 Dbk9VoltageD
11 18 Dbk9VoltageD
* These are not actual gains. They are used to select
voltages A-D for each RTD channel.

Programmer’'s Manual

2-29

Enhanced API Programming Models Chapter 2

Const vcOffset 2

Const vdOffset = 3

Const ReadingsPerScan = nRTDs * RdsPerRTD
Const bufSize = Nscans * ReadingsPerScan

Dim chan&(ReadingsPerScan), gain&(ReadingsPerScan),
flag&(ReadingsPerScan)

Dim buf%(bufSize), templ%(Nscans% * 2), temp2%(Nscans), i%, j%, ret&

Dim dagHandle&, tmpTemperature!

dagHandle& = VBdagOpen(''dagbook0')

" Set arrays of channels, gains, and flags.
For i = 0 To nRTDs - 1
For j = O To RdsPerRTD
chan(i * RdsPerRTD + j) = i1 + FirstRTDChanNo

Next j
gain(i * RdsPerRTD + vaOffset) = Dbk9VoltageA&
gain(i * RdsPerRTD + vbOffset) = Dbk9VoltageB&
gain(i * RdsPerRTD + vcOffset) = Dbk9VoltageC&
gain(i * RdsPerRTD + vdOffset) = Dbk9VoltageD&
flag(i * RdsPerRTD + vaOffset) = DafBipolar&
flag(i * RdsPerRTD + vbOffset) = DafBipolar&
flag(i * RdsPerRTD + vcOffset) = DafBipolar&
flag(i * RdsPerRTD + vdOffset) = DafBipolar&
Next 1
ret& = VBdagAdcSetScan(dagHandle&, chan(), gain(), flag(Q,

ReadingsPerScan)
ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)
ret& = VBdagAdcSetAcq&(dagHandle&, DaamNShot, 0, Nscans)
ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)
ret& = VBdagAdcSetFreqg&(dagHandle&, 1001)
ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), Nscans,

DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdagAdcTransferStart&(dagHandle&)
ret& = VBdagAdcArm(dagHandle&)
ret& = VBdagWaitForEvent&(dagHandle&, DteAdcDone&)

" Setup conversion for first 2 RTD"s starting at position O.
ret& = VBdaqCvtRtdSetup&(ReadingsPerScan, 0, 2, Dbk9RtdTypel00&, 1)

" Convert the data for the first 2 RTD"s
ret& = VBdaqCvtRtdConvert&(buf%(), Nscans, templ%(), Nscans * 2)

" Setup and convert the data for the 1000 ohm RTD in one step
ret& = VBdaqCvtRtdSetupConvert&(ReadingsPerScan, 8, 1, Dbk9RtdTypelk&, 1,
buf%(), Nscans, temp2%(), Nscans)

" Display the temperatures for the RTD"s
For i = 0 To Nscans - 1
Print ""Scan: "; 1; '": "
" Display the 100 Ohm RTD temperatures
For j =0 To 1
tmpTemperature! = templ%(i * 2 + j) / 10
Print tmpTemperature; "' "
Next j
"Display the 1000 Ohm RTD temperature
tmpTemperature! = temp2%(i) / 10
Print tmpTemperature
Next i
ret& = VBdaqClose&(dagHandle&)
End Sub

2-30 Programmer’s Manual

Enhanced API Programming Models

Using DBK Card Calibration Files

Software calibration functions are designed to adjust
Dag* readings to compensate for gain and offset
errors. Calibration constants are calculated at the
factory by measuring the gain and offset errors of a
card at each programmable gain setting. These
constants are stored in a calibration text file which
can be read by a program at runtime. Thisallows
new boards to be configured for calibration by
updating this calibration file rather than recompiling
the program. Calibration constants and instructions
are shipped with the related DBK boards. Programs
like DagView support this calibration and use the
same constants.

The calibration operation removes static gain and
offset errors that are inherent in the hardware. The
calibration constants are measured at the factory and
do not change during the execution of a program.
These constants are different for each card and
programmable-gain setting; they may even be
different for each channel, depending on the design
of the expansion card. Note: the DBK19 is shipped
with calibration constants. Other cards use on-board
potentiometers to perform hardware calibration.

The calibration process has 3 steps:
- Initialization consists of reading the
calibration file.
Setup describes the characteristics of the data
to be calibrated.
Conversion does the actual calibration of the
data

dagAdcSetScan Configure scans.

Y
dagAdcSetFreq Set frequency.
|

Define and arm trigger

|
dagAdcSetTrig (use defined constant

DtsSoftware
] for software trigger).

!
dagAdcSoftTrig| Software trigger.
!

‘dandcTransferSetBuffer‘

‘dandcTransferStart‘

!

|dagWaitForEvent|

Wait for the transfer
to be complete.

|

‘dandcTransferGetStat

!

‘danalSetupConvert

Perform calibration
on readings at x1 gain.

!

‘danalSetupConvert

Perform calibration
on readings at x2 gain.

Function prototypes, return error codes, and parameter definitions are located in the DAQX.H header

filefor C (or similar files for other languages).

Cards that support the calibration functions are shipped with a diskette containing a calibration
constantsfile. The name of the file will be the serial number of the card shipped withit. Thisfile
holds the calibration constants for each programmable-gain setting of that card. These constants should
be copied to a calibration text file (DAQBOOK.CAL) located in the same directory as the program

performing the calibration.

To set up the calibration file, perform the following steps: [MAIN]
1. Locate the diskette containing the calibration constants file. 32760,32769
2. Configure the card according to the hardware configuration section of the DBK | 3280132750

32740,32777

chapter. _ _ 32810,32768
3. Edit the calibration file, DAQBOOK.CAL, using atext editor.
4. Add the card number information within brackets, as listed in the calibration [EXP3]

file. 32780,32779

32800,32756

5. Add the calibration constants immediately after the card number. (These should | 3276832780
be entered in the order given in the calibration file.) 32750,32742

6. Repeat steps4 and 5 for each card.

7. Verify that no two cards are configured with the same card/channel number. [3%23]3276 4
The table shows an example of acalibration file for configuring the main Dag* unit gg;igggg;
and two DBK 19 cards connected to Dag* expansion channels 3 and 5. 32777.32730

Programmer’'s Manual

2-31

Enhanced API Programming Models Chapter 2

Theinitialization function for reading-in the calibration constants from the calibration text file is
dagReadCalFile. The C language version of dagReadCalFileis similar to other languages and works as
follows:

The filename with optional path information of the calibration file. If calfileis NULL or empty (*"),
the default calibration file DAQBOOK.CAL will beread. Thisfunctionisusually called once at the
beginning of a program and will read all the calibration constants from the specified file. If calibration
constants for a specific channel number and gain setting are not contained in the file, ideal calibration
constants will be used (essentially not calibrating that channel). If an error occurs while trying to open
the calibration file, ideal calibration constants will be used for all channels and a non-zero error code
will be returned by the dagReadCalFi le function.

Once the calibration constants have been read from the cdl file, they Channel Channel Type

can be used by the dagqCalSetup and dagqCalConvert 0 Voltagel @ X1 gain

functions. The dagCalSetup function will configure the order and Voltage2 @ X2 gain

1
2 Voltage3 @ X2 gai
type of datato be calibrated. Thisfunction requires datato be from 3 ollages @ X2 gain

Voltage4d @ X2 gain
consecutive channels configured for the same gain, polarity, and
channel type. The calibration can be configured to use only the gain calibration constant and not the
offset constant. This allows the offset to be removed at runtime using the zero compensation functions
described later in this section.

In this example, several Dag* channels will be Scan Gain
read and calibrated. This example assumesthe Position Channel Type Channel Code
calibration file has been created according to 0 Voltagel @ X1 gain 0 DgainX1

Voltage2 @ X2 gain DgainXx2

the initializing calibration constants section of

1 1
2 Voltage3 @ X2 gain 2 DgainXx2
3 3

this chapter. Expansion cards can perform the Voltaged @ X2 gain Dgainx2

same type of calibration if the calibration
constants are available for the card and a specified channel number. First list the configuration:

Now specify the scan (the sequence of channel numbers and gains that are to be gathered as one burst
of readings). In thisexample, al the channels at each gain will be read together (in consecutive order)
to make the calibration easier.

Now configure the Dag* with thisinformation, and read 5 scans of data:

Dim chans&(4), gains&(4), buf%(20)
handle& = VBdagOpen&(“‘DaqBook0’”)

" Set array of channels and gains

chans&(0) = 0
gains&(0) = DgainX1&
chans&(1l) =1
gains&(1l) = DgainX2&
chans&(2) = 2
gains&(2) = DgainXx2&
chans&(3) = 3
gains&(3) = DgainX2&

" Load scan sequence FIFO :
ret& = VBdagAdcSetScan&(handle&, chans&(), gains&(), 4)

" Set Clock
ret& = VBdagAdcFreq&(handle&, 10)

" Define and arm trigger :
ret& = VBdagAdcSetTrig&(handle&, DtsSoftware&, 0, 0, 0, 0)

" Trigger
ret& = VBdagAdcSoftTrig&(handle&)

" Read the data
“ 5 indicates the number of scans

2-32

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

“ single mode for scans less than 500
ret& = VBdagAdcTransferSetBuffer&(handle&, bufw(), 5, DatmCycleOff& +
DatmSingleMode&)

ret& = VBdagAdcTransferStart&(handle&)

“specifies to wait for the transfer to be complete
ret& = VBdagWaitForEvent&(handle&, DteAdcDone&)

ret& = VBdagAdcTransferGetStat&(handle&, active&, retCount&)

" Print the first scan of unconverted data
PRINT "'Before Calibration:"

PRINT "*Channel 0 at x1 gain: "; buf%(0)
PRINT "*Channel 1 at x2 gain: '; buf%(1)
PRINT "'Channel 2 at x2 gain: "; buf%(2)
PRINT "*Channel 3 at x2 gain: '; buf%(3)

"Perform zero compensation on readings sampled at x1 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 0, 1, 0, DgainXi&, 0, 1, O,
bufb(), 5)

"Perform zero compensation on readings sampled at x2 gain
ret& = VBdaqCalSetupConvert&(handle&, 4, 1, 3, 0, DgainxX2&, 1, 1, O,
bufb(), 5)

" Print the first scan of converted data
PRINT "After Calibration:"

PRINT "*Channel 0 at x1 gain: '; buf%(0)
PRINT "*Channel 1 at x2 gain: "; buf%(1)
PRINT "*Channel 2 at x2 gain: '; buf%(2)
PRINT "'Channel 3 at x2 gain: "; buf%(3)

Programmer’'s Manual

2-33

Enhanced API Programming Models Chapter 2

Zero Compensation
Zero compensation removes offset errors

whileaprogramisrunning. Thisisuseful in *
systems where the offset of a channel may dagAdcSetScan Configure scans.
change due to temperature changes, long-term

) Set trigger type (use

Reading a shorted channel on the same card at DtsImmediate to
the same gain as the desired channel removes] trigger when armed).
the offset at run-time. dagAdcSetAcq Set acquisition mode.

; T |
drift, or hardware calibration changes. [aaqhdosetTrig | definod conarant
|

Note: Zero compensation is not available for

all expansion cards. The DBK19 has channel !

Configure the ADC

. dagAdcSetClockSource
1 permanently shorted for zero compensation; daaA urce| clock source.
other cards require a channel to be shorted '
manually. dagAdcSetFreq Set the scan frequency.
The zero-compensation functions require a Y
shorted channel and a number of other [dagAdcTransfersetBuffer| CONfigure user-allocated

buffer to receive raw data.

channels to be sampled from the same card at
the same gain as the shorted channel. These
functions will work with cards (such asthe
DBK12, DBK 13, and DBK19) that have one 1 Arm the acquisition triggers
analog path from the input to the A/D \ dagAdcArm \ (immediately if using
converter. Other cards do not support the DtsImmediate trigger).
zero compensation functions because they

!

| daghdcTransferstart | Begin the data transfer.

! Wait for transfer event
‘danaitForEvent‘ DteAdcDone

have offset errors unique to each channel. (acquisition complete).
The DBK 19 is designed with channel 1 Y Pert)
already shorted for performing zero [dagzerosetupConvert| . ° ,g;’;;g;‘;fg?gg?n?a“°“
compensation. y

The dagZeroSetup function configuresthe [dagzerosetupConvert| Perform zero compensation

. di t x2 .
location of the shorted channel and the on readings at %< gain

channels to be zeroed within a scan, the size
of the scan, and the number of readings to zero compensate. (This function does not do the
conversion.) A non-zero return value indicates an invalid parameter error.

In this example, several Dag* channels will be read using various Channel Channel Type
gains and zero-compensated to remove any offset errors. This 0 Shorted Channel
example assumes that channel 0 of the Dag* has been manually 1 Voltagel @ X1 gain
shorted. Expansion cards could perform the same type of zero 2 Voltage2 @ X2 gain
. . . . 3 Voltage3 @ X2 gain
compensation as this example by shorting a channel on the expansion 7 Voltaged @ X2 gain
card and specifying card channel numbers. First list the
configuration:
Now specify the scan, the sequence of Scan Gain
channel numbers, and gains that are to be Position Channel Type Channel Code
gathered as one burst of readings. In this 0 Shorted Channel @ X1 0 DgainX1
| ill first read the shorted 1 Shorted Channel @_XZ 0 Dga!nXZ
example, wewl . . 2 Voltagel @ X1 gain 1 DgainX1
channel at each gain that we plan on using, 3 Voltage2 @ X2 gain 2 DgainX2
in this case x1 and x2. All the channels at 4 Voltage3 @ X2 gain 3 DgainX2
each gain will be read together to make the 5 Voltage4 @ X2 gain 4 DgainX2

actual zero compensation easier.

Public Sub ZeroComp()

" Performs zero compensation on ADCs readings
Const ScanLength& = 6 “"Total channels per scan
Const ScanCount& = 5 "Number of scans to acquire
Dim chan&(ScanLength), gain&(ScanLength)

Dim flag&(ScanLength), buf%(ScanLength * ScanCount)
Dim ret&, dagHandle&

2-34 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

dagHandle& = VBdagOpen&(*'dagbook0™)

* Channel zero must be shorted to ground

" Use DafClearLSNibble flag to clear 4 least significant

" bits when using 12-bit A/D converters

chan&(0) = 0: gain&(0) = DgainX1l&: flag&(0) = DafBipolar& +

DafClearLSNibble&

chan&(1l) = 0: gain&(l) = DgainX2&: flag&(l) = DafBipolar& +
DafClearLSNibble&

chan&(2) = 1: gain&(2) = DgainX1l&: flag&(2) = DafBipolar& +
DafClearLSNibble&

chan&(3) = 2: gain&(3) = DgainX2&: flag&(3) = DafBipolar& +
DafClearLSNibble&

chan&(4) = 3: gain&(4) = DgainX2&: flag&(4) = DafBipolar& +
DafClearLSNibble&

chan&(5) = 4: gain&(5) = DgainX2&: flag&(5) = DafBipolar& +
DafClearLSNibble&

ret& = VBdagAdcSetScan&(dagHandle&, chan&(), gain&(), flag&(Q),
ScanLength)

ret& = VBdagAdcSetTrig&(dagHandle&, Datslmmediate&, 1, 0, 0, 0)

ret& = VBdagAdcSetAcg&(dagHandle&, DaamNShot&, O, ScanCount)

ret& = VBdagAdcSetClockSource&(dagHandle&, DacsAdcClock&)

ret& = VBdagAdcSetFreq&(daqgHandle&, 1001)

ret& = VBdagAdcTransferSetBuffer&(dagHandle&, buf%(), ScanCount,

DatmCycleOff& + DatmUpdateSingle&)

ret& = VBdagAdcTransferStart&(dagHandle&)
ret& = VBdagAdcArm&(dagHandle&)
ret& = VBdagWaitForEvent&(dagHandle&, DteAdcDoneé&)

" Print the first scan of unconverted data

Print ""Channel zero shorted to ground"

Print "Channel 0 at X1 gain: "; IntToUint(buf%(0))

Print ""Channel 0 at X2 gain: "; IntToUint(buf%(1))

Print

Print ""Before zero compensation”

Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))

Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))

Print "Channel 3 at X2 gain: "; IntToUint(buf®(4))

Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))

Print

" Perform zero compensation on readings sampled at x1 gain.
" 1 reading at position 2. Zero reading at position O.

ret& = VBdagZeroSetupConvert&(ScanLength, 0, 2, 1, buf%(), ScanCount)

" Perform zero compensation on readings sampled at x2 gain.
" 3 readings at position 3. Zero reading at position 1.
ret& = VBdagZeroSetupConvert&(ScanLength, 1, 3, 3, buf%(), ScanCount)

" Print the first scan of converted data

Print "After zero compensation”

Print "Channel 1 at X1 gain: "; IntToUint(buf%(2))
Print "Channel 2 at X2 gain: "; IntToUint(buf%(3))
Print "Channel 3 at X2 gain: "; IntToUint(buf%(4))
Print "Channel 4 at X2 gain: "; IntToUint(buf%(5))
Print

" Close the device

ret& = VBdaqClose&(dagHandle&)

End Sub

Function IntToUint(intval As Integer) As Long
" Converts 16-bit signed integer to unsigned long integer
IT 0 <= intval Then
IntToUint = intval
Else
IntToUint = 65535 + CLng(intval) + 1
End If
End Function

Programmer’'s Manual 2-35

Enhanced API Programming Models Chapter 2

Linear Conversion

Several DBKs use conversions from
A/D readings to corresponding values |dagAdcExpSetBank] Configure specified bank for
that are alinear (straight-line) DBK? card.

relationship. (Non-linear relationships
for RTDs and thermocouples require
special conversion functions—refer to
the Thermocouple and RTD
Linearization section later in this
chapter.) Thelinear conversion
functions are built into the API.

- Configure specified DBK7
|dagAdcExpSetChanOption| channel with various options.
(dagAdcExpSetBank should be
called before
dagAdcExpSetChanOption)

All
required options
set for each
channel?

All channels configured?

Yes

User-variable

Six parameters are used to specify a

definitions :
linear relationship: the A/D input range Define Array of g;ﬂ;f‘”"e's
(minimum and maximum values), and Set scan sequence and
the transducer input signal level and | dagAdcRdScanN | gains using defined arrays.

. . Set sampling frequency.
output voltage at two pointsin the range. Define and arm trigger.
Three functions are used to perform Read data.
linear conversions: dagAdcRdN Read data for DBK13 channel
daqCvtLinearSetup, |
daqCvtLinearConvert, and |dagCvtLinearsetupConvert|Convert channels to Hz.

daqCvtLinearSetupConvert. These
functions are defined in the following
pages. After their definitions, parameter
examples and a program example show
how they work. | Output data to screen |

DBK?7 programmed for 50 to 60 Hz:

|dagCvtLinearSetupConvert|Convert channels to PSI.

The DBK7 output rangeisfrom -5V to +5V, and the Dag* must Measurerment | Sianal | Voltage
be configured for bipolar operation at again of x1 for the DBK7 1 5og|-|z 5 Vg_
channels. Thus, the input range -5V to +5 V corresponds to the 2 60 Hz +5V

ADmin and ADmax settings. When a DBK7 programmed for a 50
to 60 Hz range measures a 50 Hz input signal, it outputs-5V. With a 60 Hz input signal, it outputs +5
V. Thus, signall is 50, voltagel is -5, signal2 is 60, and voltage2 is5.

Pressure-transducer:

Assume that a pressure transducer outputs 1to 4 mV to represent T o gnal | Voltage |
0 to 1000 psi, and that a DBK 13 with again of x1000 is used 1 0psi | 1mv
with aDag* in bipolar mode to measure the signal. In bipolar 2 1000 psi_ | 4 mv

mode, at again of 1000, the analog signal input rangeis-5to 5

mV and the output range from the DBK13is-5to 5 Volts. Thus, ADmin is-5.000, and ADmax is
5.000. A pressure of O psi generates an output of 1 mV, and 1000 psi generates4 mV. Thussignall is
0, voltagel is 1.000, signal2 is 1000 and voltage2 is 4.000.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-
to-voltage card and a DBK 13 voltage input card with a pressure transducer to actual frequencies (Hz)
and pressures (psi).

Public Sub LinearConvert()
Dim bufferl%(80), buffer2%(80), flags&(3), hz!(20), psi!(10)
Dim ret&, handle&, chan&, x%

" Initialize DagBook
handle& = VBdagOpen&(''DaqgBook0')

"Set Channel 16 to be a DBK7. This will configure and auto-
"calibrate all channels on the DBK7 which includes channels
"16,17,18, and 19. This step not required for a DBK13

ret& = VBdagAdcExpSetBank(handle&, 16, DbankDbk7&)

2-36

Programmer’s Manual

Chapter 2

Enhanced API Programming Models

"Set channel option common to all DBK7 channels.
"This step not required by a DBK13.
For chan& = 16 To 19
ret& = VBdagAdcExpSetChanOption(handle&, chané&, DcotDbk7Slope&, 1)
ret& = VBdagAdcExpSetChanOption(handle&, chané&, DcotDbk7DebounceTime&,
DcovDbk7DebounceNone&)
ret& = VBdagAdcExpSetChanOption(handle&, chan&, DcotDbk7MinFreg&, 501)
ret& = VBdagAdcExpSetChanOption(handle&, chan&, DcotDbk7MaxFreg&, 601)
Next chan&

"Channel configuration:

"DagBook Channels 16, 17: DBK7 channels 0,1

"DagBook Channel 32: DBK13 channel O

"Configure the pacer clock, arm the trigger, and acquire 10

"scans. The gain setting of Dbk7X1 (X1 gain) will be applied

"to all channels. The acquisition frequency is set to 100 Hz.

"All channels are unsigned - bipolar.

ret& = VBdagAdcRdScanN&(handle&, 16, 17, bufferli%(), 10, DatsAdcClock&,
0, 0, 100!, Dbk7X1&, DafUnsigned& + DafBipolaré&)

"Now do the same for the DBK13 channel, using gain Dbk13X1000
ret& = VBdagAdcRdN(handle, 32, buffer2%(), 10, DatsAdcClock&, 0, 0, 100!,
Dbk13X1000&, DafUnsigned& + DafUnipolaré&)

"Convert channels 16 and 17 to Hertz where -5 volts corresponds

"to 50 Hz and 5 volts corresponds to 60 Hz.

ret& = VBdaqCvtLinearSetupConvert(2, 0, 2, 50!, -51, 60!, 51, 1,
buffer1%(), 10, hz!'(), 20)

"Convert channel 32 to PSI where 1mV corresponds to 0 PSI and

"4 mV corresponds to 1000 PS1. DBK13 channel 0 has 1000x gain,

"so 1mV at Dbk13 input gives 1V output at DagBook input.

ret& = VBdaqCvtLinearSetupConvert(1, 0, 1, 0!, 11, 1000!', 41, 1,
buffer2%(), 10, psi!(), 10)

"Print results
Print "Results:"
For x = 0 To 9
Print Format(hz!(x * 2), "#0.00 Hz '); Format(hz!(x * 2 + 1), "#0.00
Hz '"); Format(psi(x), "0000.0 psi')
Next X

ret& = VBdaqClose(handle&)
End Sub

Programmer’'s Manual

2-37

Enhanced API Programming Models Chapter 2

Summary Guide of Selected Enhanced API Functions

The following table organizes the enhanced API functions by type and includes notes on when to use
them.

Simple One-Step Routines

For single gain, consecutive channel, foreground transfers, use the following functions:

Foreground Operation Single Scan Multiple Scans
Single Channel dagAdcRd dagAdcRdN
Consecutive Multiple Channels dagAdcRdScan dagAdcRdScanN

Complex A/D Scan Group Configuration Routines

For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan
functions.

dagAdcSetScan Set scan sequence using arrays of channel and gain values.
dagAdcSetMux Set a contiguous scan sequence using single gain, polarity and channel flag values
Trigger Options

After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.
- In one-shot mode, a trigger is required to start each A/D scan.

- A single trigger starts the scans, and the pacer clock determines the rate between scans.

Note: If the trigger source is analog, a trigger level is also required.

dagAdcSetTrig Configure the trigger event using source, level, rising and channel values.

dagAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the
analog trigger source and value which can be used with dagAdcSetTrig.

If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing

If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the
following functions:

dagAdcSetRate Set/Get the specified frequency or period for the specified mode.

dagAdcSetFreq Set the pacer clock to the given frequency.

A/D Acquisition

A/D acquisition settings are not active until the acquisition is armed.

dagAdcArm Arm an A/D acquisition using the current configuration. If the trigger source was set to be immediate,
the acquisition will be triggered immediately.

dagAdcDisarm Disarm the current acquisition if one is active. This command will disarm the current acquisition and
terminate any current A/D transfers.

dagAdcSetAcq Define the mode of the acquisition and set the pre-trigger and post-trigger acquisition counts, if
applicable.

dagAdcAcqGetStat Return the current state of the acquisition as well as the total number of scans transferred thus far as

well as the trigger scan position, if applicable.

A/D Data Transfer

After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:

dagAdcTransferSetBuffer | Configure a buffer for A/D transfer. Allows configuration of the buffer for block and single
reading update modes as well as linear and circular buffer definitions.

dagAdcTransferStart Start a transfer from the Dag* device to the buffer specified in the dagAdcTransferSetBuffer
command

dagAdcTransferStop Stop a transfer from the Dag* device to the buffer specified in the dagAdcTransferSetBuffer
command

To find out whether a background A/D transfer is complete or to stop transfers, use the following function:

dagAdcTransferGetStat Return current A/D transfer status as well as a count representing the total number of transferred
scans or the number of scans available.

D/A Conversions

The 2 D/A outputs are multiplying DACs. The voltage output is a fraction of the voltage reference. This fraction is the digital value
sent to the DAC divided by 4096. Using the internal -5 V reference, any voltage between 0 and 4.9988 V can be set. Two
routines are used to set the D/A outputs:

dagDacWt Set a single DAC.

dagDacWtBoth Set both DACs.

DAC1 is also set by any A/D routine which uses analog triggering. This DAC is used to set the comparison level.

Digital Functions

Several routines read and write the digital inputs and outputs. The first routine to call is the configure routine:

daql0SetConf Using the 4 port input/output direction selections, return a configuration byte.

daql0Conf Set the input/output configuration of a local or expansion port group.

After the digital group is configured, the ports can be read or written a byte at a time. (Port C low/high and P1 digital /O are
accessed a nibble at a time.) A single bit of a digital channel can be read or written using the following routines:

2-38 Programmer’s Manual

Chapter 2 Enhanced API Programming Models

daqlORdBit Return indicated bit from selected channel.
daqlOWrBit Send indicated bit to selected channel.

Counter Functions

Three counter/timer elements are in a DaqBook/112; and 9 counter/timer elements are in a DaqBook/100/200. Two counters are
the ADC pacer clock. The FOUT counter element is a simple square-wave generator. Counter O is capable of more complex
waveform and counter operations. Counters 1 through 5 are full-fledged counter/timer elements with many operating modes.

Counter 1 - Counter 5 Functions - For the DaqBook/100/200 Only

Counters 1 through 5 are binary/BCD, up/down 16-bit counters that can be internally cascaded. Each counter is capable of 24
modes including: hardware and software triggered strobes, rate generator, retriggerable and non-retriggerable one-shots,
software and hardware-triggered delayed one-shots, variable duty-cycle rate generator, rate generator with sync, frequency-shift
keying, and hardware save. Most modes can be gated. Counters 1 and 2 can be set up as a time-of-day counter, with 100 Hz
resolution. Counters 1 and 2 are also capable of alarm outputs. In the alarm mode, whenever the counter value equals the
alarm value, the counter output is set. This can be used with the time-of-day mode to cause an alarm at a particular time of day.
To use counters 1 through 5 or the FOUT square-wave generator, the master mode register must be set:

dag9513SetMasterMode | Set FOUT source and scaler. Also set the counters 1 and 2 alarm mode and time-of-day mode.

dag9513SetAlarm Set the alarm comparison value for counter 1 or 2.

9513 Counter-Timer Functions

The low-level counter functions allow custom-programming of the 9513 counters. After setting the Master Mode, counters 1
through 5 can be programmed using the following commands:

dag9513SetCtrMode Set counter to given mode.

dag9513SetLoad Set counter load register.

ag9513SetHold Set counter hold register.

To read back a given counter, use one or both of:

daq9513Mul tCtrl Issue a command to the indicated counters. To read the current contents of a counter, issue the
DmccSave command, and read the hold register.

daq9513GetHold Read a given hold register.

Programmer’'s Manual 2-39

Enhanced API Programming Models Chapter 2

@J Notes

2-40 Programmer’s Manual

Daq* Command Reference (Enhanced API)

Overview

Thefirst part of this chapter describes the Dag* driver commands for Windows95 and WindowsNT in
32-bit Enhanced mode (thisis the Enhanced API and is not to be confused with the Standard API).
Thefirst table lists the commands by their function types as defined in the driver header files. Then,

the prototype commands are described in al phabetical order asindexed below.

Beginning on page 73, severa reference tables define parameters for: A/D channel descriptions, event-
handling definitions, hardware definitions, A/D gain and miscellaneous definitions, genera 1/0

definitions, digital 1/0 port connection, the API error codes, etc.

Function [Description | Page
Device Initialization Prototypes
daqgOpen . Open a session with the Dag* 3-66
daqClose End communication with the Dag* 3-38
dagOnline _ Check online status of the Dag* 3-65
daqGetDeviceCount . Return the number of currently configured devices 3-60
dagGetDevicelList _ Return the list of currently configured devices 3-61
dagGetDeviceProperties _ Return the properties of specified device 3-61
Error Handler Function Prototypes
dagSetDefaultErrorHandler Set the default error handler 3-67
dagSetErrorHandler _Specify a user defined routine to call when an error occurs in any command 3-67
dagProcessError _ Process a driver defined error condition 3-66
dagGetLastError _ Return the last logged error condition 3-62
dagDefaultErrorHandler __Call the default error handler 3-59
dagFormatError . Return text string for specified error 3-60
Event Handling Function Prototypes
dagSetTimeout __Set the time-out value for the Dag* operation 3-68
daqWaitForEvent . Wait for specified Dag* device event 3-70
dagWaitForEvents _ Wait for multiple specified Dag* device events 3-70
Utility Function Prototypes
dagGetDriverVersion . Return the software version 3-62
dagGetHardwarelnfo _ Return the hardware version 3-62
Expansion Configuration Prototypes
dagAdcExpSetBank __Set bank specific configurations 3-16
dagAdcExpSetChanOption ._Set channel specific configurations 3-16
dagAdcExpSetModulleOption _ Set module specific configurations 3-17
dagSetOption . Set options for a device’s channel/signal path configuration 3-68
Custom ADC Acquisition Prototypes - Scan Sequence
dagAdcSetMux _ Configure a scan specifying start and end channels 3-25
dagAdcSetScan __Configure up to 256 channels making up an A/D or HS digital input scan 3-26
dagAdcGetScan . Read the current scan configuration 3-18
Custom ADC Acquisition Prototypes - Trigger
dagAdcCalcTrig _ Calculate the trigger level and trigger source for an analog trigger 3-15
dagAdcSetTrig _Configure an A/D trigger 3-27
dagAdcSetTrigEnhanced _ Configure an A/D trigger with multiple trigger-event conditions 3-28
dagAdcSoftTrig _ Save a software trigger command to the DagBook/DagBoard 3-29
Custom ADC Acquisition Prototypes - Scan Rate and Source
dacAdcSetRate _ Configure the ADC scan rate with the mode parameter 3-25
dagAdcSetFreq _ Configure the pacer clock frequency in Hz 3-24
dagAdcGetFreq _ Read the current pacer clock frequency 3-17
dagAdcSetClockSource ._Configure the clock source 3-23
Custom ADC Acquisition Prototypes - Scan Count, Rate and Source
dagAdcSetAcq . Set acquisition configuration information 3-22
Custom ADC Acquisition Prototypes - Direct-to-Disk
dagAdcSetDiskFile . Specify the disk file for direct-to-disk transfers 3-24
Custom ADC Acquisition Prototypes - Acquisition Control
dagAdcArm __Arm an acquisition 3-13
dagAdcDisarm _ Disarm an acquisition 3-15

Programmer’'s Manual 3-1

Dag* Command Reference (Enhanced API) Chapter 3

Function

[Description | Page

Custom ADC Acquisition Prototypes - Data Transfer without Buffer Allocation

dagAdcTransferBufData Transfer scans from driver-allocated buffer to user-specified buffer 3-30
dagAdcTransferSetBuffer Setup a destination buffer for an ADC transfer 3-32
dagAdcTransferStart _ Start an ADC transfer 3-33
dagAdcTransferGetStat _ Retrieve status of an ADC transfer 3-31
dagAdcTransferStop . Stop an ADC transfer 3-33
Custom ADC Acquisition Prototypes - Buffer Manipulation

dagAdcBufferRotate . Reorganize a circular buffer so that oldest data is oriented towards the front 3-14
One-Step ADC Acquisition Prototypes

dagAdcRd __Configure an A/D acquisition and read one sample from a channel 3-18
dagAdcRdScan ._Configure an A/D acquisition and read one scan 3-20
dagAdcRdN _ Configure an A/D acquisition and read multiple scans from a channel 3-19
dagAdcRdScanN _ Configure an A/D acquisition and read multiple scans 3-21
Data Format and Conversion Prototypes

dagAdcSetDataFormat _ Set the raw and post-acquisition data formats 3-23
dagCvtRawDataFormat __Convert raw data to a specified format 3-41
dagCvtSetAdcRange . Set the ADC Voltage Range for the conversion routines 3-44
DAC Global Configuration Prototype

dagDacSetOutputMode __Set the output mode for DAC FIFO 3-49
DAC Voltage Output Mode Prototypes

dagDacWt __Output a D/A value 3-58
dagDacWtMany _ Output D/A values to several DACs 3-59
DAC Waveform Prototypes - Trigger, Update Rate and Count

dagDacWaveSetTrig . Configure the trigger to initiate waveform output 3-57
dagDacWaveSoftTrig __Trigger the DAC waveform output via software 3-58
dagDacWaveSetClockSource __Set the clock source for DAC waveform output frequency 3-54
dagDacWaveSetFreq ._Set the DAC waveform output frequency 3-55
dagDacWaveGetFreq _ Get the current DAC waveform output frequency 3-52
dagDacWaveSetMode _ Set the DAC waveform output mode 3-55

DAC Waveform Prototypes - Buffer Management

dagDacWaveSetDiskFile _ Set DAC waveform output source to disk file 3-54
dagDacWaveSetPredefWave _ Specify a predefined DAC waveform for output 3-56
dagDacWaveSetUserWave ._Specify a user-defined DAC waveform for output 3-57
dagDacWaveSetBuffer __Setup a buffer for DAC waveform output 3-53
DAC Waveform Prototypes - Waveform Control

dagDacWaveArm . Arm triggering for DAC waveform output 3-51
dagDacWaveDisarm __Disarm triggering for DAC waveform output 3-52
DAC Transfer Prototypes - Dynamic Waveform Data Transfer

dagDacTransferStart __Start a DAC waveform output 3-50
dagDacTransferGetStat . Get status of a current DAC waveform output 3-50
dagDacTransferStop _ Stop the current DAC waveform output 3-51
Linear Conversion Prototypes

daqCvtLinearSetup . Save data required for dagCvtLinearConvert 3-39
dagCvtLinearConvert _ Convert ADC readings into floating point numbers 3-39
dagCvtLinearSetupConvert _ Combine setup and conversion into one function 3-40

Software Calibration Prototypes

daqCalSetup __Configure the order and type of data to be calibrated 3-37
dagCalConvert _ Perform the actual calibration of one or more scans 3-37
daqCalSetupConvert . Perform both the setup and convert steps with one call 3-38
dagReadCalFile _ Read all the calibration constants from the specified file 3-67
daqCalSelectCalTable . Select calibration-table source for the device 3-35
dagCalSelectlnputSignal ._Select input signal source for user calibration 3-36
daqCalGetConstants . Get calibration constants from selected calibration table 3-34
dagCalSetConstants _ Set user-accessible calibration constants 3-36
daqCalSaveConstants _ Save current calibration table 3-35
Zero Offset Prototypes

dagZeroSetup __Configure data for zero compensation 3-72
dagZeroConvert . Perform zero compensation on one or more scans 3-71
dagZeroSetupConvert _ Perform both the setup and convert steps with one call 3-72
dagZeroDbk19

. Configure the thermocouple linearization functions to automatically perform zero 3-71
compensation -

RTD Conversion Prototypes

daqCvtRtdConvert

Convert raw A/D readings from RTDs to temperature readings 3-42

3-2

Programmer’s Manual

Chapter 3 Dag* Command Reference (Enhanced API)
Function [Description | Page
dagqCvtRtdSetup Set up parameters for subsequent RTD temperature conversions 3-43
dagqCvtRtdSetupConvert Set up and convert raw A/D readings from RTDs into temperature readings 3-44
Thermocouple Conversion Prototypes
daqCvtTCConvert Convert raw A/D readings from thermocouples to temperature readings 3-45
daqCvtTCSetup Set up parameters for subsequent thermocouple temperature conversions 3-47
daqCvtTCSetupConvert Set up and convert raw A/D readings from thermocouples into temperature readings 3-48
General I/O Prototypes - Read/Write
daglOReadBit Read a DIO bit (channel) 3-64
daqlORead Read a DIO byte (8 channels) 3-63
daglOWriteBit Write a DIO bit (channel) 3-65
daglOWrite Write a DIO byte (8 channels) 3-64
daql0Get8255Conf Get the current configuration of the DIO 3-63
9513 Counter/Timer Prototypes
dag9513SetMasterMode Initialize various counter/timer values 3-11
dag9513SetAlarm Set the specified alarm register 3-6
dag9513SetCtrMode Set the 9513's mode register for the specified counter 3-7
daq9513MultCtrl Simultaneously configure multiple counters 3-4
dagq9513GetHold Read the hold register of the specified counter 3-3
dag9513SetHold Output a value to the counter hold register 3-10
dag9513SetLoad Output a value to the counter load register 3-10
dagq9513RdFreq Read up to 9 frequency inputs 3-5

Test Prototypes

daqTest

Perform a specified test on a Dag* device 3-69

Commands in Alphabetical Order

The following pages give the details for each APl command. Listed in aphabetical order, each section
starts with a table that summarizes the main features of the command (C, Visual BASIC, and Delphi
language prototypes and their related parameters). An explanation follows with related information and
in some cases a programming example. Typographic note: Commands, parameters, values, and code
all use abold, mono-spaced Courier font to distinguish characters that can be ambiguous in other
fonts.

dag9513GetHold

DLL Function

dagq9513GetHold(DagHandleT handle, DaqglODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);

[daq9513GetHold(DagHandleT handle, DaqlODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdaq9513GetHold&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal
ctrNum&, ctrVal%)
Delphi daq9513GetHold(handle:DagHandleT; deviceType:DagqlODeviceType; whichDevice:DWORD;
ctrNum:DWORD; var crtVal:WORD)
Parameters
handle Handle to the device to get the 9513 hold register
deviceType Specifies the 9513 device type
whichDevice Specifies which 9513
ctrNum The counter number
Valid values: 1 - 5
ctrval The value read from the hold register of the selected counter is placed in this variable
Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dag9513SetCtrMode

Program References | None

Used With

DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

dag9513GetHold reads the hold register of the specified counter. Thisregister is used in event-
counting applicationsto store accumulated counter values. Without interrupting the process, the
hold register can be read while the count process is running.

Programmer’'s Manual 3-3

Dag* Command Reference (Enhanced API)

Chapter 3

daq9513Mul

tctrl

DLL Function

daq9513MultCtri(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, Dag9513MultCtrCommand ctrCmd, BOOL ctrl, BOOL ctr2, BOOL ctr3,
BOOL ctr4, BOOL ctr5);

C daq9513MultCtri(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, Dag9513MultCtrCommand ctrCmd, BOOL ctrl, BOOL ctr2, BOOL ctr3,
BOOL ctr4, BOOL ctr5);

Visual BASIC VBdaq9513MultCtri&(ByVval handle&, ByVal deviceType&, ByvVal whichDevice&, ByVal
ctrCmd&, Byval ctril&, ByVal ctr2&, ByVal ctr3&, ByVal ctr4&, ByvVal ctr5&)

Delphi daq9513MultCtri(handle:DagHandleT; deviceType:DaqlODeviceType;
whichDevice:DWORD; ctrCmd:Dag9513MultCtrCommand; ctrl:longbool; ctr2:longbool;
ctr3:longbool; ctr4:longbool; ctr5:1longbool)

Parameters

handle Handle to the device for which to set multiple counter commands

deviceType Specifies the 9513 device type (DiodtLocal9513)

whichDevice Specifies which 9513

ctrCmd The counter command (see below)

ctrl A flag that if non-zero enables the counter command to be executed on counter 1, or if 0 do nothing to
counter 1

ctr2 A flag that if non-zero enables the counter command to be executed on counter 2, or if 0 do nothing to
counter 2

ctr3 A flag that if non-zero enables the counter command to be executed on counter 3, or if 0 do nothing to
counter 3

ctr4 A flag that if non-zero enables the counter command to be executed on counter 4, or if 0 do nothing to
counter 4

ctr5 A flag that if non-zero enables the counter command to be executed on counter 5, or if 0 do nothing to
counter 5

Multiple Counter Commands

Description Value

DmccArm 0

DmccLoad 1

DmccLoadArm 2

DmccDisarmSave 3

DmccSave 4

DmccDisarm 5

Returns DerrInvCtrCmd - Invalid counter command

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCtrSetCtrMode, daqCtrSetMasterMode

Program References

DAQEX.FRM (VB) CTREX.PAS (Delphi)

Used With

DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

dagq9513MultCtrl performsacommand including: loading, latching, saving, enabling, and
disabling on multiple counters simultaneously. The commands work as follows:

The load command can transfer the initial counter value from the load or hold register.

The arm command will enable the counter to begin counting.

The disarm command will disable the counter.

The save command will transfer the current counter value to the hold register, where it can be
read without disturbing the counters.

34

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

daq9513RdFreq

DLL Function

daq9513RdFreq(DagHandleT handle, DaqlODeviceType deviceType, DWORD whichDevice,
DWORD interval, Daq9513CountSource cntSource, PDWORD count);

C daq9513RdFreq(DagHandleT handle, DaqlODeviceType deviceType, DWORD whichDevice,
DWORD interval, Daq9513CountSource cntSource, PDWORD count);

Visual BASIC VBdaq9513RdFreq&(ByVal handle&, ByVal deviceTypeé&, ByVal whichDevice&, ByVal
intervalé&, ByVal cntSourceé&, counté&)

Delphi daq9513RdFreq(handle:DagHandleT; deviceType:DaqlODeviceType; whichDevice:DWORD;
interval :DWORD; cntSource:Dag9513CountSource; var count:DWORD)

Parameters

handle Handle to the device in which to get 9513 frequency

deviceType Specifies 9513 device type (DiodtLocal9513)

whichDevice Specifies which 9513

interval The gate interval in milliseconds

Valid values: 1 - 32767
cntSource The count source (see below)
count A variable to hold the number of counts accumulated in the gating interval

Valid values: 0 - 65535

Count Source Definitions

Definition Value Description
DcsSrcl 1 Counter 1 input (pin 36 of P3)
DcsSrc2 2 Counter 2 input (pin 19 of P3)
DcsSrc3 3 Counter 3 input (pin 17 of P3)
DcsSrc4 4 Counter 4 input (pin 15 of P3)
DcsSrc5 5 Counter 5 input (pin 13 of P3)
DcsGatel 6 Counter 1 gate (pin 37 of P3)
DcsGate?2 7 Counter 2 gate (pin 18 of P3)
DcsGate3 8 Counter 3 gate (pin 16 of P3)
DcsGate4 9 Counter 4 gate (pin 14 of P3)
Returns Derrinvinterval - Invalid interval
DerriInvCntSource - Invalid source
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also

Program References

None

Used With

DagBook100, DagBook120, DaqBook200, DagBoard100A, DagBoard200A

dag9513RdFreq isused to read the frequency of one of 9 external inputs. The 9 available inputs
include the 5 counter inputs (P3 pins 36, 19, 17, 15, or 13) and the gates of counters 1 to 4 (P3 pins
37,18, 16, and 14). Thisfunction counts the number of pulses on the specified input within a
specified timeinterval, thereby providing the frequency of the signal. This frequency can be
obtained by dividing the number of pulses by the interval (frequency in kHz = count/interval).

Note: The counter 4 output (P3 pin 32) must be externally connected to the counter 5 gate (P3 pin
12). Thisfunction will reconfigure counters 4 and 5.

Programmer’'s Manual

3-5

Dag* Command Reference (Enhanced API) Chapter 3

daq9513SetAlarm
DLL Function daq9513SetAlarm(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, DWORD alarmNum, DWORD alarmval);
C daq9513SsetAlarm(DagHandleT handle, DaqglODeviceType deviceType, DWORD
whichDevice, DWORD alarmNum, DWORD alarmval);
Visual BASIC VBdag9513SetAlarm&(ByVval handle&, ByVal deviceType&, ByvVal whichDevice&, ByVal
alarmNum&, Byval alarmValé&)
Delphi daq9513SetAlarm(handle:DagHandleT; deviceType:DaqlODeviceType;
whichDevice:DWORD; alarmNum:DWORD; alarmVal :DWORD)
Parameters
handle Handle to the device which to set the 9513 alarm
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513.
AlarmNum The alarm register number
Valid values: 1 - 2
alarmval The value to write to the selected alarm register
Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter number
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqCtrSetMasterMode
Program References | None
Used With DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

dag9513SetAlarm setsthe specified alarm register. Thisaarm register can be used with the
comparators described in daq9513SetMasterMode. Theaarm register isonly used if the
corresponding comparator has been enabled using the daq9513SetMasterMode function.

3-6 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dag9513SetCtrMode

DLL Function daq9513SsetCtrMode(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, Dag9513GatingControl gateCtrl, BOOL cntEdge,
Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat,
BOOL cntType, BOOL cntDir, Daq95130utputControl outputCtrl);

C daq9513SsetCtrMode(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD ctrNum, Dag9513GatingControl gateCtrl, BOOL cntEdge,
Daq9513CountSource cntSource, BOOL specGate, BOOL reload, BOOL cntRepeat,
BOOL cntType, BOOL cntDir, Daq95130utputControl outputCtrl);

Visual BASIC VBdag9513SetCtrMode&(ByVval handle&, ByVal deviceType&, ByVal whichDevice&,
Byval ctrNumé&, ByVal gateCtrl&, ByVal cntEdgeé&, ByVal cntSource&, ByVal
specGate&, ByVal reload&, ByVal cntRepeat&, ByVal cntTypeé&, ByVal cntDiré&,
ByVal outputCtrl&)

Delphi daq9513SetCtrMode(handle:DaqHandleT; deviceType:DaqlODeviceType;
whichDevice:DWORD; ctrNum:DWORD; gateCtrl:Daq9513GatingControl;
cntEdge: longbool; cntSource:Dag9513CountSource; specGate:longbool;
reload: longbool; cntRepeat:longbool; cntType:longbool; cntDir:longbool;
outputCtrl:Daq95130utputControl)

Parameters

handle Handle to the device to set the 9513 counter mode

deviceType Specifies the 9513 device type (DiodtLocal9513)

whichDevice Specifies which 9513

ctrNum The counter number; Valid values: 1 - 5

gateCtrl The gating control mode (see below)

cntEdge A flag that if non-zero will select a positive count edge, or if 0 will select a negative count edge

cntSource The count source (see below)

specGate A flag that if non-zero will enable the special gate, or if O will disable it

reload A flag that if non-zero will select reload from load or hold, or if O will select reload from load

cntRepeat A flag that if non-zero will select count repetitively, or if O will select count once

cntType A flag that if non-zero will select a BCD count, or if O will select a binary count

cntDir A flag that if non-zero will select count up, or if O will select count down

outputCtrl The output control mode (see below)

Gating Control Definitions:

Definition Value | Description

DgcNoGating 0 Gating Disabled

DgcHighTCNM1 1 Active level high of TC toggled output of previous (N-1) counter

DgcHighLevelGateNP1 2 Active level high of gate of next (N+1) counter

DgcHighLevelGateNM1 3 Active level high of gate of next (N-1) counter

DgcHighLevelGateN 4 Active level high of gate of selected (N) counter

DgcLowLevelGateN 5 Active level low of gate of selected (N) counter

DgcHighEdgeGateN 6 Active rising edge of gate of selected (N) counter

DgcLowEdgeGateN 7 Active falling edge of gate of selected (N) counter

Count Source Definitions

DcsTCNM1 0 TC toggled output of previous (N-1) counter (not valid with dagq9513SetMasterMode or daq9513RdFreq)

DcsSrcl 1 Counter 1 input (pin 36 of P3)

DcsSrc2 2 Counter 2 input (pin 19 of P3)

DcsSrc3 3 Counter 3 input (pin 17 of P3)

DcsSrc4 4 Counter 4 input (pin 15 of P3)

DcsSrch 5 Counter 5 input (pin 13 of P3)

DcsGatel 6 Counter 1 gate (pin 37 of P3)

DcsGate2 7 Counter 2 gate (pin 18 of P3)

DcsGate3 8 Counter 3 gate (pin 16 of P3)

DcsGate4 9 Counter 4 gate (pin 14 of P3)

DcsGate5 10 | Counter 5 gate (pin 12 of P3) (not valid with daq9513RdFreq)

DcsF1 11 | Onboard 1 MHz clock (not valid with dag9513RdFreq)

DcsF2 12 | Onboard 100 kHz clock (not valid with daq9513RdFreq)

DcsF3 13 | Onboard 10 kHz clock (not valid with dag9513RdFreq)

DcsF4 14 | Onboard 1 kHz clock (not valid with dag9513RdFreq)

DcsF5 15 | Onboard 100 Hz clock (not valid with daq9513RdFreq)

Output Control Definitions:

DoclnactivelLow 0 Inactive - Always low
DocHighTermCntPulse 1 High impulse on terminal count
DocTCToggled 2 Toggled on terminal count
DoclnactiveHighlmp 3 Inactive - High impedance
DocLowTermCntPulse 4 Low pulse on terminal count
Returns DerrInvCtrNum - Invalid channel

DerrinvGateCtrl - Invalid gate

Programmer’'s Manual

3-7

Dag* Command Reference (Enhanced API) Chapter 3

DerriInvCntSource - Invalid source

DerrinvOutputCntrl - Invalid output

DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also

daqCtrSetLoad, daqCtrSetHold, daqCtrGetHold, daqCtrMultCtrl

Program References DAQEX.FRM (VB), CTREX.PAS (Delphi)

Used With

DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

dag9513SetCtrMode is used to set the 9513's mode register for a specified counter. Setting this
register defines how the specific counter works for a variety of square waves, pulse generation, and
event counting. To set the initial counter values, this function is often followed by
dag9513SetLoad or daq9513SetHold. Finaly, thedagq9513MultCtrl functioniscalled
to load and arm multiple counters. daq9513MultCtrl can also be used to count events.

The gate control parameter controls how the counter will use its gate input (P3 pins 37, 18, 16, 14
and 12) or another counter’s gate input.
- If the gate is disabled using the DgcNoGat i ng definition, it will be ignored and the counter
will run aslong asit is armed.
If alevel gate control is selected (using the DgcHighLevelGateNPl,
DgcHighLevelGateNMI, or DgcHighLevelGateN definitions), the counter will
operate only while armed and the selected high or low level is applied to the gate.
If an edge-sensitive gate control is selected using the DgcHighEdgeGate or
DgcHighEdgeGateN definitions, the counter will operate after arising or falling edgeis
detected on the gate input.
Most gate control modes select gate N (gate of the selected counter) or gate inputs of the previous
(N-1) and next (N+1) counters. Thus, counter 3 could use the gate input of counter 2 by selecting N-
1; counter 4 by selecting N+1; or its own gate input by selecting N. Counter 1 and counter 5 are
considered adjacent when selecting gate input N+1 or N-1. The final gate control mode allows the
TC-toggled output (see output control description) of the previous counter (N-1) to be the gate. The
selected counter will operate only when the previous counter’s TC-toggled output is high.

The Count Edge (cntEdge) flag selects whether the counter will count when it receives arising or
falling edge on its count source (see the count source description).

The Count Source (cntSource) selects the source used as input to the specified counter. The
Count Edge selects whether the rising or falling edge of this source is counted. The Count Source
can be any one of the counter inputs, Srcl to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the
counter gates, Gatel to Gateb (P3 pins 37, 18, 17, 16 or 14), an internal frequency, F1 to F5, or
the TC-toggled output (see the output control description) of the previous counter (N-1). The
internal frequencies are divide-by-10 divisions of the onboard oscillator which is by default 1 MHz,
but can be jumpered to 10 MHz. The sources F1 through F5 correspond to the frequencies 1 MHz,
100 kHz, 10 kHz, 1 kHz and 100 Hz. The TC-toggled output of the previous counter can be used as
a source—allowing counters to be cascaded without external connections.

The Count Direction (cntDi r) selects whether the counter will count up or down. The counter is
normally configured for down counting when generating a pulse or square wave. The load register
would be set to a positive value which will decrement to zero, defining the duration or width of the
waveform. In event counting, the counter would initially be set to zero and configured to count up
(in this case, the hold register would contain the number of events received).

The Count Type (cntType) selects binary or BCD counting. Binary format accepts a 16-hit
number ranging from 0 to 65,535. BCD (binary-coded decimal) accepts four 8-bit numbers
representing 0 to 10, back in 16-bits, ranging from 0 to 9999.

The Output Control (outputCtrl) parameter controls the state of the counter output (P3 pins 35,
34, 33, 32, 31). Thereare 2 inactive and 3 active output modes. If the output isinactive, it can
either be driven low or it can be high impedance. The active modes are all associated with the
terminal count (TC) which isthe moment in time when the counter reaches 0. This can happen by
counting up past 65535 in binary count mode or 9999 in BCD count mode, or counting down past 1.
The output can be driven: high during the TC and low otherwise, low during the TC and high
otherwise, or toggle the output every time a TC occurs. The TC-toggled mode is used to generate
variable duty-cycle square waves.

The Count Repeat (cntRepeat), Reload (reload) and Special Gate (specGate) parameters

3-8

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

have complex relationships that define the operation of the counter. The Count Repeat flag
enableg/disables re-arming the counter after TC occurs. Applications such as software re-triggerable
1-shots would disable the repeat flag so the 1-shot occurs only after the counter arm command is
sent. Other applications (such as rate generators, square waves and hardware re-triggerable 1-shots)
would enable the count repeat so that the counter will run until disarmed.

The Reload flag programs the counter to use the count value in the load and/or hold registers for
counting. If thereload flag is disabled, the counter will use the contents of the load register only for
counting. Enabling the reload flag will allow the counter to use the contents of either or both
registers depending on the special gate flag. If the reload flag is enabled and the special gateis
disabled, the counter will aternate between registers. This allows a variable duty-cycle output
waveform depending on the relative values of the hold and load registers. If thereload flag is
enabled and the specia gate is enabled, the operation will depend on the gate control parameter. In
this situation, an active gate control will allow hardware re-triggering on the active-going edge. An
inactive gate control will configure the counter to use the hold register for counting if the counter’s
gateis high or to use the load register if the gateislow. Refer tothe Am95134/AM9513 Technical
Manual for further reference.

The next table summarizes the operating modes of the counter/timer.

Counter Mode Operating Summary

Counter Mode

H

K

Special Gate (CM7)

Reload Source (CM6)

Repetition (CM5)

Gate Control (CM15-
CM-13); N=no gating;
L=level; E=edge

zlololo|»

rlolo|lo|m

m|olo|o|la

z|~|olo|lo

riFlojlom

m|~|o|o|m

z|o|r|ole

r|oj—|o

m|o|r|o|—

bd I G (=1 (S

I =)

m|~|~|o|rm

M
1
0
0
N

rlolo|r|z

m|o|o|~|o

Ll (=] Ll B]

r|~|ol~|o

miF (o[- |

Z|o|r|krl»n

[l (=l L

m|o|r|r|C

b I e ES

[L Ll Ll

m|~|~|—]X

Count to TC once, then
disarm

Count to TC twice, then
disarm

Count to TC repeatedly
without disarming

Gate input does not gate
counter input

Count only during active
gate level

Start count on active
gate edge and stop
count on next TC

Start count on active
gate edge and stop
count on second TC

No hardware re-
triggering

Reload counter from
Load Register on TC

Reload counter on each
TC, alternating reload
source between Load
and Hold Registers

Transfer Load Register
into counter on each
TC that gate is LOW,
transfer Hold Register
into counter on each
TC that gate is HIGH

On active gate edge
transfer counter into
Hold Register and
then reload counter
from Load Register

On active gate edge
transfer counter into
Hold Register, but
counting continues

Programmer’'s Manual

3-9

Dag* Command Reference (Enhanced API)

Chapter 3

dag9513SetHold

DLL Function

daq9513SetHold(DagHandleT handle, DaglODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);

C daq9513SetHold(DagHandleT handle, DaglODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdag9513SetHold&(ByVal handle&, ByVal deviceTypeé&, ByVal whichDevice&, ByVval
ctrNum&, ByVal ctrVal%)
Delphi daq9513SetHold(handle:DagHandleT; deviceType:DaqlODeviceType; whichDevice:DWORD;
ctrNum:DWORD; crtVal :WORD)
Parameters
handle Handle to the device in which to set 9513 hold register
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrNum The counter number
Valid values: 1 - 5
ctrval The value to write to the hold register of the selected counter
Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid channel
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daq9513SetMasterMode, dag9513SetCtrMode

Program References

DAQEX.FRM (VB), CTREX.PAS (Delphi)

Used With

DagBook100, DagBook120, DaqBook200, DagBoard100A, DagBoard200A

dag9513SetHold outputs avalue to the hold register of the specified counter. The hold register
can be used to set the counter’ sinitial value using the daq9513Mul tCtrl function. The
dag9513SetMasterMode and daq9513SetCtrMode functions describe various uses of the
hold register.

dag9513SetLoad

DLL Function

dag9513SetLoad(DagHandleT handle, DaqlODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);

C dag9513SetLoad(DagHandleT handle, DaqglODeviceType deviceType, DWORD whichDevice,
DWORD ctrNum, PWORD ctrVal);
Visual BASIC VBdaq9513SetLoad&(ByVal handle&, ByVal deviceType&, ByVal whichDevice&, ByVal
ctrNum&, ByVval ctrVal%)
Delphi dag9513SetLoad(handle:DagHandleT; deviceType:DaqlODeviceType; whichDevice:DWORD;
ctrNum:DWORD; crtVal :WORD)
Parameters
handle Handle to the device in which to set the 9513 load
deviceType Specifies the 9513 device type (DiodtLocal9513)
whichDevice Specifies which 9513
ctrNum The counter number
Valid values: 1 - 5
ctrval The value to write to the load register of the selected counter
Valid values: 0 - 65535
Returns DerrinvCtrNum - Invalid channel
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dag9513SetMasterMode, daq9513SetCtrMode

Program References

DAQEX.FRM (VB), CTREX.PAS (Delphi)

Used With DagBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A
dag9513SetLoad outputs avalue to the load register of the specified counter. The load register
can be used to set the counter’ sinitial value using the daq9513Mul tCtrl.
dag9513SetMasterMode and daq9513SetCtrMode describe various uses of the load
register.
3-10 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dag9513SetMasterMode

DLL Function

daq9513SetMasterMode(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD foutDiv, Dagq9513CountSource cntSource, BOOL compl, BOOL
comp2, Daq9513TimeOfDay tod);

C daq9513SetMasterMode(DagHandleT handle, DaqlODeviceType deviceType, DWORD
whichDevice, DWORD foutDiv, Dagq9513CountSource cntSource, BOOL compl, BOOL
comp2, Daq9513TimeOfDay tod);

Visual BASIC VBdag9513SetMasterMode&(ByVal handle&, ByVal deviceTypeé&, ByVal whichDeviceé&,
Byval foutDivé&, ByVal cntSourceé&, ByVal complé&, ByVal comp2&, ByVal todé&)

Delphi daq9513SetMasterMode(handle:DagHandleT; deviceType:DaqlODeviceType;
whichDevice:DWORD; foutDiv:DWORD; cntSource:Daq9513CountSource;
compl:longbool; comp2:longbool; tod:Dag9513TimeOfDay)

Parameters

handle Handle to the device in which to set the 9513 master mode

deviceType Specifies the 9513 device type (DiodtLocal9513)

whichDevice Specifies which 9513

foutDiv The fout divider. A divider of O selects divide by 16

Valid values: 1 -16

cntSource The fout source

compl A flag that if non-zero will enable the compare 1 operation, or if O will disable it

comp2 A flag that if non-zero will enable the compare 2 operation, or if O will disable it

tod The time of day mode

Count Source Definitions:

Definition Value Description
DcsTcnM1 00h Not valid with dag8513SetMasterMode or daq9513RdFreq
DcsSrcl 01h Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrch 05h Counter 5 input (pin 13 of P3)
DcsGatel 06h Counter 1 gate (pin 37 of P3)
DcsGate?2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
DcsGateb OAh Counter 5 gate (pin 12 of P3) (not valid with daq9513RdFreq)
DcsF1 0Bh Onboard 1 MHz clock (not valid with dag9513RdFreq)
DcsF2 0Ch Onboard 100 kHz clock (not valid with dag9513RdFreq)
DcsF3 0Dh Onboard 10 kHz clock (not valid with dag9513RdFreq)
DcsF4 OEh Onboard 1 kHz clock (not valid with dag9513RdFreq)
DcsF5 OFh Onboard 100 Hz clock (not valid with dagq9513RdFreq)
Time-Of-Day Definitions:
Description Value
DtodDisabled 00h
DtodDivideBy5 01h
DtodDivideBy6 02h
DtodDivideBy10 03h
Returns DerriInvCntSource - Invalid source
DerrinvTod - Invalid time of day mode
DerriInvDir - Invalid divisor
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dag9513SetLoad, daq9513MultCtr, daq9513GetHold, dag9513SetCntMode

Program References

DAQEX.FRM (VB), CTREX.PAS (Delphi)

Used With

DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

dag9513SetMasterMode is used to set the counter’s master mode register. Thisregister isused
to configure the fout pin (P3 pin 30), the comparators of counter 1 and 2, and the time-of-day
operation of the 9513 chip. The master mode parameters default to zero after daqOpen.

The fout source selects what signal will be output on the fout pin. The fout source can be any one of
the counter inputs, Srcl to Src5 (P3 pins 36, 19, 17, 15 or 13); any one of the counter gates,
GateltoGate5 (P3pins37, 18,17, 16 or 14); or an interna frequency, F1 to F5 (1 MHz, 100

kHz, 10 kHz, 1 kHz and 100 Hz). The fout divider will divide the selected source by 1 to 16 before
outputting the signal on fout.

The 2 comparator flags control the comparators associated with counter 1 and 2. If acomparator is

Programmer’'s Manual

3-11

Dag* Command Reference (Enhanced API) Chapter 3

enabled, the value in the corresponding alarm register, set with the daqCtrSetAlarm function,
will be compared with the value in the counter. The output of the corresponding counter will go
true when the value in the counter reaches the value in the dlarm register and remain true until
the counter value changes. The polarity of the output depends on the output control, set with the
daqgCtrSetCtrMode function, configuration of counter 1 or 2. When output control is high,
terminal count pulsed, or terminal count toggled, then the output will be high while the comparator is
true. When the output control islow and terminal count pulsed, the output will be low while the
comparator istrue.

Counter 2
C15‘C14‘C13‘C12 C11 ‘010‘ Cc9 ‘ csg|c7 ‘CG ‘ C5 ‘ C4|C3 ‘CZ ‘ C1 ‘ co
2) (3) (%) 9)

Hours Minutes

Counter 1
C15‘C14‘C13‘C12 C11 ‘C10‘ C9 ‘ Cc8|C7 ‘CG ‘ C5 ‘ C4|C3 ‘CZ ‘ C1 ‘ Co

P (5) (9) P (9) P
Seconds 1/10Sec. =~ = +5, 6, 10

Time-of-Day Configuration

The time-of-day parameter is used to enable or disable the time-of-day operation. The time-of-day
operation is aspecial mode which causes counters 1 and 2 to turn over at counts that generate 24-
hour time-of-day accumulations. The resolution of the time-of-day operation is 0.1 seconds. A 100
Hz, 60 Hz or 50 Hz signal must be applied to the input of counter 1 (P3 pin 36), while in the divide-
by-10, divide-by-6 and divide-by-5 time-of-day modes respectively. Thiswill produce the 10 Hz
clock source needed to drive the time-of-day clock. The hold registers of counters 1 and 2 will hold
the 24-hour time.

The following steps must be performed to use the time-of-day operation:

1. Set the master mode register as described above.

2. For general-purpose time keeping, configure counter 1 using daqCtrSetCtrMode with the
no gating, count on rising edge, specia gating disabled, reload from hold only, count
repetitively, BCD counting and count up. The count source can be any of the available
sources. The output control does not affect time-of-day operation.

3. Set the mode of counter 2 with the same settings as counter 1, except the count source should
be TC toggled of the previous (N-1) counter. Thisalowsinternal concatenation of counter 1
to counter 2.

4. Set theload registers of counter 1 and 2 to zero, using the daqCtrSetLoad function.

5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2,
using the format shown in the figure above (again using daqCtrSetLoad).

6. Repeat step 4.

3-12

Programmer’s Manual

Chapter 3 Dag* Command Reference (Enhanced API)

dagAdcArm
DLL Function dagAdcArm(DagHandleT handle);
C dagAdcArm(DagHandleT handle);
Visual BASIC VBdagAdcArm&(ByVval handle&)
Delphi dagAdcArm(handle:DagHandleT)
Parameters
handle Handle to the device to which configured ADC acquisition is to be armed
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcDisarm
Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

dagAdcArm alows you to arm an ADC acquisition by enabling the currently defined ADC
configuration for acquisition. ADC acquisition will occur when the trigger event (as specified by
dagAdcSetTrig) issatisfied. All ADC acquisition configuration information must be specified
prior to the dagAdcArm command. For a previously configured acquisition, the dagAdcArm
command will use the specified parameters. If no previous configuration was given, or it is
desirable to change any or all acquisition parameters, then those commands relating to the desired
ADC acquisition configuration must be issued prior to calling dagAdcArm.

Programmer’'s Manual 3-13

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcBufferRotate

DLL Function dagAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD
chanCount, DWORD retCount);

C dagAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD
chanCount, DWORD retCount);

Visual BASIC VBdagAdcBufferRotate&(ByVal handle&, buf%(), ByVal scanCounté&, ByVal chanCount&,
ByVal retCounté&)

Delphi dagAdcBufferRotate(handle:DaqHandleT; buf:PWORD; scanCount:DWORD;
chanCount:DWORD; retCount:DWORD)

Parameters

handle Handle to the device for which the ADC transfer buffer is to be rotated

buf Pointer to the buffer to rotate

scanCount Total number of scans in the buffer

chanCount Number of channels in each scan

retCount Last value returned in the retCount parameter of the dagAdcTransferGetStat function

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcTransferGetStat, dagAdcTransferSetBuffer

Program References | None

Used With All devices

dagAdcBufferRotate alowsyou to linearize a circular buffer acquired viaatransfer in cycle
mode. This command will organize the circular buffer chronologically. In other words, it will order
the data from oldest-first to newest-last in the buffer. When scans are acquired using
dagAdcBufferTransfer with anon-zero cycle parameter, the buffer is used as a circular
buffer; onceitisfull, it isre-used, starting at the beginning of the buffer. Thus, when the
acquisition is complete, the buffer may have been overwritten many times and the last acquired scan
may be any place within the buffer.

For example, during the acquisition of 1000 scans in a buffer that only has room for 60 scans, the
buffer isfilled with scans 1 through 60. Then scan 61 overwrites scan 1; scan 62 overwrites scan 2;
and so on until scan 120 overwrites scan 60. At this point, the end of the buffer has been reached
again and so scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of
overwriting and re-using the buffer continues until all 1000 scans have been acquired. At this point,
the buffer has the following contents:

Buffer 1 2 3 39 40 41 42 ... | 59 59 60
Position
Scan 961 962 963 999 1000 941 942 ... | 958 959 960

In this case, because the total number of scansis not an even multiple of the buffer size, the oldest scan
isnot at the beginning of the buffer and the last scan is not at the end of the buffer.
dagAdcBufferRotate can rearrange the scans into their natural, chronological order:

Buffer 1 2 3 39 40 41 42 ... | 59 59 60
Position
Scan 941 942 943 979 980 981 982 ... | 998 999 1000

If the total number of acquired scansis no greater than the buffer size, then the scans have not
overwritten earlier scans and the buffer is aready in chronological order. In this case,
dagAdcBufferRotate does not modify the buffer.

Note: dagAdcBufferRotate only works on unpacked samples.

3-14 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcCalcTrig

DLL Function

dagAdcCalcTrig(DagHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT
voltageLevel, PWORD triggerLevel);

C dagAdcCalcTrig(DagHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT
voltageLevel, PWORD triggerLevel);

Visual BASIC VBdagAdcCalcTrig&(ByVal handle&, ByVval bipolar&, ByVal gainvVal!, ByVval
voltagelLevel!, triggerLevel%)

Delphi dagAdcCalcTrig(handle:DagHandleT; bipolar:longbool; gainVal:single;
voltagelLevel:single; var triggerLevel :DWORD)

Parameters

handle Handle to the device for which the trigger level is to be calculated

bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar

gainval A gain value of the trigger channel

voltagelevel Voltage level to trigger at.

triggerLevel Returned count to program the trigger using the dagAdcSetTrig function

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetTrig

Program References | None

Used With All devices

dagAdcCalcTrig calculates the trigger level and source for an analog trigger. The result of
dagAdcCalcTrigisthetriggerLevel parameter. The triggerLevel parameter can then
be passed to the dagAdcSetTrig function to configure the analog trigger.

The triggerLevel parameter is calculated from: the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. Thetrigger channel is automatically the first channel in the current A/D
scan group for DagBooks and DagBoards.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the
trigger channel. This parameter is jumper-sel ectable when using a DagBook/100/112 and
DagBoard/100A/112A and software-programmable when using the DagBook/200/200A.

The gainVal parameter sent to the dagAdcCalcTrig should be the actua gain of the trigger
channel, not the gain definition used by the rest of the Dag* A/D functions. For example, if the
trigger channel uses the gain definition Dga i nX8, the gain parameter of dagAdcCalcTrig
should be 8.

The voltagelLevel defines the anaog voltage at which the Dag* will trigger. The setpoint must
be within the valid input range of the trigger channel. For example, the setpoint range for a bipolar
channel with unity gain would be 0to 10 V (for x8 gain, the range would be 0 to 1.25 V) for a
DagBook or a DagBoard. Note: When using the Dag PCMCIA, the bipolar parameter isignored.

dagAdcDisarm

DLL Function

dagAdcDisarm(DagHandleT handle);

C dagAdcDisarm(DagHandleT handle);

Visual BASIC VBdagAdcDisarm&(ByVal handle&)

Delphi dagAdcDisarm(handle:DagHandleT)

Parameters

handle handle to the device to disable ADC acquisitions

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcArm

Program References | None

Used With All devices

dagAdcDisarm alowsyou to disarm an ADC acquisition if one is currently active.
If the specified trigger event has not yet occurred, the trigger event will be disabled and no
ADC acquisition will be performed.
If the trigger event has occurred, the acquisition will be halted and the data transfer stopped
and no more ADC data will be collected.

Programmer’'s Manual 3-15

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcExpSetBank

DLL Function dagAdcExpSetBank(DagHandleT handle, DWORD chan, DagAdcExpType bankType);
C dagAdcExpSetBank(DagHandleT handle, DWORD chan, DagAdcExpType bankType);
Visual BASIC VBdagAdcExpSetBank&(ByVal handle&, ByVal chan&, ByVal bankTypeé&)

Delphi dagAdcExpSetBank(handle:DagHandleT; chan:DWORD; bankType:DaqAdcExpType)
Parameters

handle Handle to the device for which to set the expansion bank

chan Channel number on the DBK card. Channel numbers are in groups of 16 channels per bank.
bankType Type of channel bank.

Returns DerrInvChan - Invalid Channel Number (also, refer to API Error Codes on page 3-83)
See Also dagAdcExpSetChanOption, dagAdcExpSetModuleOption

Program References | None

Used With All devices

dagAdcExpSetBank internally programsintelligent DBK card channels so the Dag* gains may
be set just before the acquisition. A bank consists of 16 channels, but dagAdcExpSetBank must
be called once for each card in the bank. For example, if four 4-channel cards (such as a DBK7) are
used in the first expansion bank, you must call dagAdcExpSetBank 4 times with channels 16, 20,
24, and 28. With only one such card, you cannot fill the remainder of the bank with another type of
device. Seethe DBK Card Definition table for bankType settings.

dagAdcExpSetChanOption

DLL Function dagAdcExpSetChanOption(DagHandleT handle, DWORD chan, DagChanOptionType
optionType, FLOAT optionValue);

C dagAdcExpSetChanOption(DagHandleT handle, DWORD chan, DagChanOptionType
optionType, FLOAT optionValue);

Visual BASIC VBdagAdcExpSetChanOption&(ByVal handle&, Byval chan&, ByVal optionType&, ByVal
optionValue!)

Delphi dagAdcExpSetChanOption(handle:DagHandleT; chan:DWORD; const
optionType:DaqChanOptionType; optionValue:single)

Parameters

handle Handle to the device for which to set the channel option

chan The number of the channel to be configured.

optionType The configurable option to be set (see table DBK Card Definitions)

optionValue The configurable option to be set (see table DBK Card Definitions)

Returns DerrNoError - No Errors (also, refer to API Error Codes on page 3-83)

DerrInvChan - Invalid Channel Number

See Also dagAdcExpSetModuleOption

Program References | None

Used With All devices

dagAdcExpSetChanOption alowsyou to configure channel parameters for DBK modules with
software-configurable settings on a per channel basis. Seethe DBK Card Definition table for
optionType and optionValue settings.

3-16 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcExpSetModuleOption

DLL Function

dagAdcExpSetModuleOption(DagHandleT handle, DWORD chan, DagChanOptionType
optionType, FLOAT optionValue);

C dagAdcExpSetModuleOption(DagHandleT handle, DWORD chan, DagChanOptionType
optionType, FLOAT optionValue);

Visual BASIC VBdagAdcExpSetModuleOption&(ByVal handle&, ByVal chan&, ByVal optionType&, ByVal
optionValuel)

Delphi dagAdcExpSetModuleOption(handle:DaqgHandleT; chan:DWORD; const
optionType:DaqChanOptionType; optionValue:single)

Parameters

handle Handle to the device for which to set the module option.

chan Any channel on the module (expansion chassis) to be configured.

optionType The configurable option to be set (see table DBK Card Definitions).

optionValue The configurable option to be set (see table DBK Card Definitions).

Returns An error number, or 0 if no error (also, refer to APl Error Codes on page 3-83)

See Also dagAdcExpSetChannelOption

Program References | None

Used With All devices

dagAdcExpSetModulleOption alowsyou to configure parameters that apply to the whole
module (for DBK modules with software-configurable settings) on a per expansion module basis.
See the DBK Card Definition table for optionType and optionValue settings.

dagAdcGetFreq
DLL Function dagAdcGetFreq(DagHandleT handle, PFLOAT freq);
C dagAdcGetFreq(DagHandleT handle, PFLOAT freq);
Visual BASIC VBdagAdcGetFreq&(ByVal handleé&, freq!)
Delphi dagAdcGetFreq(handle:DagHandleT; var freq:single)
Parameters
handle Handle to the device for which to get the current frequency setting
freq A variable to hold the currently defined sampling frequency in Hz
Valid values: 100000.0 - 0.0002
Returns DerrNoError - No errors (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetFreq, dagAdcSetClock
Program References | None
Used With All devices

dagAdcGetFreq reads the sampling frequency of the pacer clock.

Note: dagAdcSetFreq assumesthat the 1 MHz/10 MHz jumper is set to the default position of 1
MHz.

Programmer’'s Manual

3-17

Dag* Command Reference (Enhanced API)

Chapter 3

dagAdcGetScan

DLL Function

dagAdcGetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains, PDWORD
flags, PDWORD chanCount);

C dagAdcGetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains, PDWORD
flags, PDWORD chanCount);

Visual BASIC VBdagAdcGetScan&(ByVal handle&, channels&(), gains&(), flags&(), chanCounté&)

Delphi dagAdcGetScan(handle:DagHandleT; channels:PDWORD; gains:DaqAdcGainP;
flags:PDWORD; chanCount:PDWORD)

Parameters

handle Handle to the device for which to get the current scan configuration.

channels An array to hold up to 512 channel numbers or 0 if the channel information is not desired.

*gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired

flags Channel configuration flags in the in the form of a bit mask

chanCount A variable to hold the number of values returned in the chans and gains arrays

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetScan, dagAdcSetMux

Program References

None

Used With

All devices

dagAdcGetScan reads the current scan group consisting of all channels currently configured. The
returned parameter settings directly correspond to those set using the dagAdcSetScan function. For
further description of these parameters, refer to daqAdcSetScan. See ADC Flags Definition

table for channel flag definitions.

dagAdcRd

DLL Function

dagAdcRd(DagHandleT handle, DWORD chan,
DWORD flags);

PWORD sample, DagAdcGain gain,

C dagAdcRd(DagHandleT handle, DWORD chan, PWORD sample, DagAdcGain gain,
DWORD flags);
Visual BASIC VBdagAdcRd&(ByVal handle&, ByvVal chan&, sample%, ByVal gain&, ByVal flags&)
Delphi dagAdcRd(handle:DagHandleT; chan:DWORD; var sample:WORD; const gain:DagAdcGain;
flags:DWORD)
Parameters
handle Handle to the device for which the ADC reading is to be acquired
chan A single channel number
sample A pointer to a value where an A/D sample is stored. Valid values: (See dagAdcSetTag)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFI1FOFull - Buffer Overrun
DerrlInvGain - Invalid gain
DerriInvChan - Invalid channel
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetMux, dagAdcSetTrig, dagAdcSoftTrig

Program References

DACEX.PAS (Delphi)

Used With

All devices

dagAdcRd is used to take a single reading from the given local A/D channel. This function will use
a software trigger to immediately trigger and acquire one sample from the specified A/D channel.

The chan parameter indicates the channel for which to take the sample.

The sampl e parameter is apointer to where the collected sample should be stored.
The gain parameter indicates the channel’ s gain setting.

The Flags parameter allows the setting of channel-dependent options. See ADC Flags
Definition table for channel flags definitions.

3-18

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcRdN

DLL Function

dagAdcRdN(DagHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DagAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DagAdcGain gain, DWORD flags);

C dagAdcRdN(DagHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DagAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DagAdcGain gain, DWORD flags);

Visual BASIC VBdagAdcRdN&(ByVal handle&, Byval chan&, buf%(), ByVal scanCount&, ByVal
triggerSource&, Byval rising&, ByVval level%, ByVal freq!, ByVal gain&, ByVal
flags&)

Delphi dagAdcRdN(handle:DagHandleT; chan:DWORD; buf:PWORD; scanCount:DWORD;
triggerSource:DagAdcTriggerSource; rising:longbool; level :WORD; freq:single;
const gain:DagAdcGain; flags:DWORD)

Parameters

handle Handle to the device for which the ADC channel samples are to be acquired

chan A single channel number

buf An array where the A/D scans will be returned

scanCount The number of scans to be taken

Valid values: 1 - 32767

triggerSource The trigger source

rising Boolean flag to indicate the rising or falling edge for the trigger source

level The trigger level if an analog trigger is specified

Valid values: 0 -4095

freq The sampling frequency in Hz (100000.0 to 0.0002)

gain The channel gain

flags Channel configuration flags in the form of a bit mask

Returns DerrFIFOFull - Buffer overrun

DerrinvGain -Invalid gain

DerrincChan - Invalid channel

DerrinvTrigSource - Invalid trigger

DerrinvLevel - Invalid level (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetFreq, dagAdcSetMux, dagAdcSetClock, dagAdcSetTrig

Program References | None

Used With All devices

dagAdcRadN is used to take multiple scans from asingle A/D channel. This function will:

Configure the pacer clock

Configure al channels with the specified gain parameter
Configure al channel options with the channel Flags specified
Arm the trigger

Acquire count scans from the specified A/D channel

See ADC Flags Definition table (in ADC Miscellaneous Definitions) for channel flags
parameter definition.

Programmer’'s Manual

3-19

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcRdScan

DLL Function

dagAdcRdScan(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DagAdcGain gain, DWORD flags);

C dagAdcRdScan(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DagAdcGain gain, DWORD flags);
Visual BASIC VBdagAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVval
scanCount&, ByVal triggerSource&, ByVal rising&, Byval level%, ByVval freq!,
Byval gain&, ByVal flags&)
Delphi dagAdcRdScanN(handle:DagHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DagAdcTriggerSource; rising:longbool;
level :2WORD; freq:single; const gain:DagAdcGain; flags:DWORD)
Parameters
handle Handle to the device from which the ADC scan is to be acquired
startChan The starting channel of the scan group
endChan The ending channel of the scan group
buf An array where the A/D scans will be placed
gain The channel gain
flags Channel configuration flags in the form of a bit mask.
Returns DerriInvGain - Invalid gain
DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcRdNScan, dagAdcSetMux, dagAdcSetClock, dagAdcSetTrig

Program References

DACEX.PAS (Delphi)

Used With

All devices

dagAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. See
ADC Flags Definition table for channel flags definitions.

3-20

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcRdScanN

DLL Function

dagAdcRdScanN(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DWORD scanCount, DagAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DagAdcGain gain, DWORD flags);

C dagAdcRdScanN(DagHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DWORD scanCount, DagAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DagAdcGain gain, DWORD flags);
Visual BASIC VBdagAdcRdScanN&(ByVal handleé&, ByVal startChan&, ByVal endChan&, buf%(), ByVval
scanCount&, ByVal triggerSource&, ByVal rising&, Byval level%, ByVal freq!,
Byval gain&, ByVal flags&)
Delphi dagAdcRdScanN(handle:DagHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DagAdcTriggerSource; rising:longbool;
level :2WORD; freq:single; const gain:DagAdcGain; flags:DWORD)
Parameters
handle Handle to the device from which ADC scans are to be acquired
startchan The starting channel of the scan group (see table at end of chapter)
endchan The ending channel of the scan group (see table at end of chapter)
buf An array where the A/D scans will be placed
scanCount The number of scans to be read
Valid values: 1 - 65536
triggerSource The trigger source (see table at end of chapter)
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified
Valid values: 0 -4095
freq The sampling frequency in Hz
Valid values: 100000.0 - 0.0002
gain The channel gain (See tables at end of chapter).
flags Channel configuration flags in the form of a bit mask.
Returns DerrinvGain - Invalid gain
DerrinvChan -Invalid channel
DerrinvTrigSource - Invalid trigger
DerrinvLevel - Invalid Level
DerrFIFOFull -Buffer Overrun
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcRd, dagAdcRdN, dagAdcRdScan, dagAdcSetClock, dagAdcSetTrig

Program References | None

Used With

All devices

dagAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure
the pacer clock, arm the trigger and acquire count scans consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to al channels. The
Treq parameter is used to set the acquisition frequency. See ADC Flags Definition table for
channel Flags parameter definition.

Programmer’'s Manual 3-21

Dag* Command Reference (Enhanced API)

Chapter 3

dagAdcSetAcq

DLL Function

dagAdcSetAcq(DagHandleT handle, DagAdcAcqMode mode, DWORD preTrigCount, DWORD
postTrigCount);

C dagAdcSetAcq(DagHandleT handle, DagAdcAcqMode mode, DWORD preTrigCount, DWORD
postTrigCount);

Visual BASIC VBdagAdcSetAcq&(ByVal handleé&, ByVal modeé&, ByVal preTrigCounté&, ByVval
postTrigCounté&)

Delphi dagAdcSetAcq(handle:DagHandleT; mode:DagAdcAcgMode; preTrigCount:DWORD;
postTrigCount:DWORD)

Parameters

handle Handle to the device for which the ADC acquisition is to be configured

mode Selects the mode of the acquisition

preTrigCount Number of pre-trigger ADC scans to be collected

postTrigCount Number of post-trigger ADC scans to be collected

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcArm, dagAdcDisarm, dagAdcSetTrig

Program References

ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With

All devices

dagAdcSetAcq alows you to characterize the acquisition mode and the pre- and post-trigger
durations. The mode parameter describes the style of data collection. The preTrigCount and
postTrigCount parameters specify the respective durations, or lengths, of the pre-trigger and
post-trigger acquisition states.

Acquisition modes can be defined as follows:

DaamNShot - Once triggered, continue acquisition until the specified post-trigger count has
been satisfied. Once the post-trigger count has been satisfied, the acquisition will be
automatically disarmed.

DaamNShotRearm - Once triggered, continue the acquisition for the specified post-trigger
count, then re-arm the acquisition with the same acquisition configuration parameters as
before. The automatic re-arming of the acquisition may be disabled at any time by issuing a
dagAdcDisarm.

DaamInfinitePost - Oncetriggered, continue the acquisition indefinitely until the
acquisition is disabled by the dagAdcDisarm function.

DaamPrePost - Begin collecting the specified number of pre-trigger scans immediately
upon issuance of the dagAdcArm function. Thetrigger will not be enabled until the
specified number of pre-trigger scans have been collected. Once triggered, the acquisition
will then continue collecting post-trigger data until the post-trigger count has been satisfied.
Once the post-trigger count has been satisfied, the acquisition will be automatically disarmed.

3-22

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcSetClockSource

DLL Function

dagAdcSetClockSource(DagHandleT handle, DagAdcClockSource clockSource);

C dagAdcSetClockSource(DagHandleT handle, DagAdcClockSource clockSource);

Visual BASIC VBdagAdcSetClockSource&(ByVal handle&, ByVal clockSource&)

Delphi dagAdcSetClockSource(handle:DagHandleT; clockSource:DagAdcClockSource)

Parameters

handle Handle to the device for which to set the ADC clock source.

clockSource Specifies the clock source for ADC acquisitions

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetFreq

Program References | None

Used With

All devices

dagAdcSetClockSource alowsyou to set up the clock source to be used to drive the ADC
acquisition frequency.

dagAdcSetDataFormat

DLL Function

dagAdcSetDataFormat(DagHandleT handle, DagAdcRawDataFormatT rawFormat,
DagAdcPostProcDataFormatT postProcFormat) ;

(o3 dagAdcSetDataFormat(DagHandleT handle, DagAdcRawDataFormatT rawFormat,
DagAdcPostProcDataFormatT postProcFormat) ;

Visual BASIC VBdagAdcSetDataFormat &(ByVal handle&, ByVal rawFormaté&, ByVal postProcFormat&)

Delphi dagAdcSetDataFormat(Handle:DagHandleT; rawFormat:DagAdcRawDataFormatT rawFormat;
postProcFormat:DaqAdcPostProcDataFormatT) ;

Parameters

handle The handle to the device for which to set the option

rawFormat The channel number on the device for which the option is to be set

postProcFormat Flags specifying the options to use

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagCvtRawDataFormat,daqCvtRawDataFormat

Program References | None

Used With

All devices

dagAdcSetDataFormat allows the setting of the raw and the post-acquisition data formats
which will be returned by the acquisition transfer functions. Note: Certain devices may be limited to
the types of raw and post-acquisition data formats which can be presented.

The rawFormat parameter indicates how the raw data format isto be presented. Normally, the
raw-data format represents the data from the A/D converter. The default value for this parameter is
DardfNative where the raw-data format follows the native-data format of the A/D for the
particular device. An optiona parameter is DardfPacked where raw A/D values are compressed
to make full use of al unused bits for any native format that leaves unused bits in the byte-aligned
count value. For instance, a 12-hit raw A/D value (which would normally be represented in a 16-bit
word, 2-byte count value) will be compressed so that 4 12-bit A/D raw counts can be represented in
3 16-bit word count values. Currently, only the WaveBook/512 supports this packed format (used
with the generic functions of the form dagAdcTransfer).

The postProcFormat parameter specifies the format for which post-acquisition datawill be
presented. Thisformat is used by the one-step functions of the form dagAdcRd . The default
value is DappdfRaw where the post-acquisition data format will follow the rawFormat
parameter.

Programmer’'s Manual 3-23

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcSetDiskFile

DLL Function

dagAdcSetDiskFile(DagHandleT handle, LPSTR filename, DagAdcOpenMode openMode,
DWORD preWrite);

Cc

dagAdcSetDiskFile(DagHandleT handle, LPSTR filename, DagAdcOpenMode openMode,
DWORD preWrite);

Visual BASIC

VBdagAdcSetDiskFile&(ByVal handle&, ByVal filename$, ByVal openMode&, ByVal
preWrite&)

Delphi

dagAdcSetDiskFile(handle:DaqgHandleT; filename:PChar; openMode:DagAdcOpenMode;
preWrite:DWORD)

Parameters

handle

Handle to the device for which direct to disk ADC acquisition is to be performed.

filename

String representing the path and name of the file to place the raw ADC acquisition data.

openMode

Specifies how to open the file for writing

preWrite

Specifies the amount to pre-write(in bytes) the file

Returns

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also

dagAdcTransferGetStat, dagAdcTransferSetBuffer, dagAdcTransferStart,
dagAdcTransferStop

Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With

All devices

dagAdcSetDiskFi le dlowsyou to set adestination file for ADC data transfers. ADC data
transfers will be directed to the specified disk file. The Fi lename parameter isa string
representing the path\name of the file to be opened. The openMode parameter indicates how the
fileisto be opened for writing data. Valid file open modes are defined as follows:
DaomAppendFile - Open an existing file to append subsequent ADC transfers. This mode
should only be used when the existing file has a similar ADC channel group configuration as
the subsequent transfers.
DoamWriteFile - Rewriteor write over an existing file. This operation will destroy the
original contents of the file.
DoamCreateFi le- Create anew file for subsequent ADC transfers. This mode does not
require that the file exist beforehand.
The preWrite parameter may, optionally, be used to specify the amount that the file isto be pre-
written before the actual data collection begins. Specifying the pre-write amount may increase the
data-to-disk performance of the acquisition if it is known beforehand how much datawill be
collected. If no pre-write isto be done, then the preWr i te parameter should be set to O.

dagAdcSetFreq

DLL Function

dagAdcSetFreq(DagHandleT handle, FLOAT freq);

C dagAdcSetFreq(DagHandleT handle, FLOAT freq);

Visual BASIC VBdagAdcSetFreq&(ByVal handle&, Byval freq!)

Delphi dagAdcSetFreq(handle:DagHandleT; freq:single)

Parameters

handle Handle to the device for which the ADC acquisition frequency is to be set.

freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcGetFreq, dagAdcSetClockSource

Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With All devices
dagAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency
specified in Hz. The frequency is converted to two counter values that control the frequency of the
pacer clock (in this conversion, some resolution of the frequency may belost). dagAdcRdFreq
can be used to read the exact frequency setting of the pacer clock. dagqAdcSetClock can be used
to explicitly set the two counter values of the pacer clock. The pacer clock can be used to control
the sampling rate of the A/D converter.

3-24 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcSetMux

DLL Function

dagAdcSetMux(DagHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,
DWORD flags);

C dagAdcSetMux(DagHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,
DWORD flags);
Visual BASIC VBdagAdcSetMux&(ByVal handleé&, ByVal startChan&, ByVal endChané&, ByVal gainé&,
Byval flags&)
Delphi dagAdcSetMux(handle:DagHandleT; startChan:DWORD; endChan:DWORD; const
gain:DagAdcGain; flags:DWORD)
Parameters
handle Handle to the device for which to configure the ADC channel scan group
startChan The starting channel of the scan group
endChan The ending channel of the scan group
gain The gain value for all channels
flags Channel configuration flags in the form of a bit mask
Returns DerrinvGain - Invalid gain
DerrincChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetScan, dagAdcGetScan

Program References

DACEX1.C, DAQEX.FRM (VB)

Used With

All devices

dagAdcSetMux sets a simple scan sequence of local A/D channels from startChan to
endChan with the specified gain value. Thiscommand provides asimple aternative to
dagAdcSetScan if only consecutive channels need to be acquired. The Flags parameter is used
to set channel dependent options. See ADC Flags Definition table for channel Flags definitions.

dagAdcSetRate

DLL Function

dagAdcSetRate(DagHandleT handle, DagAdcRateMode mode, DagAdcAcqgState acqState,
FLOAT reqRate, PFLOAT actualRate);

C dagAdcSetRate(DagHandleT handle, DagAdcRateMode mode, DagAdcAcqgState acqState,
FLOAT reqRate, PFLOAT actualRate);

Visual BASIC VBdagAdcSetRate(ByVal handleé&, ByVal modeé&, ByVal acqState&, ByVal regRate!,
actualRate!);

Delphi dagAdcSetRate(handle: DagHandleT; mode: DagAdcRateMode, acqState:
DagAdcAcqgState; reqRate:FLOAT; actualRate:PFLOAT);

Parameters

handle Handle to the device for which to set ADC scanning frequency.

mode Specifies the rate mode (frequency or period).

acqState Specifies the acquisition state to which the rate is to be applied.

reqgRate Specifies the requested rate.

actualRate Returns the actual rate applied. This may be different from the requested rate.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetAcq, dagAdcSetTrig, dagAdcArm, dagAdcSetFreq, dagAdcGetFreq

Program References

Used With

All devices

dagAdcSetRate configures the ADC scan rate using the rate mode specified by the mode
parameter. Currently, the valid modes are:

DarmPeriod - Defines the requested rate to be in periods/sec.

DarmFrequency - Defines the requested rate to be a frequency.

This function will set the ADC acquisition rate requested by the reqRate parameter for the
acquisition state specified by the acqState parameter. Currently, the following acquisition states
arevalid:
DaasPreTrig - Setsthe pre-trigger ADC acquisition rate to the requested rate.
DaasPostTrig - Setsthe post-trigger ADC acquisition rate to the requested rate.

If the requested rate is unattainable on the specified device, arate will be automatically adjusted to
the device's closest attainable rate. If this occurs, the actualRate parameter will return the actual
rate for which the device has been programmed.

Programmer’'s Manual 3-25

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcSetScan
DLL Function dagAdcSetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains, PDWORD
flags, DWORD chanCount);
C dagAdcSetScan(DagHandleT handle, PDWORD channels, DagAdcGain *gains, PDWORD
flags, DWORD chanCount);
Visual BASIC VBdagAdcSetScan&(ByVal handle&, channels&(), gains&(), flags&(), Byval
chanCount&)
Delphi dagAdcSetScan(handle:DagHandleT; channels:PDWORD; gains:DagAdcGainP;
Fflags:PDWORD; chanCount:DWORD)
Parameters
handle Handle to the device for which ADC scan group is to be configured
channels An array of up to 512 channel numbers
*gains An array of up to 512 gain values
flags Channel configuration flags in the form of a bit mask
chanCount The number of values in the chans and gains arrays
Valid values: 1 -512
Returns DerrNotCapable - No high speed digital
DerrlinvGain - Invalid gain
DerrinvChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcGetScan, dagAdcSetMux
Program References | ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices
DagAdcSetScan configures an A/D scan group consisting of multiple channels. Asmany as 512
channel entries can be made in the A/D scan group configuration. Any analog input channel can be
included in the scan group configuration at any valid gain setting. Scan group configuration may be
composed of local or expansion channels and (for the DagBook/DagBoard) the high-speed digital
1/0 port.
The channel's parameter is a pointer to an array of up to 512 channel values. Each entry
represents a channel number in the scan group configuration. Channels can be entered multiple
times at the same or different gain setting.
The gains parameter is a pointer to an array of up to 512 gain settings. Each gain entry represents
the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting
for the corresponding channel.
The Flags parameter is a pointer to an array of up to 512 channel flag settings. Each flag entry
represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel
entry. The channel flags can be used to set channel specific configuration settings (such as polarity).
Seethe ADC Flags Definition table for valid channel flag values.
The chanCount parameter represents the total number of channelsin the scan group configuration.
This number also represents the number of entries in each of the channels, gains and Flags
arrays.
3-26 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcSetTrig

DLL Function

dagAdcSetTrig(DagHandleT handle, DagAdcTriggerSource triggerSource, BOOL rising,
WORD level, WORD hysteresis, DWORD channel);

C dagAdcSetTrig(DagHandleT handle, DagAdcTriggerSource triggerSource, BOOL rising,
WORD level, WORD hysteresis, DWORD channel);

Visual BASIC VBdagAdcSetTrig&(ByVal handle&, ByVal triggerSource&, Byval rising&, ByVal
level%, ByVal hysteresis%, ByVal channel&)

Delphi dagAdcSetTrig(handle:DagHandleT; triggerSource:DagAdcTriggerSource;
rising:longbool; level :WORD; hysteresis:WORD; channel zDWORD)

Parameters

handle Handle to the device for which the ADC acquisition trigger is to be configured.

triggerSource Sets the trigger source.

rising Boolean flag to indicate the rising or falling edge for the trigger source

level The trigger level (in A/D counts) for an analog level trigger

hysteresis hysteresis value for analog level trigger (if selected)

channel Channel for which the analog level trigger(if selected) is to be detected.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetAcq

Program References | ADCEX1.C, DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)

Used With All devices

dagAdcSetTrig setsand armsthe trigger of the A/D converter. Several trigger sources and
several mode flags can be used for avariety of acquisitions. dagAdcSetTrig will stop current
acquisitions, empty acquired data, and arm the Dag* using the specified trigger.

Trigger detection for the given trigger source will not begin until the acquisition has been armed
with the dagAdcArm function. Trigger sources may be defined as follows:

DatsImmediate - Trigger the acquisition immediately upon issuance of the dagAdcArm
function. Thistrigger mode is used to begin collecting dataimmediately upon configuration
of the acquisition.

DatsSoftware - Trigger the acquisition upon issuance of the dagAdcSoftTrig function.
This trigger mode can be used to initiate a trigger upon some form of user or application
program input.

DatsAdcClock - Trigger the acquisition upon ADC pacer clock input. Thistrigger mode
can be used to synchronize the trigger event with the ADC pacer clock.

DatsExternal TTL - Trigger the acquisition upon sensing arising or falling (depending
on state of rising flag) signal on an external TTL input signal (trig0 - pin 25 on P1).
DatsHardwareAnalog - Trigger upon detection of arising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
Thistrigger mode is detected in hardware to allow generally faster acquisition frequencies
than the DatsSoftwareAnalog trigger source. However, use of this mode is restricted to
channel level triggering on only the first channel within the channel scan (defined by the
channel parameter). Note: This modeis not available on Dag PCMCIA product lines.
DatsSoftwareAnalog - Trigger upon detection of arising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the Ievel parameter).
Thistrigger mode is detected in software and generally will not alow the acquisition speeds of
the DatsHardwareAnalog trigger source. However, this mode has no trigger channel
restrictions. Any valid channel in the scan group can be configured as the trigger channel by
specifying it in the channel parameter.

Note: The level parameter is only used for the analog trigger modes. level isacount
representing the A/D count level trigger threshold to be passed through in order to satisfy the analog
trigger event. A number of factors are used to determine its proper value. For help in calculating
this analog count level properly, see the dagAdcCalcTrig function.

Programmer’'s Manual

3-27

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcSetTrigEnhanced

DLL Function dagAdcSetTrigEnhanced(DagHandleT handle, DagAdcTriggerSource *triggerSources,
PDWORD gains, PDWORD adcRanges, DagEnhTrigDef trigDef, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

C dagAdcSetTrigEnhanced(DagHandleT handle, DagAdcTriggerSource *triggerSources,
PDWORD gains, PDWORD adcRanges, DagEnhTrigDef trigSense, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

Visual BASIC VBdagAdcSetTrigEnhanced&(ByVal handle&, triggerSources&, gains&, adcRangesé&,
trigSense&, levels!, hysteresis!, channels&, chanCount&, opStr$)
Delphi dagAdcSetTrigEnahanced(handle:DagHandleT; triggerSources:DagAdcTriggerSource;

gains: PDWORD; adcRanges: PDWORD; trigSense:DaqEnhTrigDef; levels : PFLOAT;
hysteresis : PFLOAT; channels:PDWORD; chanCount:DWORD; opStr: String)

Parameters

handle Handle to the device for which the ADC acquisition trigger is to be configured.

triggerSource A pointer to an array of trigger sources for each defined trigger channel.

gains A pointer to an array of gains for each defined A/D trigger channel.

levels A pointer to an array of A/D analog trigger levels for each defined A/D trigger channel.
hysteresis A pointer to an array of hysteresis values for each defined A/D trigger channel.

trigSense A pointer to an array of trigger sensitivity flags for each defined A/D channel trigger source.
adcRanges A pointer to an array of polarity flag definitions for each defined A/D channel.

channels A pointer to an array of trigger channels representing the actual A/D trigger channels to trigger on.
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetAcq, dagAdcSetTrig, dagAdcSetScan

Program References

Used With WaveBook/512, WaveBook/516

dagAdcSetTrigEnhanced configures the device for enhanced triggering. Enhanced trigger
configuration allows the device to be configured to detect A/D triggering formed with multiple A/D
channel trigger-event conditions. The enhanced trigger event may be defined as a combination of
multiple A/D analog-level event conditions that are logically and’d or or’d.

The trigger event is formulated based on the channel trigger event for each channel in the trigger
sequence. The total number of trigger channelsis defined by the chanCount parameter. Each
channel trigger configuration parameter definition is a pointer to an array of chanCount length and
is defined as follows:
channels - Defines a pointer to an array of actual A/D channel numbers for which to
configure the corresponding trigger events.
triggerSources - Defines a pointer to an array of trigger sources for which to configure
the corresponding A/D trigger events for the corresponding channel in the channels array. See
the ADC Trigger Source Definitions table for valid triggers.
gains - Defines apointer to an array of gains corresponding to the actual A/D channelsin
the corresponding A/D channel number in the channels array.
adcRanges - Defines a pointer to an array of A/D ranges for the A/D channels defined in the
corresponding channels array.
hysteresis - Defines a pointer to an array of hysteresis values for each corresponding A/D
channel defined in the channels array.
levels - Defines apointer to an array of A/D levelsfor which, when satisfied, will set the
trigger event for the corresponding channel defined in the channels array.
opStr - Defines a string that defines the logical relationship between the individual channel
trigger events and the global A/D trigger condition. Currently, the string can be defined as “*”
to perform an and operation or “+” to perform an or operation on the individual channel
trigger events to formulate the global A/D trigger condition.
trigSense - Defines an array of trigger sensitivity definitions for satisfying the defined
trigger event for the corresponding channel defined in the channelsarray. Currently, the valid
trigger sensitivity values are as follows:

DatdRisingEdge Trigger the channel on the rising edge of the signal at the specified level.

DatdFallingEdge Trigger the channel on the falling edge of the signal at the specified level.

DatdAbovelevel Trigger the channel when the signal is above the specified level.

DatdBelowLowel Trigger the channel when the signal is below the specified level.

DatdRisingEdgelLatched Trigger the channel on the rising edge of the signal at the specified level
and latch the channel trigger event.

3-28 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

DatdFallingEdgelLatched | Trigger the channel on the falling edge of the signal at the specified level
and latch the channel trigger event.

DatdAbovelLevellLatched Trigger the channel when the signal is above at the specified level and
latch the channel trigger event.
DatdBelowLevellLatched Trigger the channel when the signal is below at the specified level and

latch the channel trigger event.

Note: The Latched trigger sensitivities indicate the device will maintain the trigger event for the given
channel regardless of subsequent states of the input signal. After the channel has triggered, it will remain
in a triggered state while the current acquisition is active. The non-latched trigger sensitivities will only

indicate a channel trigger event while the input signal for the given channel is in the triggered state.

dagAdcSoftTrig
DLL Function dagAdcSoftTrig(DagHandleT handle);
C dagAdcSoftTrig(DagHandleT handle);
Visual BASIC VBdagAdcSoftTrig&(ByVal handle&)
Delphi dagAdcSoftTrig(handle:DagHandleT)
Parameters
handle Handle to the device to which the ADC software trigger is to be applied
Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcSetTrig, dagAdcSetAcq
Program References | None
Used With All devices

dagAdcSoftTrig isused to send a software trigger command to the Dag* device. This software
trigger can be used to initiate a scan or an acquisition from a program after configuring the software
trigger asthe trigger source. This function may only be used if the trigger source for the acquisition
has been set to DatsSoftware with thedagAdcSetTrig function.

Programmer’'s Manual

3-29

Dag* Command Reference (Enhanced API)

Chapter 3

dagAdcTransferBufData

DLL Function

dagAdcTransferBufData(DagHandleT handle, PWORD buf, DWORD scanCount,
DagAdcBufferXferMask bufMask, PDWORD retCount);

C dagAdcTransferBufData(DagHandleT handle, PWORD buf, DWORD scanCount,
DagAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC VBdagAdcTransferBufData(ByVal handle, buf%, ByVal scanCount&, ByVal bufMaské&,
retCount&);

Delphi dagAdcTransferBufData(handle: DagHandleT; buf : PWORD, scanCount : DWORD,
bufMask: DagAdcBufferXferMask; retCount: PDWORD);

Parameters

handle Handle to the device for which the ADC buffer should be retrieved.

buf Pointer to an application-supplied buffer to place the buffered data.

scanCount Number of scans to retrieve from the acquisition buffer.

bufMask A mask defining operation depending on the current state of the acquisition buffer

retCount A pointer to the total number of scans returned, if any.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcTransferSetBuffer, dagAdcTransferGetStat

Program References

Used With

All devices

dagAdcTransferBufData requests atransfer of scanCount scans from the driver-allocated
ADC acquisition buffer to the specified user-supplied buffer. The bufMask parameter can be used
to specify the conditions for the transfer as follows:

DabtmWait - Instructs the function to wait until the requested number of scans are available
in the driver-allocated acquisition buffer. When the requested number of scans are available,
the function will return with retCount set to scanCount, the number of scans requested.
ADC datawill be returned in the memory referred to by the buf parameter.

DabtmNoWai t - Instructs the function to return immediately if the specified number of scans
are not available when the function is called. If the entire amount requested is hot available,
the function will return with no dataand retCount will be set to 0. If the requested number
of scans are availablein ADC acquisition buffer, the function will return with retCount set
to scanCount, the number of scans requested. ADC datawill be returned in the memory
referred to by the buf parameter.

DabtmRetAvai l - Instructs the function to return immediately, regardless of the number of
scans available in the driver-allocated acquisition buffer. The retCount parameter will
return the total number of scans retrieved. retCount can return anything from 0 to
scanCount, the number of scans requested. ADC datawill be returned in the memory
referred to by the buf parameter.

The driver-allocated acquisition buffer must have been allocated prior to calling this function. This
is performed viathe dagAdcTransferSetBuffer. Refer to dagAdcTransferSetBuffer
for more details on specifying the driver-all ocated acquisition buffer.

3-30

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcTransferGetStat

DLL Function

dagAdcTransferGetStat(DagHandleT handle, PDWORD active, PDWORD retCount);

C dagAdcTransferGetStat(DagHandleT handle, PDWORD active, PDWORD retCount);

Visual BASIC VBdagAdcTransferGetStat&(ByVal handle&, active&, retCount&)

Delphi dagAdcTransferGetStat(handle:DagHandleT; var active:DWORD; var retCount:DWORD)
Parameters

handle Handle to the device for which ADC transfer status is to be retrieved

active A pointer to the transfer-state flags in the form of a bit mask

retCount A pointer to the total number of ADC scans acquired (or available) in the current transfer

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcTransferSetBuffer, daqAdcTransferStart, dagAdcTransferStop

Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With

All devices

dagAdcTransferGetStat alowsyou to retrieve the current state of an ADC acquisition
transfer.

The active parameter will indicate the current state of the transfer in the form of abit mask. Refer
to the ADC Acquisition/Transfer Active Flag Definitions (in the ADC Miscellaneous Definitions
table) for valid bit-mask states.

The retCount parameter will return the total number of scans acquired in the current transfer if
the transfer isin user-allocated buffer mode or will return the total number of unread scansin the
acquisition buffer if the transfer isin driver-allocated buffer mode. Refer to the
dagAdcTransferSetBuffer function for more information on buffer allocation modes.

The transfer state and return count values will continue to be updated until any of the following
OCCUrs:

the transfer count is satisfied

the transfer is stopped (dagAdcStopTransfer)

the acquisition is disarmed (dagDisarm)

Programmer’'s Manual 3-31

Dag* Command Reference (Enhanced API) Chapter 3

dagAdcTransferSetBuffer

DLL Function

DagAdcTransferSetBuffer(DagHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask) ;

C DagAdcTransferSetBuffer(DagHandleT handle, PWORD buf, DWORD scanCount, DWORD
transferMask) ;

Visual BASIC VBdagAdcTransferSetBufferAllocMem&(ByVal handleé&, ByVal scanCount&, ByVal
transferMaské&)

Delphi dagAdcTransferSetBufferAllocMem(handle:DaqgHandleT; scanCount:DWORD;
transferMask:DWORD)

Parameters

handle Handle to the device for which an ADC transfer is to be performed.

buf Pointer to the buffer for which the acquired data is to be placed.

scanCount The total length of the buffer (in scans).

transferMask Configures the buffer transfer mode.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcTransferStart, dagAdcTransferStop, dagAdcTransferGetStat, dagAdcSetAcq,

dagAdcTransferBufData

Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With

All devices

dagAdcTransferSetBuffer alowsyou to configure transfer buffers for ADC data
acquisition. Thisfunction can be used to configure the specified user- or driver-allocated buffers for
subsequent ADC transfers.

If auser-allocated buffer is to be used, two conditions apply:
The buffer specified by the buf parameter must have already been allocated by the user
prior to calling this function.
The allocated buffer must be large enough to hold the number of ADC scans as determined
by the current ADC scan group configuration.

The scanCount parameter isthe total length of the transfer buffer in scans. The scan sizeis
determined by the current scan group configuration. Refer to the dagAdcSetScan and
dagAdcSetMux functions for further information on scan group configuration.

The character of the transfer can be configured viathe transferMask parameter. Among other

things, the transferMask specifies the update, layout/usage, and all ocation modes of the buffer.

The modes can be set as follows:
DatmCycleOn - Specifiesthe buffer to be acircular buffer in buffer-cycle mode; alows the
transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of
ADC data back to the beginning of the buffer. In this mode, the ADC transfer buffer will
continue to be wrapped until the post-trigger count has been reached (specified by
dagAdcSetAcq) or the transfer/acquisition is halted by the application
(dagAdcTransferStop, dagAdcDisarm). Thedefault setting isDatmCycleOffT.
DatmUpdateSingle - Specifiesthe update mode as single sample. The update mode can
be set to update for every sample or for every block of ADC data. The update-on-single
setting allows the ADC transfer buffer to be updated for each sample collected by the ADC.
Compared to the block mode, this setting provides a higher degree of real-time transfer-buffer

updating at the expense of slower aggregate-data throughput rates. The default setting is
DatmUpdateBlock.

DatmDriverBuf - Specifies that the driver allocate the ADC acquisition buffer asacircular
buffer whose length is determined by the scanCount parameter with current scan group
configuration. This option allows the driver to manage the circular acquisition buffer rather
than placing the burden of buffer management on the user. This option should be used with
the dagAdcTransferBufData to access the ADC acquisition buffer. The
dagAdcTransferStop or the dagAdcDisarm function will stop the current transfer and
de-alocate the driver-supplied ADC acquisition buffer. The default setting is
DatmUserBuf. The DatmUserBut option specifies a user-allocated ADC acquisition
buffer. Here, buffer management must be done in user code. This option should be used with
the dagAdcTransferStart function to perform the ADC data transfer operation.

3-32

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagAdcTransferStart

DLL Function

dagAdcTransferStart(DagHandleT handle);

C dagAdcTransferStart(DagHandleT handle);

Visual BASIC VBdagAdcTransferStart&(ByVal handle&)

Delphi dagAdcTransferStart(handle:DagHandleT)

Parameters

handle Handle to the device to initiate an ADC transfer

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcTranferSetBuffer, dagAdcTransferGetStat, dagAdcTransferStop

Program References | ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With

All devices

dagAdcTransferStart alowsyou to initiate an ADC acquisition transfer. The transfer will be
performed under the current active acquisition. If no acquisition is currently active, the transfer will
not initiate until an acquisition becomes active (viathe dagAdcArm function). The transfer will be
characterized by the current settings for the transfer buffer. The transfer buffer can be configured
viathe dagAdcSetTransferBuffer function.

dagAdcTransfterStop

DLL Function

dagAdcTransferStop(DagHandleT handle);

[dagAdcTransferStop(DagHandleT handle);

Visual BASIC VBdagAdcTransferStop&(ByVal handle&)

Delphi dagAdcTransferStop(handle:DagHandleT)

Parameters

handle Handle to the device for which the Adc data transfer is to be stopped

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagAdcTransferSetBuffer, dagAdcTransferStart, dagAdcTransferGetStat

Program References | None

Used With

All devices

dagAdcTransferStop alowsyou to stop a current ADC buffer transfer, if oneisactive. The
current transfer will be halted and no more data will transfer into the transfer buffer. Though the
transfer is stopped, the acquisition will remain active. Transfers can be re-initiated with
dagAdcStartTransfer after the stop, aslong as the current acquisition remains active. The
acquisition can be halted by calling the dagAdcDisarm function.

Programmer’'s Manual 3-33

Dag* Command Reference (Enhanced API)

Chapter 3

dagCalGetConstants

DLL Function

dagCalGetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);

C dagCalGetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);

Visual BASIC VBdaqCalGetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,
al gainConstant®%, offsetConstant%);

Delphi dagCalGetConstants(handle: DagHandleT;channel:DWORD; gain: DagAdcGain; range:
DagAdcRangeT; gainConstant:PWORD; offsetConstant:PSHORT);

Parameters

handle Handle to the device for which ADC transfer status is to be retrieved

channel Channel number to apply the calibration settings

gain Gain range to apply the calibration settings

range A/D input range to apply the calibration settings

gain Pointer to the gain value for the current entry

offset Pointer to the offset value for the current entry

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagCalSetConstants, daqCalSelectCalTable,

daqCalSelectlnputSignal ,dagCalSaveConstants

Program References

None

Used With

WaveBook/512, WaveBook/516

daqgCalGetConstants getsthe calibration constants from the currently selected calibration table
chosen by the dagCal SetConstants command.

The user-calibration constants are gains and offsets that are applied to the input data. The data
comesin, is multiplied by the gain, then the offset is added to it. The resulting datais the conversion
between the raw A/D data and the data that is presented during the acquisition. Each channel, gain,
and bipolar/unipolar setting has a different pair of gain and offset values. The first three parameters
of the dagqCalGetConstants function specify which set of constants are to be retrieved. The
last two parameters are the actual constants. These constants are in a particular binary format. The
gain constant is 32768 times the gain. For again of x1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately x2 (65535/32768), and the minimum gain is x0 (0/32768). The
offset (aleft-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010.

3-34

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCalSaveConstants

DLL Function

dagCalSaveConstants(DagHandleT handle, DWORD channel);

[dagCalSaveConstants(DagHandleT handle, DWORD channel);

Visual BASIC VBdaqCalSaveConstants(ByVal handle&, ByVal channel&)

Delphi dagCalSelectInputSignal (handle: DagHandleT; channel: DWORD)

Parameters

handle Handle to the device for which the calibration constants are to be saved.

channel Channel to save to the current calibration settings for

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCalGetConstants, daqCalSetConstants, dagCalSelectlnputSignal,
daqCalSelectCalTable

Program References | None

Used With

WaveBook/512, WaveBook/516

daqgCalSaveConstants will savethe current calibration table as set by the
daqgCalSelectCalTable routine. Current calibration constants can be updated or modified
with the dagCal SetConstants routine. The working calibration table should only be saved
after al desired calibration constants have been updated for the device.

dagCalSelectCalTable

DLL Function

dagCalSelectCalTable(DagHandleT handle, DagCalTableTypeT tableType);

[dagCalSelectCalTable(DagHandleT handle, DagCalTableTypeT tableType);

Visual BASIC VBdaqCalSelectCalTable(ByVal handle&, ByVal tableType as DaqCalTableTypeT)

Delphi dagCalSelectCalTable(handle: DagHandleT; tableType : DaqCalTableTypeT)

Parameters

handle Handle to the device for which ADC transfer status is to be retrieved

tableType Calibration table type to use

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCalGetConstants, daqCalSetConstants, dagCalSelectlnputSignal,
daqCalSaveConstants

Program References | None

Used With

WaveBook/512, WaveBook/516

daqgCalSelectCalTable alowsthe selection of the calibration-table source for the device.
Currently, there are two valid calibration-table types which are selected viathe tableType
parameter:
- DcttFactory - Selectsthe factory calibration table. The factory calibration table reflects
factory calibration constants for the selected device. Thisisthe default setting.
DcttUser - Selectsthe user-calibration table. The user-calibration table reflects calibration
constants defined by the user or the device' s user-calibration application. Refer to the
calibration documentation for specific settings.

This function should be used to set the current calibration table for the device. The current
calibration table at any time will be set to the calibration table last selected during the current device
session.

Programmer’'s Manual 3-35

Dag* Command Reference (Enhanced API)

Chapter 3

dagCalSelectlnputSignal

DLL Function

daqCalSelectInputSignal (DagHandleT handle, DaqCallnputT input);

C daqCalSelectInputSignal (DagHandleT handle, DaqCallnputT input);

Visual BASIC VBdaqgCalSelectlInputSignal (ByvVal handle&, ByVval input as DaqCallnputT)

Delphi dagCalSelectInputSignal (handle: DagHandleT; input: DaqCallnputT)

Parameters

handle Handle to the device for which ADC transfer status is to be retrieved

input Calibration input signal source to use

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagCalGetConstants, dagCalSetConstants, dagCalSelectCalTable,
dagCalSaveConstants

Program References | None

Used With

WaveBook/512, WaveBook/516

daqgCalSelectlnputSignal alowsthe selection of the input signal source for user calibration.
The input signal source is specified by the input parameter. Please refer to the Calibration Input
Signal Sources table for valid parameters on input signal sources.

dagCalSetConstants

DLL Function

dagCalSetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, WORD gainConstant, SHORT offsetConstant);

C dagCalSetConstants(DagHandleT handle, DWORD channel, DagAdcGain gain,
DagAdcRangeT range, WORD gainConstant, SHORT offsetConstant);

Visual BASIC VBdaqCalSetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,
ByVal gainConstant%, ByVal offsetConstant%);

Delphi dagCalSetConstants(handle: DagHandleT;channel:DWORD; gain: DagAdcGain; range:
DagAdcRangeT; gainConstant:WORD; offsetConstant:SHORT);

Parameters

handle Handle to the device for which ADC transfer status is to be retrieved

channel Channel number to apply the calibration settings

gain Gain range to apply the calibration settings

range A/D input range to apply the calibration settings

gain Gain value to apply

offset Offset value to apply

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCalGetConstants, daqCalSelectCalTable,

daqCalSelectlnputSignal ,dagCalSaveConstants

Program References

None

Used With

WaveBook/512, WaveBook/516

dagCalSetConstants setsthe user-accessible calibration constants. These calibration
constants are gains and offsets that are applied to the input data. The datacomesin, is multiplied by
the gain, then the offset is added to it. The resulting datais the conversion between the raw A/D data
and the data that is presented during the acquisition. Each channel, gain, and bipolar/unipolar setting
has adifferent pair of gain and offset values. The first three parameters of the
daqgCalSetConstants function specify which set of constants are to be changed. The last two
parameters are the actual constants. These constants are in a particular binary format. The gain
constant is 32768 times the gain. For again of x1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately x2 (65535/32768), and the minimum gain is x0 (0/32768). The
offset (aleft-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent
acquisitions until another daqOpen is performed. After dagOpen, the original calibration
constants are re-read from the NVRAM in the WaveBook and expansion chassis; then, the working
copy as set by dagqCalSetCalConstants isoverwritten.

3-36

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCalConvert

DLL Function

daqCalConvert(DagHandleT handle,PWORD counts, DWORD scans);

C daqCalConvert(DagHandleT handle,PWORD counts, DWORD scans);
Visual BASIC VBdaqgCalConvert&(ByVal handle&, counts®%(), ByVal scansé&)
Delphi daqCalConvert(handle:DagHandleT; counts:PWORD; scans:DWORD)
Parameters
handle Handle to the device to be calibrated.
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqgReadCalFile, dagCalSetup, dagCalSetupConvert

Program References | None

Used With

All devices

daqgCalConvert performsthe actual calibration of one or more scans according to the previously
called dagqCalSetup function. Thisfunction will modify the array of data passed toit. This
function should be preceded by the dagCal Setup function.

The counts parameter specifies a pointer to an array of the raw A/D counts retrieved during an
acquisition. Upon return, the counts array will hold calibrated data.

The scans parameter indicates the number of scans (as defined by the current scan group
configuration) in the acquisition.

dagCalSetup

DLL Function

daqCalSetup(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings,
DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL
noOffset);

C daqCalSetup(DaqHandleT handle,DWORD nscan, DWORD readingsPos, DWORD nReadings,
DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL bipolar, BOOL
noOffset);

Visual BASIC VBdaqgCalSetupConvert&(ByVal handle&, ByVal nscané&, ByVal readingsPosé&, ByVval
nReadingsé&, ByVal chanTypeé&, ByVal chanGain&, ByVal startChan&, ByVval
bipolaré&, ByVal noOffset&, counts%(), ByVal scans&)

Delphi daqCalSetupConvert(handle:DagHandleT; nscan:DWORD; readingsPos:DWORD;
nReadings:DWORD; chanType:DcalType; chanGain:DagAdcGain; startChan:DWORD;
bipolar:longbool; noOffset:longbool; counts:PWORD; scans:DWORD)

Parameters

handle Handle to the device to be calibrated

nscan The number of readings in a single scan.

readingsPos The position of the readings to be calibrated within the scan.

nReadings The number of readings to calibrate.

chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1 when
calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.

chanGain The gain setting of the channels to be calibrated.

startChan The channel number of the first channel to be converted.

bipolar Non-zero if the DagBook/DagBoard is configured for bipolar readings.

noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.

Returns DerrzZClInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagReadCalFile, dagCalConvert, dagCalSetupConvert

Program References | None

Used With

All devices

daqgCal Setup will configure the order and type of datato be calibrated. Thisfunction requiresal
datato be calibrated to come from consecutive channels configured for the same gain, polarity, and
channel type. The calibration can be configured to use only the gain calibration constant and not the
offset constant. This allows the offset to be removed at runtime using the zero compensation
functions.

Programmer’'s Manual 3-37

Dag* Command Reference (Enhanced API)

Chapter 3

dagCalSetupConvert

DLL Function

daqCalSetupConvert(DaqgHandleT handle,DWORD nscan, DWORD readingsPos, DWORD
nReadings, DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset, PWORD counts, DWORD scans);

C daqCalSetupConvert(DaqgHandleT handle,DWORD nscan, DWORD readingsPos, DWORD
nReadings, DcalType chanType, DagAdcGain chanGain, DWORD startChan, BOOL
bipolar, BOOL noOffset, PWORD counts, DWORD scans);

Visual BASIC VBdaqgCalSetupConvert&(ByVal handle&, ByVal nscané&, ByVal readingsPosé&, ByVval
nReadings&, ByvVal chanTypeé&, ByVal chanGain&, ByVal startChan&, ByVval
bipolaré&, ByVal noOffset&, counts%(), ByvVal scans&)

Delphi daqCalSetupConvert(handle:DagHandleT; nscan:DWORD; readingsPos:DWORD;
nReadings:DWORD; chanType:DcalType; chanGain:DagAdcGain; startChan:DWORD;
bipolar:longbool; noOffset:longbool; counts:PWORD; scans:DWORD)

Parameters

handle Handle to the device to be calibrated

nscan The number of readings in a single scan.

readingsPos The position of the readings to be calibrated within the scan.

nReadings The number of readings to calibrate.

chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1 when
calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.

chanGain The gain setting of the channels to be calibrated.

startChan The channel number of the first channel to be converted.

bipolar Non-zero if the DagBook/DagBoard is configured for bipolar readings.

noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.

counts The raw data from one or more scans.

scans The number of scans of raw data in the counts array.

Returns DerrZClnvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagReadCalFile, dagCalSetup, dagCalConvert

Program References | None

Used With All devices

daqgCalSetupConvert alows you to perform both the setup and convert steps with one call to
daqgCalSetupConvert. Thisis useful when the calibration needs to be performed multiple
times because data was read from non-consecutive channels or at different gains.

dagClose

DLL Function dagClose(DagHandleT handle);

[dagClose(DagHandleT handle);

Visual BASIC VBdaqClose&(ByVal handle&)

Delphi dagClose(handle:DagHandleT)

Parameters

handle Handle to the device to be closed

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagOpen

Program References

ADCEX1.C, DACEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)

Used With

All devices

daqgClose isused to close a Dag* device. Once the specified device has been closed, no
subsequent communication with the device can be performed. In order to re-establish
communications with a closed device, the device must be re-opened with the daqOpen function.

3-38

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCvtLinearConvert

DLL Function

daqCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);

C daqCvtLinearConvert(PWORD counts, DWORD scans, PFLOAT fValues, DWORD nValues);
Visual BASIC VBdaqgCvtLinearConvert&(counts%(), Byval scans&, fvalues!(), Byval nValues&)
Delphi daqCvtLinearConvert(counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)
Parameters

counts The acquired ADC readings to be converted.

scans The number of scans to be converted.

fvalues An array to hold the converted readings.

nValues The size of the reading array.

Returns Refer to API Error Codes on page 3-81

See Also daqCvtLinearSetup, daqCvtLinearSetupConvert

Program References

None

Used With

All devices

daqgCvtLinearConvert convertsthe ADC readingsinto floating point numbers using the linear
relationship that was specified with daqCvtLinearSetup. daqCvtLinearConvert may be
invoked repeatedly to perform multiple conversions, each using the same linear relationship.

dagCvtLinearSetup

DLL Function

daqCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avg);

C daqCvtLinearSetup(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avg);

Visual BASIC VBdaqgCvtLinearSetupConvert&(ByVval nscan&, ByVal readingsPos&, ByVal nReadingsé&,
Byval signall!, ByVal voltagel!, ByVal signal2!, ByVal voltage2!, ByVal avg&,
counts%(), ByVal scans&, fValues!(), ByVal nvaluesé&)

Delphi daqCvtLinearSetupConvert(nscan:DWORD; readingsPos:DWORD; nReadings:DWORD;
signall:single; voltagel:single; signal2:single; voltage2:single; avg:DWORD;
counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)

Parameters

nscan The number of readings in a single scan (1 to 512)

readingsPos The position within the scan of the first reading to convert (0 to nscan - 1)

nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)

signall The transducer input signal that produces voltagel

voltagel The transducer output voltage for input signall

signal2 The transducer input signal that produces voltage2

voltage2 The transducer output voltage for input signal?2

avg The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.

“2" (or more) specifies moving average of the specified number of scans. Each scan’s readings are
averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCvtLinearSetup, daqCvtLinearSetupConvert

Program References | None
Used With All devices
daqCvtLinearSetup savesthe datarequired for daqCvtLinearConvert to perform
conversions. Four parameters are used to specify alinear relationship: the transducer input signal
level and output voltage at 2 pointsin the range.
Readings from Channel Results from Channel
Scan 0 1 0 1
1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Programmer’'s Manual

3-39

Dag* Command Reference (Enhanced API)

Chapter 3

dagCvtLinearSetupConvert

DLL Function

daqCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avg, PWORD
counts, DWORD scans, PFLOAT fValues, DWORD nValues);

C daqCvtLinearSetupConvert(DWORD nscan, DWORD readingsPos, DWORD nReadings, FLOAT
signall, FLOAT voltagel, FLOAT signal2, FLOAT voltage2, DWORD avg, PWORD
counts, DWORD scans, PFLOAT fValues, DWORD nValues);

Visual BASIC VbdaqgCvtLinearSetupConvert&(ByVval nscan&, ByVal readingsPos&, ByVal nReadingsé&,
Byval signall!, ByVal voltagel!, ByVal signal2!, ByVal voltage2!, ByVal avg&,
counts%(), ByVal scans&, fValues!(), ByVal nvaluesé&)

Delphi daqCvtLinearSetupConvert(nscan:DWORD; readingsPos:DWORD; nReadings:DWORD;
signall:single; voltagel:single; signal2:single; voltage2:single; avg:DWORD;
counts:PWORD; scans:DWORD; fValues:PSINGLE; nValues:DWORD)

Parameters

nscan The number of readings in a single scan (1 to 512).

readingsPos The position within the scan of the first reading to convert (0 to nscan - 1).

nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)

signall The transducer input signal that produces voltagel

voltagel The transducer output voltage for input signall

signal2 The transducer input signal that produces vol tage2

voltage2 The transducer output voltage for input signal?2

avg The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.

“2" (or more) specifies moving average of the specified number of scans. Each scan’s readings are
averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

counts The acquired ADC readings to be converted.

scans The number of scans to be converted.

fValues An array to hold the converted readings.

nValues The size of the reading array.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqCvtLinearConvert, daqCvtLinearSetup

Program References | None

Used With All devices

daqgCvtLinearSetupConvert combinesthelinear setup and conversion processes into one
function.
3-40 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCvtRawDataFormat

DLL Function

daqgCvtRawDataFormat(PWORD buf, DagAdcCvtAction action, DWORD lastRetCount, DWORD
scanCount, DWORD chanCount);

C daqgCvtRawDataFormat(PWORD buf, DagAdcCvtAction action, DWORD lastRetCount, DWORD
scanCount, DWORD chanCount);

Visual BASIC VBdagCvtRawDataFormat&(buf®%, ByVal actioné&, ByVal lastRetCounté&,ByVal
scanCount&, ByVal chanCount&)

Delphi daqgCvtRawDataFormat(PWORD buf, action:DagAdcCvtAction; lastRetCount:DWORD;

scanCount:DWORD: chanCount:DWORD);

Parameters

buf Pointer to the buffer containing the raw data

action The type of conversion action to perform on the raw data

lastRetCount The last retCount returned from dagAdcTransferGetStat

scanCount The length of the raw data buffer in scans

chanCount The number of channels per scan in the raw data buffer

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagAdcSetDataFormat

Program References | None

Used With

All devices

dagCvtRawDataFormat allowsthe conversion of raw datato a specified format. This function
should be called after the raw data has been acquired. See the transfer data functions
(dagAdcTransfer...) for more details on the actual collection of raw data.

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling
this function, this user-allocated buffer should already contain the entire raw data transfer. Upon
completion, this data buffer will contain the converted data (the buffer must be able to contain all the
converted data).

The action parameter specifies the type of conversion to perform. The DacaUnpack value can
be used de-compress raw data. The DacaRotate can be used to reformat a circular buffer into a
linear buffer.

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data
will overwrite the raw datain the buffer, make sure the specified buffer is large enough, physicaly,
to contain al of the converted data.

The chanCount parameter specifies the number of channelsin each scan.

Programmer’'s Manual 3-41

Dag* Command Reference (Enhanced API) Chapter 3

dagCvtRtdConvert

DLL Function

daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C

daqCvtRtdConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

Visual BASIC

VBdaqCvtRtdConvert&(counts%(), ByVal scans&, temp%(), ByVal ntemp&)

Delphi

daqCvtRtdConvert(counts:PWORD; scans:DWORD; temp:PWORD; nTemp:DWORD)

Parameters

counts

Raw A/D data from one or more scans

scans

Number of scans of raw data in counts

temp

Variable array to hold converted temperatures

ntemp

Size of temperature array (should be number of RTDs specified in setup times the number of scans)

Returns

DerrRtdNoSetup - Setup was not called
DerrRtdTArraySize - Temperature array is not large enough
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also

DagRtdSetup, DagRtdSetupConvert

Program References | None

Used With

All devices

dagRTDConvert takes raw A/D readings from RTDs and converts them to temperature readings in
tenths-of-degrees Celsius (0.1°C). Note: The total number of conversions [scan * (RTD channels per
scan) * 4] must be less than 32K.

The Dag* measures temperatures sensed by RTDs attached viaa DBK9 RTD expansion card. Upto 8
RTDs can attach to each DBK9. Up to 32 DBK9s may be attached to a single Dag* for a maximum of
256 temperatures. The software currently supports 100-, 500-, and 1000-ohm RTDs.

The RTD measurement functions are designed for simple temperature measurement in which each RTD
channel isread 4 times. These 4 readings must be grouped together in the scan and in order:
Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1), Dbk9VoltageD (gain=3), Dbk9Vol tageD
(gain=3). The RTDs must be of the same type, and the reading groups must follow each other in the
scan sequence.

The temperature conversion functions use input data from one or more Dag* scans. They take 4
voltage readings for each RTD channel, apply the appropriate averaging method, convert the voltages
to aresistance and then (using the appropriate curves for the RTD type) convert the resistance into a
temperature. For example, assume the following readings:

Readings Channel 0 Readings Channel 1
Scan 0 1 2 3 4 5 6 7

1 ChOva | ChOVb | ChOovd | ChOVd | ChlVa | Ch1lVb | ChlVd | Ch1lVd
ChOVa | ChOVb | Chovd | ChOVd [ChlVa | Chl1Vb | Ch1lVd [Ch1Vvd
ChOVa | ChOVb | Chovd | ChOVd [ChlVa | Chl1Vb | Ch1lVd [Ch1Vvd
ChOVa | ChOVb | Chovd | ChOVd [ChlVa | Chl1Vb | ChlVd [Ch1vd
ChOVa | ChOVb | Chovd | ChOVd [ChlVa | Chl1Vb | Ch1lVd [Ch1Vvd

albh|wN

The 4 readings for each channel are grouped together in order. If this Temperatures

scan data is passed to dagRtdConvert (through the counts Scan 0 1

parameter) with averaging disabled (avg parameter set to 1), the Cho°C | Ch1°C

function will return the temp parameters shown in the table. Note: ChO°C | Ch1°C

Cho°C Chil°C

1
2

Temperatures returned will be in tenths of a degree Celsius. i ChO°C 1 Chi*C
5 cho°Cc | chi°C

If the scan datais passed to dagRtdConvert (inthe counts

parameter) with averaging set to block

averaging (avg parameter set to 0), the function Temperatures

will return the temp parameters shown in the ° 1

Average of all Temperatures Ch0°C Ch1il-°C

table.

The conversion processis divided into two steps: setup and conversion. Setup describes the
characteristics of the temperature measurement; Conversion changes raw readings into temperatures.
For convenience, both setup and conversion can be performed at once by dagRtdSetupConvert.
All of the functions return error codes, which are defined in Dagx.h.

3-42

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

daqCvtRtdSetup
DLL Function daqCvtRtdSetup(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType, rtdType,
DWORD avg);
C daqCvtRtdSetup(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType rtdType,
DWORD avg);
Visual BASIC VBdaqCvtRtdSetup&(ByVal nscan&, ByVal startPosition&, ByvVal nRtd&, ByVval
rtdType&, ByVal avg&)
Delphi daqCvtRtdSetup(nScan:DWORD; startPosition:DWORD; nRtd:DWORD; rtdType:RtdType;
avg:DWORD)
Parameters
nScan The total number of readings in a scan.
valid range 1-512
startPosition Position of the first RTD reading group in the scan.
Valid range 1-509
nRtd Number of RTD reading groups in the scan.
Valid range 1-128
rtdType Value of RTD being used.
Dbk9RtdTypel00 - 100 ohm RTD
Dbk9RtdType500 - 500 ohm RTD
Dbk9RtdTypelK - 1000 ohm RTD
avg Type of averaging to be used.
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average
Returns DerrRtdParam - Setup parameter out of range
DerrRtdValue - Invalid RTD type
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)
See Also DagRtdSetupConvert, DagRtdSetupConvert
Program References | None
Used With All devices

daqCvtRtdSetup sets up parameters for subsequent RTD temperature conversions. Refer to the
discussion of dagRTDConvert.

Programmer’'s Manual 3-43

Dag* Command Reference (Enhanced API)

Chapter 3

dagCvtRtdSetupConvert

DLL Function

daqCvtRtdSetupConvert(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType
rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C daqCvtRtdSetupConvert(DWORD nScan, DWORD startPosition, DWORD nRtd, RtdType
rtdType, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqgCvtRtdSetupConvert&(ByVal nscan&, ByVal startPosition&, ByVal nRtd&, ByVval
rtdType&, ByVal avgé&, counts%(), ByVal scans&, temp%(), ByVal ntemp&)
Delphi daqCvtRtdSetupConvert(nScan:DWORD; startPosition:DWORD; nRtd:DWORD;
rtdType:RtdType; avg:DWORD; counts:PWORD; scans:DWORD; temp:PWORD;
ntemp :DWORD)
Parameters
nScan The total number of readings in a scan.
valid range 1-512
startPosition Position of the first RTD reading group in the scan.
Valid range 1-509
nRtd Number of RTD reading groups in the scan.
Valid range 1-128
rtdType Value of RTD being used.
Dbk9RtdTypel00 - 100 ohm RTD
Dbk9RtdType500 - 500 ohm RTD
Dbk9RtdTypelK - 1000 ohm RTD
avg Type of averaging to be used
0 = block averaging
1 = no averaging
2 to (number of scans -1) = moving average
counts Raw A/D data readings from one or more scans.
scans Number of scans of raw data in contained in *counts.
temp Array to hold converted temperatures.
ntemp Size of temperature array. Should be the number of RTDs times the number of scans for no averaging and
moving averages or the number of RTDs for block averaging.
Returns DerrRtdParam - Setup parameter out of range
DerrRtdValue - Invalid RTD type
DerrRtdTArraySize -temperature storage array not large enough
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)
See Also dagRtdSetup, dagRtdConvert
Program References | None
Used With All devices

dagCvtRtdSetupConvert sets up and converts raw A/D readings from RTDs into temperature
readings. Refer to the discussion of dagRTDConvert.

dagCvtSetAdcRange

DLL Function

dagqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

C dagqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

Visual BASIC VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)

Delphi dagCvtSetAdcRange(Admin:single; Admax:single)

Parameters

Admin A/D minimum voltage range

Admax A/D maximum voltage range

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also

Program References

None

Used With

daqgCvtSetAdcRange alowsyou to set the current ADC range for use by the daqCvt...
functions. Thisfunction should not need to be called if used for data collected by the Dag* devices.

3-44

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCvtTCConvert

DLL Function

daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C daqCvtTCConvert(PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtTCConvert&(counts®%(), ByVal scansé&, temp%(), Byval ntemp&)
Delphi daqCvtTCConvert(counts:PWORD; scans:DWORD; temp:PWORD; ntemp:DWORD)
Parameters
counts An array of one or more scans of raw data as received from the Daq. The ADC data bits are in the 12 most
significant bits of the 16-bit integers, and the tag bits (which are discarded) are in the 4 least-significant
bits.
Valid range: Each raw data item may be any 16-bit value.
scans The number of scans of data in counts array.
Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes).
temp Variable array to hold converted temperature results. The integer values are 10 times the temperatures in
°C. For example, 50°C would be represented as 500 and -10°C would be -100.
Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the thermocouple type.
ntemp The number of entries in the temperature array. This value is checked by the functions to avoid writing past
the end of the array.
Valid range: If avg is 0, then ntc or greater. If avg is non-zero, then scans * ntc or greater.
Returns DerrTCE_NOSETUP - Setup was not called
DerrTCE_PARAM - Parameter out of range
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)
See Also DaqCvtTCSetup, DaqCvtTCSetupConvert

Program References | None

Used With

All devices

dagCvtTCConvert takesraw A/D readings and converts them to temperature readings in tenths of
degrees Celsius (0.1°C). Thetotal number of conversions (scan * chans/scan) must be less than 32K.
The Dag* measures thermocouple temperatures by way of a DBK19 or DBK52 that includes a cold-
junction compensation circuit (CJC) attached to channel 0. Channel 1 is shorted for performing auto-
zero compensation. Channels 2 through 15 accept thermocouples for temperature measurement. Up to
16 expansion cards may be attached to a single Dag* to measure a maximum of 224 (16x14)
temperatures. The software supportstype J, K, T, E, N28, N14, S, R and B thermocouples.

Two software techniques (calibration and zero compensation) can be used to increase the accuracy of
the DBK 19 card:
- Software calibration uses gain and offset calibration constants, unique to each card, to
compensate for inherent errors on the card.
Zero compensation is a method by which any offset voltage on the card can be removed at run-
time. Thisis done by measuring a shorted channel at the same gain on the actua input to find the
offset, and subtracting this value from the actual reading.

The thermocouple linearization function has a specia auto-zero compensation feature that will perform
zero compensation on the raw thermocoupl e data before linearizing when using a DBK19. The auto-
zero feature is enabled by default, but can be disabled using the dagZeroDbk19 function. It isnot
available when using unipolar mode.

The temperature measurement conversion functions are designed for temperature measurement where:

- The cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is
immediately followed in the scan sequence by the T/C channel readings, all of which must be
from the same type of T/C (including: J, K, T, E, N28, N14, S, R, or B).

If aDBK19 is used with auto-zeroing enabled, the CJC channel reading described above must be
preceded by 2 readings from the shorted channel (channel 1). The first shorted reading must be
at the same gain setting as the CJC reading. The other shorted reading must be at the gain of the
T/C to be converted.

If software calibration is used with the DBK 19, the calibration constants for the card to be used
should be entered into the calibration file.

The CJC and T/C readings are taken with the optimal gains (as described below).

All non-thermocouple data conversion, if any, must be done by other means.

Programmer’'s Manual 3-45

Dag* Command Reference (Enhanced API)

Chapter 3

The temperature conversion functions take input data from one or more scans from the Dag*. They
then examine the CJC and thermocouple readings within that scan and, after optional averaging,
convert them to temperatures which are stored as output. For example, see the readingsin the table.

Thefirst 2 readings of each scan Reading

are non-temperature voltage Scan 0 1 2 3 4 5

readi ngs to Compensate for the 1 V or CJC Zero V or J Zero CJC Jla J1b Jic

CICa it and the shorted 2 V or CJC Zero V or J Zero CJC J2a J2b J2c
cireurt and the snorted 3 | VorCJCZero | VordZero | CIJC | J3a | J3b | Jac

channel 0. Thethird readingis 4 | VorCJCZero | VordZero | CIC | J4a | Jab | Jac

from the CJC, and the remaining
3 readings are from 3 type Jthermocouples. If the auto-zero featureis disabled, the first 2 readings will
beignored. Otherwise, the first 2 readings will be used to remove offset errorsin the CJC and T/C
reading. The CJC and T/C readings are used to produce one temperature result for each T/C reading.
Thus, the 24 original readings are reduced to 12 temperatures.

The conversion process has 2 steps: setup and conversion. Serup describes the characteristics of the
temperature measurement, and Conversion changes the raw readings into temperatures. All of the
functions return error codes as defined in Dagx.h which also includes the function prototypes and the
definitions of the thermocouple-type codes.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If
auto-zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and
a T/C zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the
sametype: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple,
they must be sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to

thermocouple measurements. Gain Codes
The scan may include other Type | Unipolar Gain Code | Unipolar Bipolar Gain Bipolar
. Gain Code Gain
types of signals such as CJC Dbk19UniCJC 90 Dbk19BiCJC 60
voltage, current, or digital 3 DbK19UniTypeJ 180 DbK10BiTypeJ 30
input; but conversion of these K Dbk19Uni TypeK 180 Dbk19BiTypeK 90
readingsisup toyou. The T Dbk19UniTypeT 240 DbK19BiTypeT 180
temperature conversion E Bgﬁgﬂn qypeﬁzs 90 Bglﬁg: i lypeﬁzs 60
i N28 niType 240 iType 240
functions cannot handle them. Nid | DbKISUNiTypoNid 0 DbKIOBITypoNLA %
The temperature measurements | S Dbk19UniTypeS 240 | Dbk19BiTypeS 240
; R Dbk19Uni TypeR 180 Dbk19BiTypeR 240
must be made with the correct 5 BOKIGUNTTypeB 540 DBKIOBITypeB s

gain settings. The gain settings
for the different thermocouple types depend on the channel type and the bipolar/unipolar setting of the
Dag* as specified in the table. Note: Unipolar operations are not recommended for thermocouple
measurement unless the measured temperatures will be greater than the Dag* temperature.

When measuring thermocouples using the gains above, the following temperature ranges apply.

Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature
T/IC Measured Temperature Range Measured Temperature Range Measured Temperature Range
Type @ 0°C ambient @ 25°C ambient @ 50°C ambient
Temperature °C [0°C Output (mV) | Temperature®C | 25°C Output (mV) | Temperature°C | 50°C Output (mV)
J -200 to 760 -7.91t042.9 -200 to 760 -9.2t041.6 -200 to 760 -11.8 10 39.0
K -200 to 1372 -5.9t0 54.9 -200 to 1372 -6.9 to 53.9 -200 to 1372 -8.9 10 52.9 (50.0
T -200 to 400 -5.6 t0 20.9 -200 to 400 -6.6 t0 19.9 -200 to 400 -8.7t0 17.7
E -270 to 1000 -9.81076.4 -270 to 1000 -11.3t0 74.9 -270 to 1000 -145t071.7
N28 | -270 to 400 -4.310 13.0 -270 to 400 -5.0t0 12.3 -270 to 400 -6.4 10 10.9
N14] 0to 1300 0.0 to 47.5 0 to 1300 -0.7 10 46.8 0 to 1300 -2.0t0 45.5
S -50 to 1780 -0.2t0 18.8 -50 to 1780 -0.4t0 18.7 -50 to 1780 -0.7 t0 18.4
R -50 to 1780 -0.2t021.3 -50 to 1780 -0.4t021.1 -50 to 1780 -0.7 t0 20.8
B 50 to 1780 0.0t0 13.4 50 to 1780 0.0t0 13.4 50 to 1780 0.0t0 13.4
3-46 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagCvtTCSetup

DLL Function

daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL
bipolar, DWORD avQ);

Cc

daqCvtTCSetup(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType, BOOL
bipolar, DWORD avQ);

Visual BASIC

VBdaqCvtTCSetup&(ByVal nscané&, ByVal cjcPosition&, ByVal ntc&, ByVal tcTypeé&,
ByVval bipolaré&, ByVal avg&)

Delphi

daqCvtTCSetup(hscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;
bipolar:longbool; avg:DWORD)

Parameters

nscan

The number of readings in a single scan of DagBook/DagBoard data. The daqCvtTC... functions can
convert several consecutive scans worth of data in a single invocation.
Valid range: 2 to 512.

cjcPosition

The position of the actual cold-junction compensation circuit (CJC) reading within each scan (not the CJC
zero reading, if any). The first reading of the scan is position 0, and the last reading is nscan -1. Each
scan of temperature data must include a reading of the CJC signal on the expansion board to which the
thermocouples are attached. The CJC readings must be taken with the gain in the section Scan Setup.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero compensation.

ntc

The number of thermocouple signals that are to be converted to temperature values. The thermocouple
signal readings must immediately follow the CJC reading in the scan data. The first thermocouple signal
is at scan position cjcPosition+1,; the next is at cjcPosition+2,; and so on. Valid range: 1 to nscan-1-
cjcPosition.

tcType

The type of thermocouples that generated the measurements. Valid range: One of the pre-defined values,
Dbk19TCTypeJd, Dbk19TCTypeK, Dbk19TCTypeT, Dbk19TCTypeE, Dbk19TCTypeN28,

Dbk19TCTypeN14, Dbk19TCTypeS, Dbk19TCTypeR or Dbk19TCTypeB.

bipolar

Must be set true (non-zero) if the readings were acquired with the Dag* set for bipolar operation. Must be
set false (zero) for unipolar operation. The required gain settings for the CJC and thermocouple channels
change depending on the unipolar/bipolar mode. Valid range: 0 for unipolar or any non-zero value for
bipolar.

avg

The type of averaging to be performed. Valid range: any unsigned integer. Since the thermocouple voltage
may be small compared to the ambient electrical noise, averaging may be necessary to yield a steady
temperature output.

0 specifies block averaging in which all of the scans are averaged together to compute a single temperature
measurement for each of the ntemp thermocouples.

1 specifies no averaging. Each scan’s readings are converted into ntemp measured temperatures for a
total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Scan readings are averaged with the
avg-1 preceding scans’ readings before conversion. The first avg-1 scans are averaged with all of the
preceding scans because they do not have enough preceding scans. For example, if avg is 3, then the
results from the first scan are not averaged at all, the results from the second scan are averaged with the
first scan, the results from the third and subsequent scans are averaged with the preceding two scans as
shown in the table.

Returns

DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type

DerrNoError - No Error (also, refer to API Error Codes on page 3-83)

See Also

daqCvtTCConvert, daqCvtTCSetupConvert

Program References

None

Used With

All devices

daqCvtTCSetup sets up parameters for subsequent temperature conversions. The next table
shows how averages are computed.

Scan | Readings Results from Channel

from

Channel

0 1 0 1

1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Programmer’'s Manual

3-47

Dag* Command Reference (Enhanced API) Chapter 3

dagCvtTCSetupConvert

DLL Function

daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,
BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);

C daqCvtTCSetupConvert(DWORD nscan, DWORD cjcPosition, DWORD ntc, TCType tcType,
BOOL bipolar, DWORD avg, PWORD counts, DWORD scans, PSHORT temp, DWORD ntemp);
Visual BASIC VBdaqCvtTCSetupConvert&(ByVal nscané&, ByVal cjcPosition&, ByVal ntc&, ByVal
tcType&, Byval bipolar&, ByVal avg&, counts%(), ByvVal scans&, temp%(), ByVal
ntemp&)
Delphi daqCvtTCSetupConvert(nscan:DWORD; cjcPosition:DWORD; ntc:DWORD; tcType:TCType;
bipolar:longbool; avg:DWORD; counts:PWORD; scans:DWORD; temp:PWORD;
ntemp :DWORD)
Parameters
nscan The number of readings in a single scan.
Valid range: 1- 512
cjcPosition The position of the CJC reading within the scan.
Valid range
0 -(nscan-1)
2 -(nscan-1), if auto-zeroing is used with DBK19.
ntc The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 -(nscan-cjcposition-1)
tcType The type of thermocouples being measured.
bipolar Non-zero if the DagBook/DagBoard is configured for bipolar readings.
avg The type of averaging to be performed: block, none or moving.
counts The raw data from one or more scans.
scans The number of scans of raw data in counts.
temp The converted temperatures in tenths of a degree C.
ntemp The number of elements provided in the temp array (for error checking).
Returns DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 3-83)
See Also DaqCvtTCSetup, daqCvtTCConvert
Program References | None
Used With All devices
daqCvtTCSetupConvert sets up and converts raw A/D readings into temperature readings.
3-48 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacSetOutputMode

DLL Function

dagDacSetOutputMode(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan,
DagDacOutputMode outputMode);

C dagDacSetOutputMode(DagHandleT handle, DaqDacDeviceType deviceType, DWORD chan,
DagDacOutputMode outputMode);

Visual BASIC VBdagDacSetOutputMode&(ByVal handleé&, ByVal deviceType&, ByVal chan&, ByVal
outputMode&)

Delphi dagDacSetOutputMode(handle:DagHandleT; deviceType:DagDacDeviceType; chan:DWORD;
outputMode : DagDacOutputMode)

Parameters

handle Handle to the device to set the DAC waveform output mode

deviceType Specifies the device type

chan Specifies the DAC channel

outputMode Defines the DAC waveform output mode to use

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWt, dagDacWtMany

Program References

DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, DACEX.PAS (Delphi)

Used With

DaqBook100, DagBook112, DagBook120, DagBook200, DagBook216,DaqBoard100A, DagBoard 112A
DagBoard200A, DagBoard216A

dagDacSetOutputMode allows you to set the output mode of the DAC operations for the
specified DAC channel. The outputMode parameter indicates the type of waveform output
update to be performed on the specified DAC channel. The following DAC modes can be specified:

DdomVoltage - Specifies asingle voltage output mode. This mode defines the output mode
of the specified DAC channel to be updated only when written to explicitly. With this mode,
no waveform outputs can be generated. See the dagDacWt and dagDacWtMany functions
for DAC channel voltage updates.

DdomStaticWave - Specifies static waveform output. This mode allows the generation of a
non-streamed waveform output to the specified DAC channel. In this mode, the output stream
cannot be continuously updated by the application during actual waveform output. Once the
output data buffer has been set and the waveform operation has been initiated, the output data
buffer remains static. This mode requires the specified waveform to fit within the physical
size of the FIFO on the device.

DdomDynamicWave - Specifies dynamic waveform generation. This mode allows
continual, dynamic updating of the DAC waveform during DAC waveform output. Dynamic
waveform generation is not size dependent, and waveform updating can be performed
indefinitely. Actual waveform generation updating is performed by continually feeding
waveform data to the device using the dagDacWaveSetBuffer and
dagDacTransferStart routinesto continualy fill the device sDAC FIFO. The
waveform transfer operation to the DAC FIFO can be halted at any time with
dagDacTransferStop; and the waveform output can be disabled at any time with
dagDacDisarm.

Note: The DdomDynami cWave output mode is not available on any device at thistime.

Programmer’'s Manual

3-49

Dag* Command Reference (Enhanced API) Chapter 3

dagDacTransferGetStat

DLL Function dagDacTransferGetStat(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, PDWORD active, PDWORD retCount);

C dagDacTransferGetStat(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, PDWORD active, PDWORD retCount);

Visual BASIC VBdagDacTransferGetStat&(ByVal handle&, ByvVal deviceType&, ByvVal chan&, active&,
retCountg&)

Delphi dagDacTransferGetStat(handle:DagHandleT; deviceType:DagDacDeviceType;
chan:DWORD; var active:DWORD; var retCount:DWORD)

Parameters

handle Handle of the device from which to retrieve current DAC transfer status

deviceType Specifies the DAC type

chan Specifies the DAC channel

active Bit mask representing flags indicating the current state of the DAC waveform transfer

retCount Total number of DAC waveform samples transferred for the current DAC waveform transfer

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacTransferSetBuffer, daqDacTransferStart, dagDacTransferStop

Program References | None

Used With

dagDacTransferGetStat alowsyou to get the current status of a DAC dynamic waveform
transfer for the specified DAC channel. Thisfunction will return the current status and the total
transfer count of the current DAC waveform output.

The active parameter is a bit mask representing various DAC waveform events. The bit masks for
each event are defined as follows:
DdafWaveformActive - Thisbit set indicates that a DAC waveform output is currently
active.
DdafwaveformTriggered - Thisbit set indicates that the DAC waveform output has
been triggered and waveform output is currently taking place.
DdafTransferActive - Thisbit set indicates that a DAC dynamic waveform transfer to
the devices DAC FIFO istaking place.

The retCount parameter indicates the total number of DAC dynamic waveform samples that have
been transferred since the start of the transfer. Note: DAC output mode must be set to
DdomDynamicWave for thisfunction to be caled. See the dagDacSetOutputMode function.

dagDacTransferStart

DLL Function dagDacTransferStart(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan);

C dagDacTransferStart(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan);

Visual BASIC VBdagDacTransferStart&(ByVal handle&, ByVal deviceTypeé&, ByVal chan&)

Delphi dagDacTransferStart(handle:DagHandleT; deviceType:DagDacDeviceType; chan:DWORD)

Parameters

handle Handle to the device for which a DAC waveform transfer is to be initiated

deviceType Specifies the DAC type

chan Specifies the DAC channel

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacTransferSetBuffer, daqDacTransferGetStat, dagDacTransferStop,
dagDacWaveDisarm

Program References | None

Used With

dagDacTransferStart alowsyou to initiate a DAC dynamic waveform output transfer for the
specified DAC channel. The waveform transfer will be performed from the waveform buffer
configured using the dagDacWaveSetBuffer function. The transfer will continue until the
entire buffer has been transferred, until the transfer is halted (dagDacTransferStop); or until
the DAC output is disarmed (dagDacWaveDisarm).

Note: DAC output mode must be set to DdomDynami cWave for this function to be called. Seethe
dagDacSetOutputMode function.

3-50 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacTransferStop

DLL Function

dagDacTransferStop(DaqHandleT handle, DagDacDeviceType deviceType, DWORD chan);

C dagDacTransferStop(DaqHandleT handle, DagDacDeviceType deviceType, DWORD chan);
Visual BASIC VBdagDacTransferStop&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi dagDacTransferStop(handle:DaqgHandleT; deviceType:DagDacDeviceType; chan:DWORD)
Parameters

handle Handle to the device for which the current DAC waveform transfer is to be stopped

deviceType Specifies the DAC type

chan Specifies the DAC channel

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacTransferSetBuffer, dagDacTransferGetStat, dagDacTransferStart,

dagDacWaveDisarm

Program References | None

Used With

dagDacTransferStop alowsyou to stop a DAC dynamic waveform transfer for the specified
DAC channel if oneiscurrently active. Thisfunction will terminate the transfer of DAC data;
however, it will not halt the waveform output on the DAC channel. DAC output data already sent to
the devices DAC FIFO will continue to be output until thereis no more datain the FIFO. The
transfer may be re-initiated for the same DAC transfer buffer or another buffer by again calling the
dagDacTransferStart function. To terminate the waveform output as well as the transfer,
refer to the dagDacWaveD i sarm function.

Note: DAC output mode must be set to DdomDynami cWave for this function to be called. Seethe
dagDacSetOutputMode function.

dagDacWaveArm

DLL Function

dagDacWaveArm(DagHandleT handle, DagDacDeviceType deviceType);

C dagbDacWaveArm(DagHandleT handle, DagDacDeviceType deviceType);

Visual BASIC VBdagDacWaveArm&(ByVal handle&, ByVal deviceTypeé&)

Delphi dagDacWaveArm(handle:DagHandleT; deviceType:DaqgDacDeviceType)

Parameters

handle Handle to the device for which a DAC waveform output is to be armed

deviceType Specifies the DAC type

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWaveDisarm

Program References | None

Used With

DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveArm alows you to arm a DAC waveform output for the specified device. This
command enables the DAC waveform output, based upon the current waveform output
configuration. Once issued, DAC waveform output will begin on the specified device when the
specified DAC waveform output trigger event has occurred. If the trigger event has been configured
asDdtsImmediate, the waveform output will begin immediately.

Programmer’'s Manual 3-51

Dag* Command Reference (Enhanced API)

Chapter 3

dagDacWaveDisarm

DLL Function

dagDacWaveDisarm(DagHandleT handle, DagDacDeviceType deviceType);

C dagDacWaveDisarm(DagHandleT handle, DagDacDeviceType deviceType);

Visual BASIC VBdagDacWaveDisarm&(ByVal handle&, ByVal deviceType&)

Delphi dagDacWaveDisarm(handle:DagHandleT; deviceType:DagDacDeviceType)

Parameters

handle Handle to the device for which a current DAC waveform output is to be disarmed

deviceType Specifies the DAC type

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWaveArm

Program References | None

Used With

DaqgBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveDisarm allows you to disarm a DAC waveform output if oneis active on the
specified device. Thisfunction will disable the waveform output on the specified device and
terminate any DAC buffer transfers that are currently active. Waveform output will be terminated
immediately, regardless of the current state of the waveform output or the state of the device's DAC
FIFO.

dagDacWaveGetFreq

DLL Function

dagDacWaveGetFreq(DagqHandleT handle, DagDacDeviceType deviceType, DWORD chan,
PFLOAT freq);

C dagDacWaveGetFreq(DagqHandleT handle, DagDacDeviceType deviceType, DWORD chan,
PFLOAT freq);

Visual BASIC VBdagDacWaveGetFreq&(ByVval handle&, ByVal deviceType&, ByVal chan&, freq!)

Delphi dagDacWaveGetFreq(handle:DaqHandleT; deviceType:DagDacDeviceType; chan:DWORD;
var freq:single)

Parameters

handle Handle to the device for which to retrieve the current waveform output frequency

deviceType Specifies the DAC type

chan Specifies the DAC channel

freq Returns the current DAC waveform output frequency setting

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveArm, dagDacWaveDisarm, dagDacWaveSetFreq

Program References

None

Used With

DaqgBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveGetFreq gets the current DAC waveform update frequency for the specified device
and channdl.

3-52

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacWaveSetBuffer

DLL Function

dagDacWaveSetBuffer(DagHandleT handle, DaqDacDeviceType deviceType, DWORD chan,
PWORD buf, DWORD scanCount, DWORD transferMask);

C dagDacWaveSetBuffer(DagHandleT handle, DaqDacDeviceType deviceType, DWORD chan,
PWORD buf, DWORD scanCount, DWORD transferMask);

Visual BASIC VBdagDacWaveSetBuffer&(ByVal handle&, ByVal deviceType&, ByVal chan&, bufkx(),
ByVal scanCount&, ByVal transferMask&)

Delphi dagDacWaveSetBuffer(handle:DagHandleT; deviceType:DagDacDeviceType; chan:DWORD;
buf:PWORD; scanCount:DWORD; transferMask:DWORD)

Parameters

handle Handle to the device for which a DAC waveform transfer buffer is to be configured

deviceType Specifies the DAC type

Chan Specifies the DAC channel

buf Pointer to the user allocated waveform transfer buffer

ScanCount Length of the waveform buffer in output samples

transferMask Configures the buffer transfer mode

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacTransferStart, dagDacWaveTransferStop

Program References | None

Used With

DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveSetBuffer alows you to configure the DAC output waveform transfer buffer for
the specified device and channel. This function may be used to configure a user-supplied buffer for
output to a DAC channel on the specified device.

The supplied buffer must be loaded by the application with the desired output data before invoking
the dagDacTransferStart routine to initiate the DAC waveform transfer.

The transferMask parameter is used to configure the characteristics of the DAC waveform
output transfer. Among other things the transferMask specifies the update mode and the cycle mode
of the buffer. The modes can be set as follows:

DdtmCycleOn - Specifies the buffer cycle mode. Allows the transfer to continue when the
end of the transfer buffer is reached (by wrapping the transfer of DAC data back to the
beginning of the buffer). In this mode, the DAC transfer buffer will continue to be wrapped
until the transfer/waveform output is halted by the application (dagDacTransferStop/
dagDacDisarm). The default settingis DdtmCycleOff.

DdtmUpdateSingle - Specifies the update mode as single sample. The update mode can
be set to update for every sample or block of DAC data. The update-on-single-setting allows
the DAC transfer buffer to be updated for each sample output to the specified DAC.
Compared to the block mode, this setting provides a higher degree of rea -time waveform
output-buffer updating at the expense of slower aggregate waveform output rates. The default
setting is DdtmUpdateBlock.

Programmer’'s Manual

3-53

Dag* Command Reference (Enhanced API) Chapter 3

dagDacWaveSetClockSource

DLL Function dagDacWaveSetClockSource(DaqgHandleT handle, DaqDacDeviceType deviceType, DWORD
chan, DaqgDacClockSource clockSource);

C dagDacWaveSetClockSource(DaqgHandleT handle, DaqDacDeviceType deviceType, DWORD
chan, DaqgDacClockSource clockSource);

Visual BASIC VBdagDacWaveSetClockSource&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal
clockSourceé&)

Delphi dagDacWaveSetClockSource(handle:DaqHandleT; deviceType:DagDacDeviceType;
chan:DWORD; clockSource:DagbacClockSource)

Parameters

handle Handle to the device for which the waveform output clock source is to be set

deviceType Specifies the DAC type

chan Specifies the DAC channel

clockSource Set the clock to the specified source

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveSetFreq, dagDacWaveGetFreq

Program References

None

Used With

DaqgBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveSetClockSource allows you to set the clock source for the DAC waveform
update frequency for the specified device and channel. The clockSource parameter specifies the
clock source to use for DAC output. The valid sources for the DAC waveform update clock include:

DdcsGatedDacClock - Specifiesaclock based upon a gated DAC default timebase
(DdcsDacClock); isgated by TTL input on pin 25 of P1.

Ddcs9513Ctrl - Specifiesa DAC timebase driven by Counter 1 of the 9513.
DdcsExternal TTL - Specifiesan external timebase supplied viaTTL input pin 21 of P1.
DdcsAdcClock - Specifiesthe current ADC pacer-clock timebase.

DdcsDacClock - Specifiesthe internal DAC default timebase of 10 MHz.

Note: Thefirst 3 of these potential clock sources pass through and are divided by Counter 0 of the
8254 before the update signal reaches the DAC FIFO.

The DAC waveform update frequency is the rate at which samples are sent from the DAC FIFO to a

single DAC channel.

If the more than one DA C channel waveform output is active, the waveform

update frequency for each channel is this rate divided by the total number of active DAC waveform
output channels. If, however, all DAC channels are simultaneously outputting the same waveform,
then the waveform update frequency for each channel will not be divided by the total number of
channels.

dagDacWaveSetDiskFile

DLL Function

dagDacWaveSetDiskFile(DagHandleT handle, DagDacDeviceType deviceType, DWORD

chan, LPSTR filename);

[dagDacWaveSetDiskFile(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, LPSTR filename);

Visual BASIC VBdaqgDacWaveSetDiskFile&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal
filename$)

Delphi dagDacWaveSetDiskFile(handle:DagHandleT; deviceType:DagDacDeviceType;
chan:DWORD; filename:PChar)

Parameters

handle Handle to the device from which to generate the waveform output

deviceType Specifies the DAC type

chan Specifies the DAC channel

filename String representing the path and filename of the disk file to be output.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveSetBuffer

Program References | None

Used With

dagDacWaveSetDiskFi le alowsyou to specify adisk file from which aDAC waveform
output will be generated for the specified device and channel.

3-54

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacWaveSetFreq

DLL Function

dagDacWaveSetFreq(DagqHandleT handle, DagDacDeviceType deviceType, DWORD chan,
FLOAT freq);

C dagDacWaveSetFreq(DagqHandleT handle, DagDacDeviceType deviceType, DWORD chan,
FLOAT freq);

Visual BASIC VBdagDacWaveSetFreq&(ByVval handle&, ByVal deviceType&, ByVal chan&, ByVal freq!)

Delphi dagDacWaveSetFreq(handle:DaqHandleT; deviceType:DagDacDeviceType; chan:DWORD;
freq:single)

Parameters

handle Handle to the device for which to set the waveform output update frequency

deviceType Specifies the DAC type

chan Specifies the DAC channel

freq Sets the DAC waveform output frequency to the specified frequency

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveGetFreq, dagDacWaveSetClockSource

Program References

None

Used With

dagDacWaveSetFreq alows you to set the DAC waveform update frequency for the specified
device and channel. The frequency is set viathe Freq parameter and is dependent upon the clock
source chosen for the selected device. The clock source can be configured by using the
dagDacWaveSetClockSource function.

dagDacWaveSetMode

DLL Function

dagDacWaveSetMode(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan,
DagbDacWaveformMode mode, DWORD updateCount);

C dagDacWaveSetMode(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan,
DagDacWaveformMode mode, DWORD updateCount);

Visual BASIC VBdagDacWaveSetMode&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal mode&,
ByVal updateCount&)

Delphi dagDacWaveSetMode(handle:DaqHandleT; deviceType:DagDacDeviceType; chan:DWORD;
mode : DagDacWaveformMode; updateCount:DWORD)

Parameters

handle Handle to the device for which to set the DAC waveform output mode

deviceType Specifies the DAC type

chan Specifies the DAC channel

mode Specifies the desired DAC waveform output mode

updateCount Sets the total sample update count

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveSetTrig, daqDacWaveSetFreq

Program References

None

Used With

dagDacWaveSetMode allows you to set the DAC waveform update mode for the specified
device’'s DAC channel. Thisfunction allows the setting of the waveform output mode and the total
number of DAC waveform samples to output.

Themode parameter defines the state in which the waveform isto be output. The mode values are
defined asfollows:

DdwmNShot - Continue outputting waveform until updateCount number of samples have
been output. Upon completion of the specified amount, automatically terminate and disarm
the waveform output operation.

DdwmNShotRearm - Continue outputting waveform until updateCount number of
samples have been output. Upon completion of the specified amount, reset the
updateCount and re-arm the DAC waveform output, using the previous configuration.
Waveform output will then be restarted when the specified trigger event is detected. The
automatic re-arming of the waveform output will continue until the waveform output is
disarmed viathe dagDacWaveDisarm function.

DdwmInfinite - Continue outputting waveform indefinitely. Waveform output will
continue until the dagDacWaveDisarm functionisissued. updateCount isignored.

The updateCount parameter defines the total number of samplesin the waveform to be output.

Programmer’'s Manual

3-55

Dag* Command Reference (Enhanced API)

Chapter 3

dagDacWaveSetPredefWave

DLL Function dagDacWaveSetPredefWave(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, DaqgDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD dutyCycle,
DWORD phaseShift);

C dagDacWaveSetPredefWave(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan, DaqDacWaveType waveType, DWORD amplitude, DWORD offset, DWORD dutyCycle,
DWORD phaseShift);

Visual BASIC VBdagDacWaveSetPredefWave&(ByVvVal handle&, ByVal deviceType&, ByvVal chan&, ByVal
waveType&, ByVal amplitude&, ByVal offset&, ByVal dutyCycle&, ByVal
phaseShift&)

Delphi dagDacWaveSetPredefWave(handle:DagqHandleT; deviceType:DagDacDeviceType;
chan:DWORD; waveType:DagDacWaveType; amplitude:DWORD; offset:DWORD;
dutyCycle:DWORD; phaseShift:DWORD)

Parameters

handle Handle to the device to setup a pre-defined waveform output

deviceType Specifies the DAC type

chan Specifies the DAC channel

Tilename Specifies the optional predefined waveform output filename

waveType Specifies the predefined waveform output type. Three types: O for DdwtSine, 1 for DdwtSquare, 2 for
DdwtTriangle.

amplitude Sets the peak-to-peak amplitude for which to generate the pre-defined waveform (in D/A counts 0 to 4095)

offset Sets the offset for the pre-defined waveform (voltage level in D/A counts 0 to 4095)

dutyCycle Sets the duty cycle (as a percentage) of the predefined waveform

phaseShift Set the phase shift (in degrees) of the predefined waveform relative to other DAC channel

Returns DerriInvDacChan - The DAC channel number doesn’t exist

DerrinvDacParam - Parameters were out of range

DerrinvPredefWave - Predefined waveform is not supported

DerrMemAlloc - Not enough memory was available to build the waveform

DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveSetUserWave

Program References | None

Used With DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveSetPredefWave alowsyou to specify a pre-defined waveform for DAC waveform
output on the specified device channel. dagDacWaveSetMode isused to set the update rate and
cycling mode for this waveform.

3-56

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacWaveSetTrig

DLL Function

dagDacWaveSetTrig(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan,
DagDacTriggerSource triggerSource, BOOL rising);

C dagDacWaveSetTrig(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan,
DagDacTriggerSource triggerSource, BOOL rising);

Visual BASIC VBdagDacWaveSetTrig&(ByVval handle&, ByVal deviceType&, ByVal chan&, ByVal
triggerSourceé&, ByvVal rising&)

Delphi dagDacWaveSetTrig(handle:DaqHandleT; deviceType:DagDacDeviceType; chan:DWORD;
triggerSource:DagDacTriggerSource; rising:longbool)

Parameters

handle Handle of the device for which to set DAC waveform triggering

deviceType Specifies the DAC type

chan Specifies the DAC channel

triggerSource Specifies the DAC output trigger source

rising Boolean indicating the trigger source edge

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDacWaveSetMode

Program References | None

Used With

dagDacWaveSetTrig alowsyou to set the DAC waveform output trigger for the specified DAC
channel. Thisfunction is used to setup the trigger event to initiate a DAC waveform output for the
specified DAC channel.

The triggerSource parameter specifies the source of the event which will trigger the DAC
waveform output. Currently, there are only two valid DAC waveform trigger events:

DdtsImmediate - Trigger DAC waveform immediately upon execution of the
dagDacWaveArm function. Thistrigger sourceis used to trigger the DAC waveform output
immediately upon waveform configuration.

DdtsSoftware - Trigger the DAC waveform upon execution of the
dagDacWaveSoftTrig function. Thistrigger source requires that the dagDacWaveArm
function be issued before the dagDacWaveSoftTrig function. Thistrigger sourceisused
to trigger the waveform output from input from the user application.

Therising flagiscurrently ignored and is reserved for future use.

dagDacWaveSetUserWave

DLL Function

dagDacWaveSetUserWave(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan);

C dagDacWaveSetUserWave(DagHandleT handle, DagDacDeviceType deviceType, DWORD
chan);
Visual BASIC VBdagDacWaveSetUserWave&(ByVal handle&, ByVal deviceType&, ByVal chan&)
Delphi dagDacWaveSetUserWave(handle:DagHandleT; deviceType:DagDacDeviceType;
chan :DWORD)
Parameters
handle Handle to the device for which the user - defined waveform is to be output
deviceType Specifies the DAC device type
chan Specifies the DAC device channel
Returns DerrlInvDacChan - The DAC channel number doesn't exist
DerrinvBuf - A waveform buffer was not specified
DerrMemAl loc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWaveSetPredefWave
Program References | None

Used With

dagDacWaveSetUserWave allows you to configure a user-defined buffer for DAC waveform
output. Any arbitrary waveform can be built in an array. dagDacWaveSetUserWave can then
be called by specifying a pointer to the beginning of the waveform, the size of the array, and the
target DAC channel to send the waveform.

Programmer’'s Manual

3-57

Dag* Command Reference (Enhanced API) Chapter 3

dagDacWaveSoftTrig

DLL Function dagDacWaveSoftTrig(DaqgHandleT handle, DagDacDeviceType deviceType, DWORD chan);
C dagDacWaveSoftTrig(DaqHandleT handle, DagDacDeviceType deviceType, DWORD chan);
Visual BASIC VBdagDacWaveSoftTrig&(ByVal handle&, ByVal deviceType&, ByVal chan&)

Delphi dagDacWaveSoftTrig(handle:DaqgHandleT; deviceType:DagDacDeviceType; chan:DWORD)
Parameters

handle Handle to the device for which to trigger the DAC waveform output

deviceType Specifies the DAC type

chan Specifies the DAC channel

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWaveSetTrig

Program References | None

Used With DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWaveSoftTrig alowsyou to software trigger the DAC waveform output on the
specified device channel. The device channel must first have been configured for software
triggering with the dagDacWaveSetTrig function prior to caling thisfunction. DAC waveform
trigger source must be DdtsSoftware.

dagDacWt
DLL Function dagDacWt(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan, WORD
dataval);
[dagDacWt(DagHandleT handle, DagDacDeviceType deviceType, DWORD chan, WORD
dataval);
Visual BASIC VBdagDacWt&(ByVal handle&, ByVal deviceType&, ByVal chan&, ByVal dataVal%)
Delphi dagDacWt(handle:DagHandleT; deviceType:DagDacDeviceType; chan:DWORD;
dataVal :WORD)
Parameters
handle Handle to the device for which the Dag* channel value is to be updated
deviceType Specifies the DAC type
chan The D/A channel to output to
Valid values: 0 - 1
dataval The value to output to the selected D/A channel
Valid values: 0 -4095
Returns DerrinvChan - Invalid channel
DerrinvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWtMany
Program References | DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, DACEX.PAS (Delphi)
Used With DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWt outputs a voltage between 0 and 5 V to the specified 12-bit D/A channel. The voltage
has a resolution of approximately 1.22 mV (5 V/4095).

Note: dagAdcSetTrig will configurethe D/A channel 1if an analog trigger is source selected
for the A/D converter.

3-58 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagDacWtMany

DLL Function

dagDacWtMany(DaqgHandleT handle, DaqDacDeviceType *deviceTypes, PDWORD chans,
PWORD dataVals, DWORD count);

C dagDacWtMany(DaqgHandleT handle, DaqDacDeviceType *deviceTypes, PDWORD chans,
PWORD dataVals, DWORD count);
Visual BASIC VBdagDacWtMany&(ByVal handleé&, deviceTypes&(), chans&(), datavals®%(), ByvVal
counté&)
Delphi dagbDacWtMany(handle:DagHandleT; deviceTypes:DagDacDeviceTypeP; chans:PDWORD;
dataVals:PWORD; count:DWORD)
Parameters
handle Handle to the device for which the values of the Dag* channels are to be updated
deviceTypes Specifies the DAC types
chans Specifies the DAC channels
datavals The value to output to the D/A channel
Valid values: 0 -4095
count
Returns DerrinvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDacWt

Program References | DACEX1.C, DAQEX.FRM (VB)

Used With

DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWtMany outputs voltages between 0 and 5 V to all active 12-bit D/A channels. Each
voltage has a resolution of approximately 1.22 mV (5 V/4095).

Note: dagAdcSetTrig will configurethe D/A channel 1if an analog trigger source is selected
for the A/D converter.

dagDefaultErrorHandler

DLL Function

dagDefaul tErrorHandler(DagHandleT handle, DagError errCode);

[dagDefaultErrorHandler(DagHandleT handle, DagError errCode);

Visual BASIC VBdagDefaultErrorHandler(ByVal handle&, ByVal errCode&)

Delphi dagDefaul tErrorHandler(handle:DagHandleT; errCode:DagError)

Parameters

handle Handle to the device to which the default error handler is to be attached.

ErrCode The error code number of the detected error (see table AP/ Error Codes at end of this chapter).

Returns Nothing (also, refer to API Error Codes on page 3-83)
See Also daqGetLastError, dagProcesskError, dagSetDefaultErrorHandler

Program References | None

Used With

All devices

dagDefaultErrorHandler displays an error message and then exits the application program.
When the Dag* library isloaded, it invokes the default error handler whenever it encounters an
error. The error handler may be changed with daqSetErrorHandler.

Programmer’'s Manual 3-59

Dag* Command Reference (Enhanced API) Chapter 3

dagFormatError

DLL Function

daqCalSelectInputSignal (DagHandleT handle, DaqCallnputT input);

C

daqCalSelectInputSignal (DagHandleT handle, DaqCallnputT input);

Visual BASIC VBdaqCalSelectlnputSignal (ByVal handle&, ByVal input as DaqCallnputT)

Delphi dagCalSelectlnputSignal (handle: DagHandleT; input: DaqCal InputT)

Parameters

dagError Dag* Enhanced API error code

msg Pointer to a string to return the error text

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagSetDefaul tErrorHandler, dagSetErrorHandler, dagProcessError, dagGetlLastError,

dagDefaul tErrorHandler

Program References | None

Used With

All devices

dagFormatError returnsthe text-string equivalent for the specified error condition. The error
condition is specified by the dagError parameter. The error text will be returned in the character
string pointed to by the msg parameter. The character string space must have been previously
allocated by the application before calling this function. The allocated character string should be, at
minimum, 64 bytesin length.

For more information on specific error codes refer to the AP Error Codes on page 3-83.

dagGetDeviceCount

DLL Function

daqGetDeviceCount(PDWORD deviceCount);

C

daqGetDeviceCount(PDWORD deviceCount);

Visual BASIC VBdaqGetDevice&(deviceCount&)

Delphi daqGetDeviceCount(var deviceCount:DWORD)

Parameters

deviceCount Pointer to which the device count is to be returned

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqGetDevicelList, daqGetDeviceProperties

Program References | None

Used With All devices
daqgGetDeviceCount returns the number of currently configured devices. This function will
return the number of devices currently configured in the system. The devices do not need to be
opened for this function to operate properly. If the number returned does not seem appropriate, the
device configuration list should be checked viathe Dag* Configuration applet located in the Control
Panel. Refer to the configuration section in your device' s user manual for more details.

3-60 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagGetDevicelList

DLL Function

daqGetDevicelList(DagDeviceListT *deviceList, PDWORD deviceCount);

C

daqGetDevicelList(DagDeviceListT *deviceList, PDWORD deviceCount);

Visual BASIC VBdaqgGetDeviceList(deviceList as DagDevicelListT, deviceCount&)

Delphi daqGetDevicelList(var deviceList: DagDevicelListT; var deviceCount: DWORD)
Parameters

devicelList Pointer to memory location to which the device list is to be returned

deviceCount Number of devices returned in the device list

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagGetDeviceCount, dagGetDeviceProperties, daqOpen,

Program References | None

Used With

All devices

daqgGetDeviceList returnsalist of currently configured devices. This function will return the
device namesin the deviceList parameter for the number of devices returned by the
deviceCount parameter. Each deviceList entry contains a device name consisting of up to
64 characters. The device name can then be used with the dagOpen function to open the specific
device.

If the number returned does not seem appropriate, the device configuration list should be checked
viathe Dag* Configuration applet located in the Control Panel. Refer to the configuration section in
your device's user manual for more details.

dagGetDeviceProperties

DLL Function

dagGetDeviceProperties(LPSTR dagName, DagDevicePropsT *deviceProps);

Cc

dagGetDeviceProperties(LPSTR dagName, DagDevicePropsT *deviceProps);

Visual BASIC VBdaqGetDeviceProperties(daqgName$, deviceProps as DaqDevicePropsT)

Delphi dagGetDeviceProperties(dagName: string; var deviceProps: DagDevicePropsT)
Parameters

dagName Pointer to a character string representing the name of the device for which to retrieve properties
deviceCount Number of devices returned in the device list

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagGetDeviceCount, dagGetDevicelList, dagqOpen

Program References | None

Used With

All devices

dagGetDeviceProperties returnsthe properties for the specified device. The deviceis
specified by passing the name of the device in the dagName parameter. This name should be a
valid name of aconfigured device. The properties for the device are returned in the deviceProps
parameter. deviceProps isapointer to user-allocated memory which will hold the device-
properties structure. This memory must have been allocated before calling this function.

For detailed device-property structure layout, refer the to Dag Device Properties Definition table

If this function fails, make sure the dagName parameter references avalid device which is currently
configured. This can be checked viathe Dag* Configuration applet located in the Control Panel.
Refer to the configuration section in your device's user manual for more details.

Programmer’'s Manual 3-61

Dag* Command Reference (Enhanced API)

Chapter 3

dagGetDriverVersion

DLL Function

daqGetDriverVersion(PDWORD version);

C daqGetDriverVersion(PDWORD version);

Visual BASIC VBdaqgGetDriverVersion&(version&)

Delphi dagGetDriverVersion(var version:DWORD)

Parameters

version Pointer to the version number of the current device driver.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqGetHardwarelnfo

Program References | ERREX.PAS (Delphi)

Used With All devices

daqgGetDriverVersion alowsyou to get the revision level of the driver currently in use.

dagGetHardwarelnfo

DLL Function

dagGetHardwarelnfo(DagHandleT handle, DagHardwarelnfo whichlnfo, VOID * info);

[dagGetHardwarelnfo(DagHandleT handle, DagHardwarelnfo whichlnfo, VOID * info);
Visual BASIC VBdaqGetHardwarelnfo&(ByVal handle&, ByVal whichInfo&, info As Variant)

Delphi dagGetHardwarelnfo(handle:DagHandleT; whichlnfo:DagHardwarelnfo; info:pointer)
Parameters

handle Handle to the device

whichlnfo Specifies what type of device information to retrieve

* info Pointer to the returned device information

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagGetDriverVersion, dagOpen

Program References

DACEX.PAS, ERREX.PAS (Delphi)

Used With

All devices

dagGetHardware Info alowsyou to retrieve specific hardware information for the specified
device. The device handle must be avalid device handle that is currently open. To open adevice,
see the dagOpen function.

dagGetLastError

DLL Function

dagGetLastError(DagHandleT handle, DagError *errCode);

C dagGetLastError(DagHandleT handle, DagError *errCode);

Visual BASIC VBdaqGetLastError&(ByVal handle&, errCode&)

Delphi dagGetLastError(handle:DagHandleT; var errCode:DagError): DagError; stdcall;
external DAQX_DLL; procedure dagDefaultErrorHandler(handle:DagHandleT;
errCode:DagError)

Parameters

handle Handle to the device

*errCode Returned last error code

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagDefaultErrorHandler, dagProcesskError, dagSetDefaultErrorHandler

Program References

None

Used With

All devices

dagGetLastError alowsyou to retrieve the last error condition registered by the driver.

3-62

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

daql0Get8255Conf

DLL Function

daql0Get8255Conf(DagHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh, BOOL
portCLow, PDWORD config);

C daql0Get8255Conf(DagHandleT handle, BOOL portA, BOOL portB, BOOL portCHigh, BOOL
portCLow, PDWORD config);

Visual BASIC VBdaql0Get8255Conf&(ByVval handle&, ByVal portA&, ByVal portBé&, ByVal portCHigh&,
ByVal portCLow&, config&)

Delphi daql0Get8255Conf(handle:DagHandleT; portA:longbool; portB:longbool;
portCHigh: longbool; portCLow: longbool; var config:DWORD)

Parameters

handle Handle to the device

portA 8255 port A value

portB 8255 port B value

portCHigh 8255 port C high nibble value

portCLow 8255 port C low nibble value

config 8255 current configuration

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqlORead, dagqlOReadBit, daqlOWrite, daqlOWriteBit

Program References

DIGEXL.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)

Used With

DaqBook100, DagBook120, DagBook200, DagBoard100A, DagBoard200A

daq10Get8255ConT allows you to set/get the configuration for the specified 8255 device with
the specified port configurations. The configuration is returned in the config parameter and will
indicate the current configuration of the 8255. When set to TRUE, portA, portB, portCHigh
and portCLow flags will configure the respective port as an input port. If theflagis set to FALSE,
the port will be configured as an output.

daglORead

DLL Function

daqglORead(DagHandleT handle, DaqglODeviceType devType, DaglODevicePort devPort,
DWORD whichDevice, DaqlOExpansionPort whichExpPort, PDWORD value);

C daqglORead(DagHandleT handle, DaqglODeviceType devType, DaglODevicePort devPort,
DWORD whichDevice, DaqlOExpansionPort whichExpPort, PDWORD value);

Visual BASIC VBdaqglOReadBit&(ByVal handleé&, ByVal devType&, Byval devPorté&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)

Delphi daglOReadBit(handle:DagHandleT; devType:DaqlODeviceType; dvPort:DaqlODevicePort;
whichDevice:DWORD; whichExpPort:DaqlOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters

handle Handle to the device to perform the 10 read

devType 10 Device type

devPort 10 port selection

whichDevice IO device instance to read from

whichExpPort 10 device expansion port to read from

value 10 value read

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqlOReadBit, daqlOWrite, dagqlOWriteBit

Program References

DIGEXL.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)

Used With

All devices

daqlORead alows you to read the specified port on the selected device. The read operation will
return the current state of the port in the value parameter. Normally, if the selected port isabyte-
wide port, the port state will occupy the low-order byte of the vallue parameter. Digital 10
channels for the port correspond to each bit within this low-order byte. If the bit is set, it indicates
the channel isin ahigh state. If the bit is not set, the channel isindicated to bein alow state.

Programmer’'s Manual

3-63

Dag* Command Reference (Enhanced API)

Chapter 3

daglOReadBit

DLL Function

daglOReadBit(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitvValue);

C daglOReadBit(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitValue);

Visual BASIC VBdaqglOReadBit&(ByVal handleé&, ByVal devType&, Byval devPorté&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)

Delphi daglOReadBit(handle:DagHandleT; devType:DaqlODeviceType; dvPort:DaqlODevicePort;
whichDevice:DWORD; whichExpPort:DaqlOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters

handle Handle to the device from which to perform the 10

devType 10 Device type

devPort 10 device port selection

whichDevice 10 device selection

whichExpPort IO expansion port address

bitNum 10 port bit location to read

bitvalue 10 port bit value (TRUE - high, FALSE - low)

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqlORead, daqlOWrite, dagqlOWriteBit

Program References

DIGEXL.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)

Used With

All devices

daqlOReadBit alowsyou to read a specified bit on the selected device and port. The read
operation will return the current state of the selected bit in the bitValue parameter. The selected
bit (specified by the bitNum parameter) corresponds to the 1O channel on the port which isto be
read. ThebitValue will be TRUE indicating a high state or FALSE indicating alow state.

daglOWrite

DLL Function

daglOWrite(DagHandleT handle, DaqlODeviceType devType, DaqglODevicePort devPort,
DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD value);

C daglOWrite(DagHandleT handle, DaqlODeviceType devType, DaglODevicePort devPort,
DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD value);

Visual BASIC VBdaqlOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)

Delphi daglOWriteBit(handle:DagHandleT; devType:DaqlODeviceType;
dvPort:DaqglODevicePort; whichDevice:DWORD; whichExpPort:DaqlOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters

handle Handle of the device to perform an 10 write operation

devType 10 device type

devPort 10 device port selection

whichDevice 10 device selection

whichExpPort IO device expansion port address

value Value to write

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqlORead, daqlOWriteBit, daqlOReadBit

Program References

DIGEXL.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)

Used With

All devices

daqlOWrite alowsyou to write to the specified port on the selected device. The write operation
will write the settings indicated in the val ue parameter to the selected port. The value written
will depend on the width of the selected port. Normally, for byte-wide ports, only the low-order byte
of the value parameter will be written. The 10 channels for the port correspond to each bit within
the value written. If the channel isto be driven to a high state, then the corresponding bit should be

Set.
Set.

Likewise, if the channel isto be driven to alow state, then the corresponding bit should not be

3-64

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

daglOWriteBit

DLL Function

daglOWriteBit(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitvalue);

C daglOWriteBit(DagHandleT handle, DaqlODeviceType devType, DaqlODevicePort
devPort, DWORD whichDevice, DaglOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitvalue);

Visual BASIC VBdaglOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPorté&, ByVval
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)

Delphi daglOWriteBit(handle:DagHandleT; devType:DaglODeviceType;
dvPort:DaglODevicePort; whichDevice:DWORD; whichExpPort:DaqlOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters

handle Handle of the device to perform an IO write to

devType 10 device type

devPort 10 device port selection

whichDevice 10 device selection

whichExpPort IO device expansion port address

bitNum Bit number to write

bitvalue Bit value to write (TRUE - high, FALSE - low)

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also daqlOWrite, dagqlORead, daglOReadBit

Program References

DIGEXL.C, DAQEX.FRM (VB), DIGEX.PAS (Delphi)

Used With

All devices

daqlOWriteBit alowsyou to write a specified bit on the selected device and port. The write
operation will write the specified bit value to the bit selected. The selected bit, specified by the

b1 tNum parameter, corresponds to the channel on the port for the IO to be driven. ThebitValue
parameter should be set to TRUE to drive the channel to a high state or FALSE indicating alow
state.

dagOnline

DLL Function

daqgOnline(DagHandleT handle, PBOOL online);

C daqgOnline(DagHandleT handle, PBOOL online);

Visual BASIC VBdagOnline&(ByVval handle&, online&)

Delphi daqgOnline(handle: DagHandleT; var online: longbool)

Parameters

handle Handle of the device to test for online

online Boolean indicating whether the device is currently online

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also daqOpen, daqClose

Program References

ERREX.PAS (Delphi)

Used With

All devices

dagOnline alowsyou to determine if adeviceisonline. The device handle must be avalid
device handle which has been opened using the daqOpen function. The onl ine parameter
indicates the current online state of the device (TRUE - device online; FALSE - device not online).

Programmer’'s Manual

3-65

Dag* Command Reference (Enhanced API)

Chapter 3

daqOpen

DLL Function daqOpen(LPSTR dagName);

C daqOpen(LPSTR dagName);

Visual BASIC VBdaqOpen&(ByVal daqgName$)

Delphi daqOpen(devName: PChar)

Parameters

dagName String representing the name of the device to be opened

Returns A handle to the specified device (also, refer to APl Error Codes on page 3-83)
See Also daqgClose, dagOnline

Program References

ADCEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS, ADCEX.PAS (Delphi)

Used With

daqgOpen alows you to open an installed Dag* device for operation. The dagOpen function will
initiate a session for the device name specified by the dagName parameter by opening the device,
initializing it, and preparing it for further operation. The dagName specified must reference a
currently configured device. See Daqg* Configuration utility (inthe Installation chapters) for
more details on configuring devices and assigning device names.

daqgOpen should be performed prior to any other operation performed on the device. This function
will return adevice handle that is used by other functions to reference the device. Once the device
has been opened, the device handle should be used to perform subsequent operations on the device.

Most functions in this manual require adevice handle in order to perform their operation. When the
device session is complete, daqClose may be called with the device handle to close the device
session.

dagProcessError

DLL Function

dagProcessError(DagHandleT handle, DagError errCode);

C dagProcessError(DagHandleT handle, DagError errCode);

Visual BASIC VBdagProcessError&(ByVvVal handle&, ByVal errCode&)

Delphi dagProcessError(handle:DagHandleT; errCode:DagError)

Parameters

handle Handle to the device for which the specified error is to be processed.

errCode Specifies the device error code to process

Returns Refer to API Error Codes on page 3-83

See Also dagSetDefaultErrorHandler, daqGetLastError, dagDefaultErrorHandler

Program References

None

Used With

All devices

dagProcessError alows an application to initiate an error for processing by the driver. This
command can be used when it is desirable for the application to initiate processing for a device-
defined error.

3-66

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagReadCalFile

DLL Function

daqgReadCalFile(DagHandleT handle, LPSTR calfile);

C

daqgReadCalFile(DagHandleT handle, LPSTR calfile);

Visual BASIC VBdaqReadCalFile&(ByVal handle&, ByVal calfile$)

Delphi daqgReadCalFile(handle:DagHandleT; calfile:PChar)

Parameters

handle Handle to the device for which to associate the calibration file.

calfile The file name with optional path information of the calibration file. If calfile is NULL or empty (*”), the default

calibration file DAQBOOK.CAL will be read.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
DerrinvCalfile - Error occurred while opening or reading calibration file

See Also daqCalSetup, daqCalConvert, dagCalSetupConvert

Program References | None

Used With

dagReadCalFile istheinitiaization function for reading in the calibration constants from the
calibration text file. Thisfunction (usually called once at the beginning of a program) will read all
the calibration constants from the specified file. The cal i le parameter specifiesthe
path\filename of the calibration file to read.

If calibration constants for a specific channel number and gain setting are not contained in the file,
ideal calibration constants will be used—essentially performing no calibration for that channel. If an
error occurs while trying to open the calibration file, ideal calibration constants will be used for all
channels and a non-zero error code will be returned by the dagReadCalFi I e function.

dagSetDefaultErrorHandler

DLL Function

dagSetDefaul tErrorHandler(DagErrorHandlerFPT handler);

Cc

dagSetDefaul tErrorHandler(DagErrorHandlerFPT handler);

Visual BASIC VBdagSetDefaultErrorHandler&(ByVal handler&)

Delphi dagSetDefaul tErrorHandler (handler:DagErrorHandlerFPT)

Parameters

handler Pointer to a user-defined error handler function.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagDefaultErrorHandler, dagGetLastError, dagProcessError, dagSetErrorHandler

Program References

ERREX.PAS (Delphi)

Used With

All devices

dagSetDefaultErrorHandler alowsyou to set the driver to use the default error handler
specified for all devices.

dagSetErrorHandler

DLL Function

dagSetErrorHandler(DagHandleT handle, DagErrorHandlerFPT handler);

C

dagSetErrorHandler(DagHandleT handle, DagErrorHandlerFPT handler);

Visual BASIC VBdagSetErrorHandler&(ByVal handle&, ByVal handler&)

Delphi dagSetErrorHandler(handle:DagHandleT; handler:DagErrorHandlerFPT)

Parameters

handle Handle to the device to which to attach the specified error handler

handler Pointer to a user defined error handler function.

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagSetDefaul tErrorHandler, dagDefaultErrorHandler, dagGetLastError,

dagProcessError

Program References

ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS (Delphi)

Used With

dagSetErrorHandler specifiesthe routine to call when an error occursin any command. The
default routine displays a message and then terminates the program. If thisis not desirable, use this
command to specify your own routine to be called when errors occur. If you want no action to occur
when a command error is detected, use this command with anull (0) parameter. The default error
routineis dagDefaultHandler.

Programmer’'s Manual 3-67

Dag* Command Reference (Enhanced API)

Chapter 3

dagSetOption

DLL Function dagSetOption(DagHandleT handle, DWORD chan, DWORD flags, DaqOptionType
optionType, FLOAT optionValue);

C dagSetOption(DagHandleT handle, DWORD chan, DWORD flags, DaqOptionType
optionType, FLOAT optionValue);

Visual BASIC VBdagSetOption&(ByVal handleé&, ByVal chané&, ByVal flags&, ByvVal optionTypeé&,
ByVal optionValuel)

Delphi dagSetOption(Handle:DagHandleT; chan:DWORD; flags:DWORD;
optionType:DaqOptionType; optionValue:FLOAT)

Parameters

handle The handle to the device for which to set the option

chan The channel number on the device for which the option is to be set

flags Flags specifying the options to use.

optionType Specifies the type of option.

optionValue The value of the option to set

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-44)

See Also dagAdcExpSetChanOption,

Program References | None

Used With All devices

dagSetOption alowsthe setting of options for adevice' s channel/signal path configuration.

The chan parameter specifies which channel the option applies to.
The optionType specifies the type of option to apply to the channel.
The optionValue parameter specifies the value of the option.

The flags parameter specifies how the option isto be applied.

For more information on the options and their valid settings, refer to the Option Value and Option
Type tables.

dagSetTimeout

DLL Function

dagSetTimeout(DagHandleT handle, DWORD mSecTimeout);

C dagSetTimeout(DagHandleT handle, DWORD mSecTimeout);

Visual BASIC VBdagSetTimeout&(ByVal handle&, ByVal mSecTimeout&)

Delphi dagSetTimeout(handle:DagHandleT; mSecTimeout:DWORD)

Parameters

handle Handle to the device for which the event time-out is to be set

mSecTimeout Specifies time-out (ms) for events

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagWaitForEvent, dagWaitForEvents

Program References | None

Used With All devices

dagSetTimeout alows you to set the time-out for waiting on a single event or multiple events.
This function can be used in conjunction with the dagWai tForEvent and
dagWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to
be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for
the event(s) to occur. If the event(s) do not occur within the specified time-out, the
dagWaitForEvent and/or dagWaitForEvents will return.

3-68

Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

daqgTest

DLL Function

daqTest(DagHandleT handle, DagTestCommand command, DWORD count, PBOOL
cmdAvailable, PDWORD result);

C daqTest(DagHandleT handle, DagTestCommand command, DWORD count, PBOOL
cmdAvailable, PDWORD result);

Visual BASIC VBdagTest&(ByVal handle&, ByVal command&, ByVal count&, cmdAvailableé&, result&)

Delphi [not supported]

Parameters

handle Handle to the device for which the test is to be performed

command Specifies the type of test to be run

count Optional parameter which specifies the length of the test

cmdAvailable Return Boolean indicating the availability of the test for the device

result Pointer to the test result field

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagOpen

Program References | None

Used With All devices

daqgTest alowsyou to test a Dag* device for specific functionality. Test types vary, and test
results are based on the type of test requested. Tests can only be performed on valid, opened Dag*
devices. If there are problems with the test, be sure to check the device for proper configuration and
that the device is powered-on and properly connected.

The command parameter specifiesthe test to run. There are two main types of tests: resource and
performance.

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources
to function efficiently. If one or more of the resource tests fail, the Daq Configuration utility (found
in the operating system’s Control Panel) may be used to change the resource settings related to the
problem Valid resource test types are defined as follows:

DtsBaseAddressValid - Thistest will indicateif thereis a problem communicating with
the device at its currently specified base address. A non-zero in the result parameter will
indicate afailed condition.

DtsInterruptLevelValid - Thistest will indicate if thereis aproblem with performing
acquisitions using interrupts. A non-zero in the result parameter will indicate afailed
condition. If thisisthe case, the interrupts may not be properly configured (if the deviceisa
DagBook, the LPT interrupts may not be enabled on the system) or an interrupt conflict exists
with another device.

DtsDmaChannelValid - (DagBoard only) Thistest will indicate if there is a problem with
performing acquisitions through DMA transfers with the currently configured DMA channel for
the device. A non-zero inthe result parameter will indicate afailed condition. If thisisthe
case, DMA may not be enabled for the device or a conflict may exist with another device.

Performance tests measure the speed at which certain operations can be performed on the device.
In general, the performance test results indicate the maximum rate at which the operation can be
performed onthedevice. Thevalid performance test types are defined as follows:

DtsAdcFifolnputSpeed - Thistest will determine the maximum rate at which analog
input can be acquired and transferred to system memory. Analog input performance results will
bereturned inthe result parameter with units of samples/second.
DtsDacFifoOutputSpeed - (DagBoard only) Thistest will determine the maximum rate
at which analog output data can be read from system memory and transferred to the device's
DAC FIFO. Analog output performance results will be returned in the resu It parameter with
units of samples/second.

DtslOlnputSpeed - Thistest will determine the maximum rate at which digital input can
be read from the device' s DIO port and transferred to system memory. Digital input
performance results will be returned in the resul t parameter with units of bytes/second.
Dtsl100utputSpeed - Thistest will determine the maximum rate at which digital output can
be read from system memory and output to the device’ s DIO port. Digital output performance
results will be returned in the result parameter with units of bytes/second.

Programmer’'s Manual

3-69

Dag* Command Reference (Enhanced API) Chapter 3

The cmdAvai lable parameter is a pointer to a Boolean value that indicates whether or not the
specified test is available for the device.

The count parameter can be used to indicate the duration or length of the test. For instance, a
resource test will be run count times; and if any one iteration of the test fails, it will indicate an
overall failure of thetest. For a performance test, the count parameter will indicate the number of
times to run the test, and the test result will be an average of all the tests performed.

dagWaitForEvent

DLL Function

dagWaitForEvent(DagHandleT handle, DagTransferEvent dagEvent);

C dagWaitForEvent(DagHandleT handle, DagTransferEvent dagEvent);

Visual BASIC VBdagWaitForEvent&(ByVvVal handle&, ByVal dagEventé&)

Delphi dagWaitForEvent(handle:DagHandleT; dagEvent:DaqTransferEvent)

Parameters

handle Handle of the device for which to wait of the specified event

dagEvent Specifies the event to wait on

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagWaitForEvents, dagSetTimout

Program References | ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)

Used With All devices
dagwWaitForEvent alowsyou to wait on a specific Dag* event to occur on the specified device.
This function will not return until the specified event has occurred or the wait has timed out—
whichever comesfirst. The event time-out can be set with the dagSetTimout function. Seethe
Transfer Event Definitions table for event definitions.

dagWaitForEvents

DLL Function

dagWaitForEvents(DagHandleT *handles, DagTransferEvent *dagEvents,
DWORD eventCount, BOOL *eventSet, DagWaitMode waitMode);

C dagWaitForEvents(DagHandleT *handles, DagTransferEvent *dagEvents,
DWORD eventCount, BOOL *eventSet, DagWaitMode waitMode);
Visual BASIC VBdagWaitForEvents&(handles&(), dagEvents&(), ByVal eventCount&, eventSet&(),
ByVval waitMode&)
Delphi dagWaitForEvents(handles:DagHandlePT; dagEvents:DagTransferEventP;
eventCount:DWORD; eventSet:PLONGBOOL; waitMode:DagWaitMode)

Parameters

*handles Pointer to an array of handles which represent the list of device on which to wait for the events

*dagEvents Pointer to an array of events which represents the list of events to wait on

eventCount Number of defined events to wait on

*eventSet Pointer to an array of Booleans indicating if the events have been satisfied.

waitMode Specifies the mode for the wait

Returns DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagWaitForEvent, dagSetTimeout

Program References | None

Used With All devices
dagWaitForEvents allows you to wait on specific Dag* events to occur on the specified
devices. Thisfunction will wait on the specified events and will return based upon the criteria
selected with the wai tMode parameter. A time-out for al events can be specified using the
daqgSetTimeout command.
Eventsto wait on are specified by passing an array of event definitionsin the events parameter.
The number of eventsis specified with the eventCount parameter. Seethe Transfer Event
Definitions table for events parameter definitions. Also seethe Transfer Event Wait Mode
Definitions table for waitMode parameter definitions.

3-70 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

dagZeroConvert

DLL Function dagZeroConvert(PWORD counts, DWORD scans);
C dagZeroConvert(PWORD counts, DWORD scans);
Visual BASIC VBdagZeroConvert&(counts®%(), ByVal scans&)
Delphi dagZeroConvert(counts:PWORD; scans:DWORD)
Parameters
counts The raw data from one or more scans.
scans The number of scans of raw data in the counts array.
Returns DerrZClInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagZeroSetup, dagZeroSetupConvert, dagZeroDbk19
Program References | None
Used With All devices

dagZeroConvert compensates one or more scans according to the previously called
dagZeroSetup function. Thisfunction will modify the array of data passed to it.

dagZeroDBK19
DLL Function dagZeroDbk19(BOOL zero);
C dagZeroDbk19(BOOL zero);
Visual BASIC VBdaqZeroDbk19&(ByVal zero&)
Delphi dagZeroDbk19(zero: longbool)
Parameters
zero If non-zero will enable auto zero compensation in the daqCvtTC... functions
Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagZeroSetup, dagZeroConvert, dagZeroSetupConvert, daqCvtTCSetup,
daqCvtTCConvert, daqcvtTcSetupConvert
Program References | None
Used With All devices

dagZeroDBK19 will configure the thermocouple linearization functions to automatically perform
zero compensation. Thisisthe easiest way to use zero compensation with the DBK19. When
enabled, the thermocouple conversion functions will require a CJC zero reading and a TC zero
reading to precede the actual CJC and TC reading. This can easily be done by configuring the scan
group to read:

channel 1 using the DBK 19 CJC gain code (CJC zero)

channel 1 using the gain code of the connected TC (TC zero)

channel 0 using the DBK19 CJC gain code (CJC)

and finally, the thermocouple channels using the gain code of the connected thermocouples.

Note: the offset of the real CJC value should be specified (not the offset of the CJC zero) when
calling the thermocouple linearization setup functions.

Programmer’'s Manual

3-71

Dag* Command Reference (Enhanced API)

Chapter 3

dagZeroSetup

DLL Function

dagZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);

C dagZeroSetup(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD nReadings);
Visual BASIC VBdagZeroSetup&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVval
nReadings&)
Delphi dagZeroSetup(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD; nreadings:DWORD)
Parameters
nscan The number of readings in a single scan.
zeroPos The position of the zero reading within the scan
readingsPos The position of the readings to be zeroed within the scan.
nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the
zero reading.
Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 3-83)
See Also dagZeroConvert, dagZeroSetupConvert, dagZeroDbk19
Program References | None
Used With All devices

dagZeroSetup configures the location of the shorted channel and the channels to be zeroed
within a scan, the size of the scan, and the number of readings to zero. However, this function does
not do the actual conversion. A non-zero return value indicates an invalid parameter error.

dagZeroSetupConvert

DLL Function

dagZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD
nReadings, PWORD counts, DWORD scans);

[dagZeroSetupConvert(DWORD nscan, DWORD zeroPos, DWORD readingsPos, DWORD
nReadings, PWORD counts, DWORD scans);

Visual BASIC VBdagZeroSetupConvert&(ByVal nscan&, ByVal zeroPos&, ByVal readingsPos&, ByVal
nReadings&, counts%(), ByVal scans&)

Delphi dagZeroSetupConvert(nscan:DWORD; zeroPos:DWORD; readingsPos:DWORD;
nreadings:DWORD; counts:PWORD; scans:DWORD)

Parameters

nscan The number of readings in a single scan.

zeroPos The position of the zero reading within the scan

readingsPos The position of the readings to be zeroed within the scan.

nReadings The number of readings immediately following the zero reading that are sampled at the same gain as the
zero reading.

counts The raw data from one or more scans.

scans The number of scans of raw data in the counts array.

Returns DerrzZClInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 3-83)

See Also dagZeroSetup, dagZeroConvert, dagZeroDbk19

Program References | None

Used With All devices

dagZeroSetupConvert performs both the setup and convert stepswith one call. Thisis useful
when the zero compensation needs to be performed multiple times because data was read from
channels at different gains or from different boards.

3-72

Programmer’s Manual

Chapter 3 Dag* Command Reference (Enhanced API)

API Reference Tables

These tables provide information for programming with the Dag* Application Programming Interface.
Information includes channel identification and error codes, as well as valid parameter values and
descriptions. The tables are organized as follows:

API Parameter Reference Tables

Table Title Sub-Title/Parameter/Description Page |

A/D Channel Descriptions Identifies Dag* local and expansion channel numbering scheme 3-74

Daq Device Property Definitions - Identifies the format (DWORD, STRING, or FLOAT) for property parameters 3-74

daqGetDeviceProperties

Digital I/O Port Connection Identifies Dag* local and expansion digital port numbering scheme 3-75

Event-Handling Definitions Transfer Event Definitions - DagTransferEvent 3-76
Transfer Event Wait Mode Definitions - DagWaitMode

Hardware Information Definitions Hardware Information Selector Definitions - DagHardware Info 3-76
Hardware Version Definitions - DaqHardwareVersion

DBK Card Definitions DBK Card Expansion Bank Definitions - DagAdcExpType 3-76

Dbk Card Option Value Definitions - DagChanOptionValue
Dbk Card Option Type Selector Definitions - DaqChanOptionType

ADC Gain Definitions Identifies gain codes for Dag* base unit and several DBKs 3-77

ADC Trigger Source Definitions DagAdcTriggerSource 3-78
DagEnhTrigSensT

ADC Miscellaneous Definitions ADC Flag Definitions - DagAdcFlag 3-78

Frequency vs Period - DagAdcRateMode

ADC Acquisition Mode Definitions - DagAdcAcgMode

ADC Transfer Mask Definitions - DagAdcTransferMask

ADC Clock Source Definitions - DagAdcClockSource

ADC File Open Mode Definitions - DagAdcOpenMode

ADC Acquisition/Transfer Active Flag Definitions - DagAdcActiveFlag
ADC Acquisition State - DagAdcAcqState

ADC BufferTransfer Mask- DagAdcBufferXferMask

DAC Definitions DAC Device Type Definitions - DagDacDeviceType 3-79
DAC Output Mode Definitions - DagDacOutputMode

DAC Trigger Source Definitions - DagDacTriggerSource

DAC Clock Source Definitions - DagDacClockSource

DAC Waveform Mode Definitions - DagDacWaveformMode

DAC Predefined Waveform Type Definitions - DagDacWaveType

DAC Transfer Mask Definitions - DagDacTransferMask

DAC Waveform/Transfer Active Flag Definitions - DagDacActiveFlag
Data Conversion Definitions Software Calibration Type Definitions - Dcal Type 3-79
RTD Type Definitions - RtdType
Thermocouple Type Definitions - TCType
WBK Card Definitions WBK Option Values - DagChanOptionValue 3-80
WBK Channel Options - DagAdcExpType
WBK Module Option-Types - DagOptionType
General I/O Definitions 1/0 Device Type Definitions - DaqlODeviceType 3-81
1/0 Operation Code Definitions - Daql00perationCode
1/0 Operation Code Definitions - DaqlOExpansionPort
DAC Transfer Mask Definitions - Dag10TransferMask
1/0 Operation Code Definitions - DaqlOEventCode

DAC Transfer Active Flag Definitions - DaqlOActiveFlag
1/0 Port Type Definitions - DaqlODevicePort

9513 Counter/Timer Definitions Time-of-Day Definitions - Daq9513TimeOfDay 3-82
Count Source Definitions - Daq9513CountSource

Output Control Definitions - Daq95130utputControl

Gating Control Definitions - Daq9513GatingControl

Multiple Counter Command Definitions - Daq9513Mu l tCtrCommand

DaqTest Command Definitions DagTestCommand 3-82

Calibration Input Signal Sources DagCal InputT 3-82
DaqCalTableTypeT

API Error Codes Identifies API errors by number and description 3-83

Programmer’'s Manual 3-73

Dag* Command Reference (Enhanced API)

Chapter 3

Daq Device Property Definitions - dagGetDeviceProperties

A/D Channel Descriptions

A/D Channel Source

0to 15 Local channels 0 to 15
16 to 31 Channels 0 to 15 of A/D expansion card 0
32 to 47 Channels 0 to 15 of A/D expansion card 1
48 to 63 Channels 0 to 15 of A/D expansion card 2
64 to 79 Channels 0 to 15 of A/D expansion card 3
80 to 95 Channels 0 to 15 of A/D expansion card 4
96 to 111 Channels 0 to 15 of A/D expansion card 5
112 to 127 Channels 0 to 15 of A/D expansion card 6
128 to 143 Channels 0 to 15 of A/D expansion card 7
144 to 159 Channels 0 to 15 of A/D expansion card 8
160 to 175 Channels 0 to 15 of A/D expansion card 9
176 to 191 Channels 0 to 15 of A/D expansion card 10
192 to 207 Channels 0 to 15 of A/D expansion card 11
208 to 223 Channels 0 to 15 of A/D expansion card 12
224 to 239 Channels 0 to 15 of A/D expansion card 13
240 to 255 Channels 0 to 15 of A/D expansion card 14
256 to 271 Channels 0 to 15 of A/D expansion card 15
272 High-speed digital /O (DagBook/100,
DagBook/200, DagBoard/100A or
| DagBoard/200A)

Note: In differential mode, only (sub)channels 0 to 7 are valid.

Property Description Format
deviceType Main Chassis Device Type Definition DWORD
basePortAddress Port Address (ISA Addr, LPT Port, etc) DWORD
dmaChannel DMA Channel (if applicable) DWORD
protocol Interface Protocol DWORD
alias Device Alias Name STRING
maxAdChannels Maximum A/D channels (with full expansion) DWORD
maxDaChannels Maximum D/A channels (with full expansion) DWORD
maxDigInputBits Maximum Dig. Inputs (with full expansion) DWORD
maxDigOutputBits Maximum Dig. Outputs (with full expansion) DWORD
maxCtrChannels Maximum Counter/Timers (with full expansion) DWORD
mainUnitAdChannels Maximum Main Unit A/D channels (no expansion) DWORD
mainUnitDaChannels Maximum Main Unit D/A channels (no expansion) DWORD
mainUnitDigInputBits Maximum Main Unit Digital Inputs (no expansion) DWORD
mainUnitDigOutputBits Maximum Main Unit Digital Outputs (no expansion) DWORD
mainUnitCtrChannels Maximum Main Unit Counter/Timer channels (no exp.) DWORD
adFifoSize AID on-board FIFO Size DWORD
daFifoSize D/A on-board FIFO Size DWORD
adResolution Maximum A/D Converter Resolution DWORD
daResolution Maximum D/A Converter Resolution DWORD
adVinFreq Minimum A/D Conversion Scan Frequency (Hz) FLOAT
adVMaxFreq Maximum A/D Conversion Scan Frequency (Hz) FLOAT
daMinFreq Minimum D/A Output Update Frequency (Hz) FLOAT
daMaxFreq Maximum D/A Output Update Frequency (Hz) FLOAT
3-74 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

Digital I/0 Port Connection

Base Unit

Description | value | Address Select Jumper Location
Ddp4BitlO 83h Connector P1

DdpLocalA 10h Connector P2 Port A

DdpLocalB 11h Connector P2 Port B

DdpLocalC 12h Connector P2 Port C
DdpLocalCHigh B2h Connector P2 Port C High Nibble
DdpLocalCLow 92h Connector P2 Port C Low Nibble

Expansion Unit Address A

Description | value | Address Select Jumper Location / (DBK20 & 21
DdpExpOA 60h Dig Exp Chan 0 Port A/ (P2 A)

DdpExp0B 61h Dig Exp Chan 0 Port B/ (P2 A)

DdpExp0OC 62h Dig Exp Chan 0 Port C / (P2 A)
DdpExpOHigh E2h Dig Exp Chan 0 Port C High Nibble / (P2 A)
DdpExpOLow C2h Dig Exp Chan 0 Port C Low Nibble / (P2 A)
DdpExp1A 64h Dig Exp Chan 1 Port A/ (P3 A)

DdpExp1B 65h Dig Exp Chan 1 Port B/ (P3 A)

DdpExpl1C 66h Dig Exp Chan 1 Port C/ (P3 A)
DdpExp1CHigh E6h Dig Exp Chan 1 Port C High Nibble / (P3 A)
DdpExplLow C6h Dig Exp Chan 1 Port C Low Nibble / (P3 A)

Expansion Unit Address B

Description | value | Address Select Jumper Location / (DBK20 & 21)
DdpExp2A 68h Dig Exp Chan 2 Port A/ (P2 B)

DdpExp2B 69h Dig Exp Chan 2 Port B / (P2 B)

DdpExp2C 6Ah Dig Exp Chan 2 Port C / (P2 B)
DdpExp2CHigh EAh Dig Exp Chan 2 Port C High Nibble / (P2 B)
DdpExp2Low CAh Dig Exp Chan 2 Port C Low Nibble / (P2 B)
DdpExp3A 6Ch Dig Exp Chan 3 Port A/ (P3 B)

DdpExp3B 6Dh Dig Exp Chan 3 Port B/ (P3 B)

DdpExp3C 6Eh Dig Exp Chan 3 Port C / (P3 B)
DdpExp3CHigh EEh Dig Exp Chan 3 Port C High Nibble / (P3 B)
DdpExp3Low CEh Dig Exp Chan 3 Port C Low Nibble / (P3 B)

Expansion Unit Address C

Description | value | Address Select Jumper Location / (DBK20 & 21)
DdpExp4A 70h Dig Exp Chan 4 Port A/ (P2 C)

DdpExp4B 71h Dig Exp Chan 4 Port B/ (P2 C)

DdpExp4C 72h Dig Exp Chan 4 Port C/ (P2 C)
DdpExp4CHigh F2h Dig Exp Chan 4 Port C High Nibble / (P2 C)
DdpExp4Low D2h Dig Exp Chan 4 Port C Low Nibble / (P2 C)
DdpExp5A 74h Dig Exp Chan 5 Port A/ (P3 C)

DdpExp5B 75h Dig Exp Chan 5 Port B/ (P3 C)

DdpExp5C 76h Dig Exp Chan 5 Port C/ (P3 C)
DdpExp5CHigh F6h Dig Exp Chan 5 Port C High Nibble / (P3 C)
DdpExp5Low D6h Dig Exp Chan 5 Port C Low Nibble / (P3 C)

Expansion Unit Address D

Description | value | Address Select Jumper Location / (DBK20 & 21)
DdpExp6A 78h Dig Exp Chan 6 Port A/ (P2 D)

DdpExp6B 79h Dig Exp Chan 6 Port B/ (P2 D)

DdpExp6C 7Ah Dig Exp Chan 6 Port C / (P2 D)
DdpExp6CHigh FAh Dig Exp Chan 6 Port C High Nibble / (P2 D)
DdpExp6Low DAh Dig Exp Chan 6 Port C Low Nibble / (P2 D)
DdpExp7A 7Ch Dig Exp Chan 7 Port A/ (P3 D)

DdpExp7B 7Dh Dig Exp Chan 7 Port B/ (P3 D)

DdpExp7C 7Eh Dig Exp Chan 7 Port C / (P3 D)
DdpExp7CHigh FEh Dig Exp Chan 7 Port C High Nibble / (P3 D)
DdpExp7Low DEh Dig Exp Chan 7 Port C Low Nibble / (P3 D)

Programmer’'s Manual

3-75

Dag* Command Reference (Enhanced API)

Chapter 3

Event-Handling Definitions

Transfer Event Definitions - Transfer Event Wait Mode Definitions -
dagTransferEvent dagwaitMode

DteAdcData 0 DwmNoWait 0
DteAdcDone 1 DwmWaitForAny 1
DteDacData 2 DwmWaitForAll 2
DteDacDone 3

DtelOData 4

DtelODone 5

Hardware Information Definitions

Hardware Information Selector Hardware Version Definitions -
Definitions - dagHardwarelnfo | dagHardwareVersion

Definition | value [Definition

| value

DhiHardwareVersion

DaqBook100

DhiProtocol

DagBook112

DhiAdcBits

DagBook120

DhiADmin

DagBook200

BIWIN[R|O

DhiADmax

DagBook216

DagBoard100

DagBoard112

DagBoard200

DagBoard216

Daql12

[{o] ko] EN] Ke2] K631 N 3N | ST] @)

Dag216

WaveBook512 11

WaveBook516 12

TempBook66 13

DBK Card Definitions

DBK Card Expansion Bank Definitions - dagAdcExpType

DBK Card Option Value Definitions -
dagChanOptionVvValue

DaetNotDefined 0 Bank is unknown or undefine the bank Dbk4 cutoff frequencies for DcotMaxFreq option type

DaetDbk50 1 Dbk50 option DcovDbk4Freq18000Hz 0

DaetDbk5 2 Dbk5 option DcovDbk4Freq9000Hz 1

DaetDbk2 3 Dbk2 option DcovDbk4Freq4500Hz 2

DaetDbk4 4 Dbk4 option DcovDbk4Freq2250Hz 3

DaetDbk?7 5 Dbk7 option DcovDbk4Freql125Hz 4

DBK Card Option Type Selector Definitions - DeovDbk4FreqS63Hxz 5

dagChanOptionType

DcotDbk4MaxFreq 0 DcovDbk4Freq281Hz 6

DcotDbk4SetBasel ine 1 DcovDbk4Freql41Hz 7

DcotDbk4Excitation 2 Dbk4 set baseline for DcotSetBasel ine option type

DcotDbk4Clock 3 DcovDbk4Basel ineNever 0

DcotDbk4Gain 4 internally used by dagAdcSetScan | DcovDbk4Basel ineOneShot 1

DcotDbk7Slope 0 Dbk7 debounce times for DcotDebounceTime option
! type

DcotDbk7DebounceTime 1 DcovDbk7DebounceNone 0

DcotDbk7MinFreq 2 DcovDbk7Debounce600us 1

DcotDbk7MaxFreq 3 DcovDbk7Debounce2500us 2

DcotDbk50Gain 0 internally used by dagAdcSetScan | DcovDbk7DebouncelOms 3

3-76 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

ADC Gain Definitions

Base Unit DBK13 Dbk19BiTypeN28 3

DgainX1 0 Dbk13X1 0 Dbk19BiTypeN14 1

DgainX2 1 Dbk13X10 1 Dbk19BiTypeS 3

DgainX4 2 Dbk13X100 2 Dbk19BiTypeR 2

DgainX8 3 Dbk13X1000 3 Dbk19Bi1TypeB 3
Dbk13X2 4 DBK19 Unipolar

DBKA4-Filter Dbk13X20 5 Dbk19UniCJC 1

Dbk4FilterX1l 0 Dbk13X200 6 Dbk19UniTypeJ 2

Dbk4Fi IterX10 1 Dbk13X2000 7 Dbk19UniTypeK 2

Dbk4Fi 1terX100 2 Dbk13X4 8 Dbk19UniTypeT 3

Dbk4Fi 1terX1000 3 Dbk13X40 9 Dbk19UniTypeE 1

Dbk4FilterX2 4 Dbk13X400 10 Dbk19UniTypeN28 3

Dbk4Fi IterX20 5 Dbk13X4000 11 Dbk19UniTypeN14 2

Dbk4Fi 1terX200 6 Dbk13X8 12 Dbk19UniTypeS 3

Dbk4Fi 1terX2000 7 Dbk13X80 13 Dbk19UniTypeR 3

Dbk4FilterX4 8 Dbk13X800 14 Dbk19UniTypeB 3

Dbk4Fi IterX40 9 Dbk13X8000 15

Dbk4Fi 1terX400 10 DBK42

Dbk4Fi 1terX4000 11 DBK14 Bipolar Dbk42X1 0

Dbk4Fi lterXs 12 Dbk14BiCJC Dbk13X2

Dbk4Fi 1terX80 13 Dbk14BiTypeJ Dbk13X100 DBK43/43A

Dbk4Fi 1terX800 14 Dbk14BiTypeK Dbk13X100 Dbk43ReadBridge 0

Dbk4Fi 1terX8000 15 Dbk14BiTypeT Dbk13X200 Dbk43SetOffset 1

DBK4-Bypass Dbk14BiTypeE Dbk13X40 Dbk43SetScal ingGain2

Dbk4BypassX1_583 0 Dbk14BiTypeN28 Dbk13X400 Dbk43SetlnputGain 3

Dbk4BypassX15_83 1 Dbk14BiTypeN14 Dbk13X100

Dbk4BypassX158_3 2 Dbk14BiTypeS Dbk13X200 DBK44

Dbk4BypassX1583 3 Dbk14BiTypeR Dbk13X200 Dbk44X1 0

Dbk4BypassX3_166 4 Dbk14BiTypeB Dbk13X400

Pbk4BypassX31_66 5 DBK14 Unipolar DBK50

Dbk4BypassX316_6 6 Dbk14UniCJC IDbk13X4 Dbk50Range0 0

Dbk4BypassX3166 7 Dbk14UniTypeJ Dbk13X200 Dbk50Range10 1

Dbk4BypassX6_332 8 Dbk14UniTypeK Dbk13X200 Dbk50Range100 2

Dbk4BypassX63_32 9 Dbk14UniTypeT Dbk13X400 Dbk50Range300 3

Dbk4BypassX633_2 10 Dbk14UniTypeE Dbk13X100

Dbk4BypassX6332 11 Dbk14UniTypeN28 Dbk13X800 DBK51

Dbk4BypassX12_664 12 Dbk14UniTypeN14 Dbk13X200 Dbk51Range 0

Dbk4BypassX126_64 113 Dbk14UniTypeS Dbk13X400 Dbk51Range100mV 1

Dbk4BypassX1266_4 14 Dbk14UniTypeR Dbk13X400 Dbk51Rangel 2

Dbk4BypassX12664 15 Dbk14UniTypeB [Dbk13X800 Dbk51Rangel0 3

DBK7 DBK15 Bipolar DBK52 Bipolar

Dbk7X1 0 Dbk15Bi1X1 0 Dbk52B1CJC Dbk19B1CJC
Dbk15BiX2 1 Dbk52BiTypeJ Dbk19BiTypeJd

DBKS8 DBK15 Unipolar Dbk52BiTypeK Dbk19BiTypeK

Dbk8X1 0 Dbk15UniX1 2 Dbk52BiTypeT Dbk19BiTypeT
Dbk15UniX2 3 Dbk52Bi TypeE Dbk19BiTypeE

DBK9 Dbk52BiTypeN28 Dbk19BiTypeN28

Dbk9VoltageA 0 DBK16 Dbk52BiTypeN14 Dbk19BiTypeN14

Dbk9VoltageB 1 Dbk16ReadBridge 0 Dbk52BiTypeS Dbk19BiTypeS

Dbk9VoltageC 2 Dbk16SetOffset 1 Dbk52BiTypeR Dbk19BiTypeR

Dbk9VoltageD 3 Dbkl16SetScalingGain 2 Dbk52BiTypeB Dbk19BiTypeB
Dbk16SetlInputGain 3 DBK52 Unipolar

DBK12 Dbk52UniCJC Dbk19UniCJC

Dbk12X1 0 DBK18 Dbk52UniTypeJ Dbk19UniTypeJd

Dbk12X2 1 Dbk18X1 0 Dbk52Uni TypeK Dbk19UniTypeK

Dbk12X4 2 Dbk52UniTypeT Dbk19UniTypeT

Dbk12X8 3 DBK19 Bipolar Dbk52Uni TypeE Dbk19UniTypeE

Dbk12X16 7 Dbk19Bi1CJC 0 Dbk52Uni TypeN28 Dbk19UniTypeN28

Dbk12X32 11 Dbk19BiTypeJ 1 Dbk52UniTypeN14 Dbk19UniTypeN14

Dbk12X64 15 Dbk19BiTypeK 1 Dbk52UniTypeS Dbk19UniTypeS
Dbk19BiTypeT 2 Dbk52UniTypeR Dbk19UniTypeR
Dbk19BiTypeE 0 Dbk52Uni TypeB Dbk19UniTypeB

Programmer’'s Manual

3-77

Dag* Command Reference (Enhanced API)

Chapter 3

ADC Trigger Source Definitions

dagAdcTriggerSource DagEnhTrigSensT
DatsImmediate 0 DetsRisingEdge)
DatsSoftware 1 DetsFallingEdge 1
DatsAdcClock 2 DetsAbovelevel 2
DatsGatedAdcClock 3 DetsBelowLevel -3
DatsExternal TTL 4 DetsAfterRisingEdge 4
DatsHardwareAnalog . 5 DetsAfterFallingEdge 5
DatsSoftwareAnalog = 6 DetsAfterAbovelevel .6
DatsEnhancedTrig 7 DetsAfterBelowlLevel 7

ADC Miscellaneous Definitions

ADC Flag Definitions - dagAdcFlag

Analog/High Speed Digital Flag

Unsigned/Signed ADC Data Flag

SSH Hold/Sample Flag - For Internal Use Only

DafAnalog ~ 00h

DafUnsigned - 00h

DafSSHSample ~ 00h

DafHighSpeedDigita = 01h

DafSigned . 04h

DafSSHHold ~10h

Unipolar/Bipolar Flag

Single Ended/Differential Flag

Clear or shift the least significant nibble - typically
used with 12-bit ADCs

DafUnipolar ~ 00h DafSingleEnded ~ 00h DaflgnorelLSNibble ~ 00h
DafBipolar _ 02h DafDifferential ~ 08h DafClearLSNibble . 20h
DafShiftLSNibble _ 40h
Frequency vs Period - ADC Acquisition Mode ADC Transfer Mask Definitions -
dagAdcRateMode Definitions - dagAdcAcgMode dagAdcTransferMask
DarmPeriod) DaamNShot) DatmCycleOff .~ 00h
DarmFrequency 1 DaamNShotRearm 1 DatmCycleOn ~ 01h
DaamInfinitePost 2 DatmUpdateBlock ~ 00h
DaamPrePost _ 3 DatmUpdateSingle ~ 02h
DatmWait ~ 00h
DatmReturn . 04h
DatmUserBuf ~ 00h
DatmDriverBuf ~ 08h

ADC Clock Source Definitions

ADC File Open Mode Definitions

ADC Acquisition/Transfer Active Flag

-dagAdcClockSource - dagAdcOpenMode Definitions - dagAdcActiveFlag

DacsAdcClock _ 0 DaomAppendFile ~ 0 DaafAcgActive ~ 01h
DacsGatedAdcClock 1 DaomWriteFile 1 DaafAcqTriggered . 02h
DacsTriggerSource 2 DaomCreateFile 2 DaafTransferActive _ 04h

ADC Acquisition State - ADC Buffer Transfer Mask -
dagAdcAcqState dagAdcBufferXferMask
DaasPreTrig .0 DabtmOldest 1
DaasPostTrig 1 DabtmNewest .2
DabtmWait -3
DabtmReturn 4
3-78 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

DAC Definitions
DAC Device Type Definitions - DAC Output Mode Definitions - DAC Trigger Source Definitions -
dagDacDeviceType dagDacOutputMode dagDacTriggerSource
DddtLocal 0 DdomVoltage 0 DdtsImmediate -0
DddtDbk 1 DdomStaticWave 1 DdtsSoftware 1
DdomDynamicWave 2

DAC Clock Source Definitions -

DAC Waveform Mode Definitions -

DAC Predefined Waveform Type

dagDacClockSource dagDacWaveformMode Definitions - dagDacWaveType
DdcsDacClock 0 DdwmNShot 0 DdwtSine .0
DdcsGatedDacClock 1 DdwmNShotRearm 1 DdwtSquare 1
DdcsAdcClock 2 Ddwminfinite 2 DdwtTriangle 2
DdcsExternal TTL 3

Ddcs9513Ctrl 4

DAC Transfer Mask Definitions -

DAC Waveform/Transfer Active Flag

dagDacTransferMask Definitions - dagDacActiveF lag
DdtmCycleOff ~ 00h DdafWaveformActive 01lh
DdtmCycleOn 01lh DdafWaveformTriggered 02h
DdtmUpdateBlock 00h DdafTransferActive 04h
DdtmUpdateSingle 02h DdafUnderrun 08h

Data Conversion Definitions

Software Calibration Type Definitions - Dcal Type

DcalTypeDefault O
DcalTypeCJC 1 channel to be calibrated is a real CJC reading - not a CJC zero reading
DcalDbk4Bypass 2 channel to be calibrated using the methods and structures for a Dbk4 with the filters
- bypassed (set by jumper on the card)
DcalDbk4Filter 3 channel to be calibrated using the methods and structures for a Dbk4 with the cutoff filters

- enabled

RTD Type Definitions - RtdType

Dbk9RtdTypel00 0 RTD 100 ohm Platinum alpha =.00385
Dbk9RtdType500 1 RTD 500 ohm Platinum alpha = .00385
Dbk9RtdTypelK 2 RTD 1000 ohm Platinum alpha = .00385

Thermocouple Type Definitions - TCType

DBK14 DBK19 DBK52

DbK14TCTypeJ 0 | DbKI9TCTypeJ 9 | Dbk52TCTyped . 9 (Dbk19TCTyped)
DbK14TCTypeK 1 | Dbk19TCTypeK 10 | Dbk52TCTypeK 10 (DbKI9TCTypeK)
DbK14TCTypeT 2 | DbK19TCTypeT 11 | Dbk52TCTypeT 11 (DbKI9TCTypeT)
DbK14TCTypeE 3 | DbK19TCTypeE 12 | DbK52TCTypeE 12 (DbKI9TCTypeE)
Dbk14TCTypeN28 4 | DbKIOTCTypeN28 13 | Dbk52TCTypeN28 13 (Dbk19TCTypeN28)
Dbk14TCTypeN14 5 | DbKIOTCTypeN14 14 | Dbk52TCTypeN14 14 (Dbk19TCTypeN14d)
DbK14TCTypesS 6 | DbK19TCTypesS 15 | Dbk52TCTypeS 15 (DbK19TCTypeS)
DbK14TCTypeR 7 | Dbk19TCTypeR 16 | DbK52TCTypeR 16 (DbKI9TCTypeR)
DbK14TCTypeB 8 | Dbk19TCTypeB 17 | Dbk52TCTypeB 17 (DbKI9TCTypeB)

Programmer’'s Manual

3-79

Dag* Command Reference (Enhanced API)

Chapter 3

WBK Card Definitions
WBK Option Values - DaqChanOptionValue WBK Channel Options - DagAdcExpType
WBK12 Filter-Type - WcotWbk12Fi I terType DoctWbk1l 6
DcovWbk12FilterElliptic 0 DoctWbk12 7
DcovWbk12FilterLinear 1 DoctWbk13 8
WBK12 Filter-Mode - WcotWbk12Fi I'terMode DmctWbk512 9
DcovWbk12Fi lterBypass 0 DmctWbk10 ~ 10
DcovWbk12FilterOn 1 DmctWbk14 11
WBK12 Anti-Aliasing Filter-Mode-WcotWbk12PreFilterMode | DmctWbkl15 12
DcovWbk12PreFilterDefault 0 DmctResponseDac - *13
DcovWbk12PreFilterOff 1 *Response DAC on WaveBook
WBK13 Filter-Type - WcotWbk13Fi l terType
Dcovibk13FilterElliptic 0 WBK Module Option-Types - DaqOptionType
DcovWbk13FilterLinear 1 DcotWbk12Fi lterCutOff 0
WBK13 Filter-Mode - WcotWbk13Fi I terMode DcotWbk12FilterType 1
DcovWbk13Fi lterBypass 0 DcotWbk12Fi lterMode 2
DcovWbk13FilterOn 1 DcotWbk12PreFilterMode 3
WBK13 Anti-Aliasing Filter-Mode- WcotWbk13PreFilterMode | DcotWbk13FilterCutOff 0
DcovWbk13PreFilterDefault 0 DcotWbk13FilterType 1
DcovWbk13PreFilterOff 1 DcotWbk13Fi lterMode 2
WBK14 Current-Source - WcotWbk14CurrentSrc DcotWbk13PreFilterMode 3
DcovWbk14CurrentSrcOff 0 DcotWbkl14LowPassMode 0
DcovWbk14CurrentSrc2mA 1 DcotWbkl4LowPassCutOff 1
DcovWbk14CurrentSrc4mA 2 DcotWbk14HighPassCutOff 2
WBK14 High-Pass Filter - WcotWbk14HighPassCutOff DcotWbk14CurrentSrc 3
DcovWbk14HighPassO 1Hz 0 DcotWbk14PreFilterMode 4
DcovWbk14HighPass10Hz 1 DmotWbk14ExcSrcWaveform 5
WBK14 Low-Pass Filter-Mode - WcotWbk14LowPassMode DmotWbk14ExcSrcFreq 6
DcovWbk14LowPassBypass 0 DmotWbk14ExcSrcAmplitude 7
DcovWbk14LowPassOn 1 DmotWbk14ExcSrcOffset 8
WBK-14 Low-Pass Filter-Mode - WcotWbk14PreFilterMode
DcovWbkl14PreFilterDefault .0
DcovWbk14PreFilterOff 1
WBK14 Excitation-Source Waveform -
WmotWbk14ExcSrcWaveform
DmovWbk14ExcSrcRandom .0
DmovWbk14ExcSrcSine 1
3-80 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

General I/0 Definitions

1I/0 Device Type Definitions - dagql0DeviceType

1/0 Operation Code Definitions -

daqglOOperationCode

DiodtLocalBitlO 0 DioocReadByte 0
DiodtLocal8255 1 DioocWriteByte 1
DiodtLocal9513 2 DioocReadWord 2
DiodtExp8255 3 Dbk20, Dbk21 DioocWriteWord 3
DiodtDbk23 4 DioocReadDWord 4
DiodtDbk24 5 DioocWriteDWord 5
DiodtDbk25 6

DiodtExp9513 7 Not available

1/0 Operation Code Definitions -

DAC Transfer Mask Definitions -

daqglOExpansionPort daglOTransferMask
DioepP1 0 DiotmCycleOff 0
DioepP2 1 DiotmCycleOn 1
DioepP3 2

I/0 Operation Code Definitions - dagql0EventCode

DAC Transfer Active Flag Definitions -

daglOActiveFlag
DioecP1IR 0 DioafDone 0
DioecP2IR 1 DioafArmed 1
DioecP3IR 2 DioafTriggered 2
1I/0 Port Type Definitions - daql0DevicePort
Local 9513, Expansion 9513 Local Bit I/0
Diodp9513Command 0 DiodpBitlO .0
Diodp9513Data 1
Diodp9513MasterMode 2 Local 8255, Dbk20, Dbk21
Diodp9513Alarml 3 Diodp8255A 0
Diodp9513Alarm2 4 Diodp8255B 1
Diodp9513Status 5 Diodp8255C 2
Diodp9513Model 6 Diodp8255IR 3
Diodp9513Mode2 7 Diodp8255CHigh 4
Diodp9513Mode3 8 Diodp8255CLow 5
Diodp9513Mode4 9
Diodp9513Mode5 10 DBK23
Diodp9513Loadl 11 DiodpDbk23A .0
Diodp9513Load2 12 DiodpDbk23B 1
Diodp9513Load3 13 DiodpDbk23C 2
Diodp9513Load4 14 DiodpDbk23Unused .3
Diodp9513Load5 15
Diodp9513Hold1 16 DBK24
Diodp9513Hold2 17 DiodpDbk24A 0
Diodp9513Hold3 18 DiodpDbk24B 1
Diodp9513Hold4 19 DiodpDbk24C 2
Diodp9513Hold5 20 DiodpDbk24Unused 3
Diodp9513Hold1HC 21 *
Diodp9513Hold2HC 22 * DBK25
Diodp9513Hold3HC 23 * DiodpDbk25 .0
Diodp9513Hold4HC 24 *
Diodp9513Hold5HC 25 *

* Hold register when in hold cycle mode

Programmer’'s Manual

3-81

Dag* Command Reference (Enhanced API) Chapter 3

9513 Counter/Timer Definitions

Time-of-Day Definitions - Count Source Definitions - Output Control Definitions -
dag9513TimeOfDay dag9513CountSource dag95130utputControl
DtodDisabled 0 DcsTcnM1* 0 Doclnactivelow 0
DtodDivideBy5 1 DcsSrcl 1 DocHighTermCntPulse 1
DtodDivideBy6 2 DcsSrc2 2 DocTCToggled 2
DtodDivideBy10 3 DcsSrc3 3 DoclnactiveHighlmp 3

DcsSrc4 4 DocLowTermCntPulse 4

DcsSrch 5
Gating Control Definitions - DesGatel -6 Multiple Counter Command Definitions -
dag9513GatingControl DesGate2 7 dag9513MultCtrCommand
DgcNoGating 0 DcsGate3 8 DmccArm 0
DgcHighTCNM1 1 DcsGated 9 DmccLoad 1
DgcHighLevelGateNP1 2 DcsGate5** 10 DmccLoadArm 2
DgcHighLevelGateNM1 3 DcsF1** 11 DmccDisarmSave 3
DgcHighLevelGateN 4 DcsF2** 12 DmccSave 4
DgcLowLevelGateN 5 DcsF3** 13 DmccDisarm 5
DgcHighEdgeGateN 6 DcsF4** 14
DgcLowEdgeGateN 7 DcsF5** 15

*invalid with dagq9513SetMasterMode

or dagCtrRdFreq

**invalid with daq9513RdFreq

dagTest Command Definitions

DagTestCommand
DtstBaseAddressValid
DtstinterruptLevelValid
DtstDmaChannelValid
DtstAdcFifolnputSpeed
DtstDacFifoOutputSpeed
Dtstl0InputSpeed
Dtst100utputSpeed

OO ”W|IN|F|O

Calibration Input Signal Sources

DaqCal InputT

DciNormal 0 External signal from device input connector(s)
DciCalGround 1 Internal calibration ground signal

DciCal5V 2 Internal 5 V calibration signal

DciCal500mVv ~ 3 Internal 500 mV calibration signal
DaqCalTableTypeT

DcttFactory 0 Factory calibration constants

DcttUser ~ 1 User-defined calibration constants

3-82 Programmer’s Manual

Chapter 3

Dag* Command Reference (Enhanced API)

API Error Codes

Error Code #

Name hex - dec Description
DerrNoError 00h - 0O No error
DerrBadChannel 0lh -1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested device is not online
DerrNoDagbook 03h - 3 DagBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrBadDma 06h - 6 Bad or illegal DMA channel or mode specified for device
DerrBadlInterrupt 07h - 7 Bad or illegal INTERRUPT level specified for device
DerrDmaBusy 08h - 8 DMA is currently being used
DerrInvChan 10h - 16 Invalid analog input channel
DerrInvCount 11h - 17 Invalid count parameter
DerrInvTrigSource 12h - 18 Invalid trigger source parameter
DerrinviLevel 13h - 19 Invalid trigger level parameter

DerriInvGain

14h - 20 Invalid channel gain parameter

DerrinvDacVal

15h - 21 Invalid DAC output parameter

DerrinvExpCard

16h - 22 Invalid expansion card parameter

DerriInvPort

17h - 23 Invalid port parameter

DerrinvChip

18h - 24 Invalid chip parameter

DerriInvDigVal

19h - 25 Invalid digital output parameter

DerrInvBitNum

1Ah - 26 Invalid bit number parameter

DerriInvClock 1Bh - 27 Invalid clock parameter
DerrinvTod 1Ch - 28 Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 Invalid counter number
DerrInvCntSource 1Eh - 30 Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 Invalid counter command parameter
DerrinvGateCtrl 20h - 32 Invalid gate control parameter
DerrInvOutputCtrl 21h - 33 Invalid output control parameter

Derrinvinterval

22h - 34 Invalid interval parameter

DerrTypeConflict

23h - 35 An integer was passed to a function requiring a character

DerrMultBackXfer

24h - 36 A second background transfer was requested

DerrinvDiv

25h - 37 Invalid Fout divisor

Temperature Conversion Errors

DerrTCE_TYPE

26h - 38 TC type out-of-range

DerrTCE_TRANGE

27h - 39 Temperature out-of-CJC-range

DerrTCE_VRANGE

28h - 40 Voltage out-of-TC-range

DerrTCE_PARAM

29h - 41 Unspecified parameter value error

DerrTCE_NOSETUP

2Ah - 42 dacTCConvert called before dacTCSetup

DaqgBook

DerrNotCapable [2Bh - 43 | Device is incapable of function
Background

DerrOverrun [2Ch - 44 | A buffer overrun occurred

Zero and Cal Conversion Errors

DerrzClnvParam

2Dh - 45 Unspecified parameter value error

DerrZCNoSetup

2Eh - 46 dac..Convert called before dac..Setup

DerrinvCalFile

2Fh - 47 Cannot open the specified cal file

Environmental Errors

DerrMemLock

30h - 48 Cannot lock allocated memory from operating system

DerrMemHandle

31h - 49 Cannot get a memory handle from operating system

Pre-trigger acquisition Errors

DerrNoPreTActive

[32h - 50

No pre-trigger configured

Daq FIFO Errors (DagBoard

only)

DerriInvDacChan

33h - 51 DAC channel does not exist

DerriInvDacParam

34h - 52 DAC parameter is invalid

DerrinvBuf

35h - 53 Buffer points to NULL or buffer size is zero

DerrMemAlloc

36h - 54 Could not allocate the needed memory

DerrUpdateRate

37h - 55 Could not achieve the specified update rate

DerriInvDacWave

38h - 56 Could not start waveforms because of missing or invalid parameters

DerrinvBackDac

3%h - 57 Could not start waveforms with background transfers

DerrInvPredWave

3Ah - 58 Predefined waveform not supported

RTD Conversion Errors

DerrRtdValue

3Bh - 59 rtdvalue out-of-range

DerrRtdNoSetup

3Ch - 60 rtdConvert called before rtdSetup

Programmer’'s Manual

3-83

Dag* Command Reference (Enhanced API) Chapter 3
Error Code #
Name hex - dec Description
DerrRtdArraySize 3Dh - 61 Temperature array not large enough
DerrRtdParam 3Eh - 62 Incorrect RTD parameter
DerrlinvBankType 3Fh - 63 Invalid bank-type specified
DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed
DerrinvFreq 41h - 65 Invalid scan frequency specified
DerrNoDaq 42h - 66 No Daq112B/216B installed
DerriInvOptionType 43h - 67 Invalid option-type parameter
DerrinvOptionValue 44h - 68 Invalid option-value parameter
New API Error Codes
DerrTooManyHandles 60h - 96 No more handles available to open
DerrlInvLockMask 61h - 97 | Only a part of the resource is already locked, must be all or none
DerrAlreadylLocked 62h - 98 All or part of the resource was locked by another application
DerrAcgArmed 63h - 99 Operation not available while an acquisition is armed
DerrParamConflict 64h - 100 | Each parameter is valid, but the combination is invalid
DerrlInvMode 65h - 101 | Invalid acquisition/wait/dac mode
DerrnvOpenMode 66h - 102 | Invalid file-open mode
DerrFileOpenError 67h - 103 | Unable to open file
DerrFileWriteError 68h - 104 | Unable to write file
DerrFileReadError 69h - 105 | Unable to read file
DerrinvClockSource 6Ah - 106 | Invalid acquisition mode
DerrinvEvent 6Bh - 107 | Invalid transfer event
DerrTimeout 6Ch - 108 | Time-out on wait
DerrinitFailure 6Dh - 109 | Unexpected result occurred while initializing the hardware
DerrBufTooSmall 6Eh - 110 | Unexpected result occurred while initializing the hardware
DerrinvType 6Fh - 111 | Invalid acquisition/wait/dac mode
DerrArraySize 70h - 112 | Used as a catch all for arrays not large enough
DerrBadAlias 71h - 113 | Invalid alias names for Vxd lookup
DerrlInvCommand 72h - 114 | Invalid command
DerrlInvHandle 73h - 115 | Invalid handle
DerrNoTransferActive 74h - 116 | Transfer not active
DerrNoAcgActive 75h - 117 | Acquisition not active
DerrinvOpstr 76h - 118 | Invalid operation string used for enhanced triggering
DerrDspCommFai lure 77h - 119 | Device with DSP failed communication
DerrEepromCommFailure | 78h - 120 | Device with EEPROM failed communication
DerrInvEnhTrig 79h - 121 | Device using enhanced trigger detected invalid trigger type
DerrinvCalConstant 7Ah - 122 | User calibration constant out of range
DerriInvErrorCode 7Bh - 123 | Invalid error code
DerrInvAdcRange 7Ch - 124 | Invalid analog input voltage range parameter
DerrinvCalTableType 7Dh - 125 | Invalid calibration table type
DerrinvCallnput 7Eh - 126 | Invalid calibration input signal selection
DerrInvRawDataFormat 7Fh - 127 | Invalid raw-data format selection
DerrNotImplemented 80h - 128 | Feature/function not implemented yet
DerriInvDioDeviceType 81h - 129 | Invalid digital I/O device type
DerrinvPostDataFormat | 82h - 130 | Invalid post-processing data format selection

3-84

Programmer’s Manual

Standard APl Programming Models 4

Overview

By using the Application Programming Interface (API) with Dag* systems, you can create custom
software to satisfy your data acquisition requirements. Chapter 5 (Dag * Command Reference
Standard API) explainstherelated API functionsin detail. This chapter shows how to combine API
functions to perform typical tasks using the standard API (enhanced models are in chapter 3). When
you understand how the APl commands work together and with the hardware, you are ready to program
for optimum data acquisition. To help you get this programmer’ s perspective, this chapter is divided
into 3 parts:

- Data Acquisition Environment outlines related concepts and defines Dag* capabilities the
programmer must work with (the API, hardware features, and signal management).
Programming Models explains the sequence and type of operations necessary for data
acquisition. These models provide the software building blocks to develop more complex and
specialized programs. The description for each model has a flowchart and program excerpt to
show how the API functions work.

Summary Guide of Selected API Functions is an easy-to-read table that describes when to use
the basic API functions.

Data Acquisition Environment

In order to write effective data acquisition software, programmers must understand:
Software tools (the API documented in this manual and the programming language—you may
need to consult documentation for your language).
Hardware capabilities and constraints.
General concepts of data acquisition and signal management.

Application Programming Interface (API)

The API includes all the software functions needed for building a data acquisition system with the
hardware described in the user’s manual. Chapter 5 supplies the details how each function is used
(parameters, hardware applicability, etc). (The Visual Basic VBX Support chapter explains special
features available in aVVBX environment.) In addition, you may need to consult your language and
computer documentation.

Standard vs Enhanced API

Major differences between the standard and enhanced APIs were described in the introductory chapter.
Language support varies as follows:

standard API accommodates C, QuickBASIC, Visua Basic, and Turbo Pascal 7

enhanced APl accommodates C, Visual Basic, and Delphi.

Note: Codes for standard and enhanced APIs are NOT compatible; hence, a separate chapter of
programming models for each (this chapter is for the standard APl models; chapter 2 isfor the
enhanced APl models).

Programmer’'s Manual 4-1

Standard API Programming Models Chapter 4

Hardware Capabilities and Constraints

To program the system effectively, you must understand your Dag* and DBK hardware capabilities.
Obvioudly you cannot program the hardware to perform beyond its design and specifications, but you
also want to take full advantage of the system’s power and features. In the hardware User s Manual,
you may need to refer to sections that describe your hardware’ s capability. In addition, you may need
to consult your computer documentation. In some cases, you may need to verify the hardware setup,
use of channels, and signal conditioning options. Some hardware devices have jumpers and DIP
switches that must match the programming (or reprogramming as the system evolves).

Signal Environment

This guide refersto several data acquisition concepts. Such concepts important for programmers are

listed here and explained in the chapter Signal Management and Troubleshooting Tips inthe User s

Manual. You must apply these concepts as needed in your situation. Some of these concepts include:
Channel Identification. Refer to Signal Management and the related reference table in chapter
5.
Scan Rates and Sequencing. With multiple scans, the time between scans becomes a
parameter. Thistime can be aconstant or can be dependent upon atrigger. Refer to Signal
Management.
Counter/Timer Operation. Refer to Signal Management and DagCtr* functionsin chapter 5.
Triggering Options. Triggering starts the A/D conversion. Thetrigger can be an external
analog or TTL trigger, or a program controlled software trigger. Refer to Signal Management
and the trigger functionsin chapter 5.
Foreground/Background. Foreground transfer routines require the entire transfer to occur
before returning control to the application program. Background routines start the A/D
acquisition and return control to the application program before the transfer occurs. Datais
transferred while the application program isrunning. Datawill be transferred to the user
memory buffer during program execution in 1 sample or 256 sample blocks depending on the
configuration. The programmer must determine what tasks can proceed in the background while
other tasks perform in the foreground and how often the status of the background operations
should be checked.
Tagged Data. 12-bit Dag*sreturn datain a 16-bit format: the upper 12 bits contain the A/D
readings, and the lower 4 bits contain channel information. Channel tagging can be
enabled/disabled using the dagAdcSetTag command. Tagged data can be converted to an array
of A/D readings and an array of channel numbers using dagAdcConvertTagged. The DagBook
and DagBoard can use channel tagging, but the Dag PCMCIA cannot. Refer to dagAdcSetTag
in chapter 5.

Parameters in the various A/D routines include: number of channels; number of scans; start of
conversion triggering; timing between scans; and mode of datatransfer. Up to 512 A/D channels can
be sampled in asingle scan. These channels can be consecutive or non-consecutive with the same or
different gains. The scan sequence makes no distinction between local and expansion channels.

4-2 Programmer’s Manual

Chapter 4

Standard API Programming Models

Basic Models

This section outlines basic programming steps commonly used for data acquisition. Consider the

models as building blocks that can be put together in different ways or modified as needed. Asa

general tutorial, these examples use QuickBASIC since most programmers know BASIC and can
trandate to other languages as needed.

The standard API programming models discussed in this chapter include:

Model Type Model Name Page
Configuration Initialization and Error Handling 4-4
Acquisition Foreground Acquisition with User-Level Commands 4-5

Foreground Acquisition with Low-Level Commands 4-7

Foreground Acquisition, High-Speed Digital Input 4-8

Background Acquisition, Multi-Channel, Multi-Scan 4-9

Background Acquisition, Direct-To-Disk In Cycle Mode 4-11

Analog Output Analog Output 4-13
Generating DAC FIFO Waveforms with User-Level Commands (DagBoard Only) 4-14

Generating DAC FIFO Waveforms with Hardware-Level Commands (DagBoard Only) 4-16

Use of P3 s Background Counter Acquisition Using Interrupts 4-18
Counter/Timer Variable Rate, Variable Duty-Cycle Square-Wave Output 4-20
Use of 8255 Chip Single Square-Wave Output 4-22
Digital I/O on P2 4-23

Temperature Temperature Measurements Using Single TC Type on Single DBK19 Card 4-24
Measurements Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards 4-32
Temperature Measurements Using Multiple RTDs on a Single DBK9 Card 4-35

Calibration Using DBK Card Calibration Files 4-37
Zero Compensation Zero Compensation 4-40
Conversion Linear Conversions 4-42

Programmer’'s Manual

4-3

Standard API Programming Models Chapter 4

Initialization and Error Handling

This program (INITEX1.BAS) demonstrates how to daqlnit Openadata
initialize the Dag* and use various methods of error acquisition session
handling. Similar code existsin all the example Y
programs but are only detailed here. Functions used daqSetErrHandler | Setup error handling
include: (optional)
QBdag| nit%(I ptPort%, intr%) \
QBdagSetErrHandler%(errHandl er%) User Code
QBdagClose% ‘
Every program begins with an INCLUDE directive daqClose Close the session

which defines constants and declarations used in the
program. (dagbook.bi for QuickBASIC; DagBook.bas for Visual Basic; ifcode.int for Turbo Pascal;
DagBook.h for C and DLL).

*$INCLUDE: >dagbook.bi”

CLS

PRINT “INIT1.BAS”: PRINT
Ret% = QBdaglnit®%(LPT1%, 7)
Ret% = QBdagClose%

If there was a probleminitializing, BASIC would return an “1llegal Function Call” error. Disable the
Dag* from reporting errorsto BASIC.

Ret% = QBdagSetErrHandler%(0)

If thereisaDag* error, the program will continue. The function’s return value (an error number or O if
no error) can help you debug a program.

IF (QBdaglnit%(LPT1%,) 0) THEN
PRINT “Cannot initialize DagBook!”

Dag* functions return dagErrno%.

PRINT “dagErrno% : *’; HEX$(dagErrno%)
END IF

The next statement defines an error handling routine that frees us from checking the return value of
every Dag* function call. Although not necessary, this sample program transfers program control to a
user-defined routine when an error is detected. Without a Dag* error handler, QuickBASIC will
receive and handle the error, post it on the screen and terminate the program. QuickBASIC provides an
integer variable (ERR) that contains the most recent error code. This variable can be used to detect the
error source and take the appropriate action. The function QBdagSetErrHandler tells QuickBASIC to
assign ERR to a specific value when a Dag* error is encountered. The following line tells QuickBASIC
to set ERR to 100 when a Dag* error is encountered. (Other languages work similarly; refer to specific
language documentation as needed.)

Ret% = QBdagSetErrHandler%(100)
The ON ERROR GOTO command in QuickBASIC allows a user-defined error handler to be provided,

rather than the standard error handler that QuickBASIC uses automatically. The program uses ON
ERROR GOTO to transfer program control to the label ErrorHandler if an error is encountered.

ON ERROR GOTO ErrorHandler

Dag* errors will send the program into the error handling routine. The body of the program goes here.

Ret¥% = QBdaqlnith(LPT1%, 7)
END

Thisisthe error handler. Program control is sent here on error.

ErrorHandler:

PRINT “ERROR! Program aborted”

PRINT “BASIC Error :; ERR

IF ERR = 100 THEN PRINT “DagBook Error : ”; HEX$(dagErrno%)
END

4-4

Programmer’s Manual

Chapter 4 Standard API Programming Models

Foreground Acquisition with User-Level Commands

The program ADCEX1.BAS shows the use of several

high-level analog input routines. These commands are R
) > dagAdcRd ead 1 sample from
easier to use than low-level commands but less flexible @ 1 channel

in scan configuration. This example demonstrates the '

[t

use of the Dag*'s 4 highest ADC functions and channel [User Code | th‘;'gjffe"rigt;g\t‘iggjfyifh@
tagging. Functions used include: | user in binary format:
- QBdagAdcRd%(chan%, sample%, gain%)
QBdagAdcRdNY%(chan%, Buf%(), count%, dagAdcRdN ?iﬁin";‘;'l“p'e samples from
trigger%, level%, freg!, gain%) "4\ '
0, 0 0 . . -
S ity SRt R oer Code | b ey

user in binary format.

QBdagA dcRdScanN%(startChan%, endChan%, \ _
Buf%(), count%, trigger%, level%, freq!, gain%) | dagAdcRdScan| Read 1sample from multiple

hannels.
QBdagAdcSetTag%(Tag%) enanness

QBdagA dcConvert Tagged%(taggedData%(), J o .
buf%(), tags¥%(), count%) User Code| {! 'Eiﬁf?e"r'?feéb‘ﬁé’f Layltshlg

user in binary format.

g

This program will initialize the Dag* hardware, then _
take readings from the analog input channelsin the base | dagAdcRdScanN | Read multiple samples from

multiple channels.

unit (not the expansion cards). For transporting datain
and out of the Dag* driver, arrays are dimensioned. J Ed\At this point. the data is in
ser Lode the buffer provided by the
DIM sample%(1), buf%(80), userin bingry flormaty

taggedData%(80), tags®%(80), ret%

Although not required, this example disables channel tagging. When analog input channels in the base
unit are accessed, the upper 4 bits of the 16-bit value are a channel tag; unless disabled by the following
function.

ret% = QBdagAdcSetTag%(0)

The next line requests 1 reading from 1 channel with again of x1. The variable DgainX1% is actually
a defined constant from DAQBOOK .BlI, included at the beginning of this program.

ret% = QBdagAdcRd%(0, sample%(0), DgainX1l%)
PRINT USING “& ####”; “Result of AdcRd:”; sample%(0): PRINT

The next line requests 10 readings from channel 0 at again of x1, using the pacer clock at 1 kHz.

ret% = QBdaqAdcRdAN%(0, buf%(), 10, DtsPacerClock%, 0, 1000!, DgainX1%)
PRINT “Results of AdcRdN: ”’;
FOR x = 0 TO 9
PRINT USING “#### ; bufh(x);
NEXT X

With channel tags enabled, the program will then collect one sample of channels 0 through 7 using the
QBdagAdcRdScan function.

ret% = QBdagAdcSetTagh(1)
reth% = QBdagAdcRdScan%(0, 7, taggedData%(), DgainX1%)

After the data has been collected and placed in a QuickBASIC array, the QBdagAdcConvertTagged
function can be used to separate the channel datafrom the tag data. After the function call, the datais
in the buf% array and the tags are in the tags% array.

ret% = QBdagAdcConvertTagged%(taggedData%(), buf%(), tags%(), 8)
PRINT “Results of AdcRdscan:”

FOR x = 0 TO 7

PRINT USING “& # & ####7; “Channel:”; tags®%(x); “Data:”’; buf®%(x)
NEXT x: PRINT

Using the QBdagAdcRdScan function, the program will now take 10 readings from channels 0 though
7. After the data has been collected, the data is then separated from the tags.

Programmer’'s Manual 4-5

Standard API Programming Models

Chapter 4

ret% = QBdagAdcRdScanN(0, 7, taggedData%(), 10, DtsPacerClock%, 0, 1000!,
DgainX1%)
ret% = QBdagAdcConvertTagged%(taggedData%(), buf%(), tags%(), 80)
PRINT “Results of AdcRdscanN:”
FOR x = 0 TO 7
PRINT USING “& # & ”; “Channel:”; tags%(x); “Data:”’;
FORy =0 TO 9
PRINT USING “#### ; bufu((y * 8) + x);
NEXT y: PRINT
NEXT x

4-6

Programmer’s Manual

Chapter 4 Standard API Programming Models

Foreground Acquisition with Low-Level Commands

This program (ADCEX2.BAS) sets up an acquisition that
collects scansin the foreground. After the channels and
frequency have been configured, aforeground acquisition
functioniscalled. At this point, program execution is
suspended until all the datais gathered. This example Define and arm trigger

implements dagAdcRdNFore to get 10 samples from (use defined constant

channels 0 through 7, triggered by the pacer clock with a %ﬁ':: dcigtrglt?i(:k L‘:g

1000 Hz sampling frequency and unity gain. Functions used ij 99
daqAdcRdNFore

Define a scan of
channels and gains

dagAdcSetMux
dagAdcSetFreq

Set sample frequency

Read data in foreground

include: (program stops until all
QBdagA dcSetM ux6(startChan%, endChan%, gain%) !‘\L datais collected)
QBdagAdcSetFreqs(freg!) Output data At tr?is pc#nt, the data is
QBda&AgZOS/e;tTrig%(sourceD/o, level %, ctrOM ode%, to sc,‘~reen {ﬂé fsgfi: [,{;r;’r(,"igﬁ‘mba%
pacerM ode%
QBdagAdcRANFored(Buf?%(), count%s) !
QBdagAdcSetTag%(Tag%)

QBdagA dcConvertTagged%(taggedData%(), buf%(), tags%(), count%)

This program will initialize the Dag* hardware, then take readings from the analog input channelsin
the base unit (not the expansion cards). The functions used in this program are of alower level than
those used in ADCEX1.BAS and provide more flexibility.

DIM buf%(80), taggedData%(80), tags®(80), ret%
To begin the setup, the base unit multiplexer is set to scan through channels 0 through 7 with again of
x1.

ret% = QBdagAdcSetMux%(0, 7, DgainX1%)
Next, set the internal samplerateto 1 kHz.
ret% = QBdagAdcSetFreq%(10001!)

The acquisition begins on atrigger. The next line defines the trigger event to be the pacer clock, which
will start the acquisition immediately. The variable DtsPacerClock% is a constant defined in
DAQBOOK_.BI. The one-shot parameter is set to continuous. Since the trigger source is not an analog
input channel, the Level argument is not relevant. The ctrOMode is also not relevant since the trigger is
not DtSTTLRise or DtSTTLFall.

ret% = QBdagAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 1)

After setting up and arming the acquisition, the datais immediately ready to be collected. Had the
trigger source been an external TTL signal or analog input, the data would only be ready after the
trigger had been satisfied.

ret% = QBdagAdcRdNFore%(taggedData%(), 10)

After the data has been collected and placed in a QuickBASIC array, the QBdagAdcConvertTagged
function can be used to separate the channel datafrom the tag data. After the function call, the datais
in the buf% array and the tags are in the tags% array.

ret% = QBdagAdcConvertTagged%(taggedData%(), buf%(), tags%(), 80)
PRINT “Results of AdcRdNFore:”: PRINT
FOR x = 0 TO 7
PRINT USING “& # & ”; “Channel:”; tags%(x); “Data:”’;
FOR'y = 0 TO 9
PRINT USING “#### : buf%((y * 8) + X):
NEXT y
PRINT
NEXT x
ret% = QBdaqClose%
END

Programmer’'s Manual 4-7

Standard API Programming Models Chapter 4

Foreground Acquisition, High-Speed Digital Input

This program (ADCEX3.BAS) reads asingle value ¢

from the high-speed digita input (from the : Define an array of channels

DagBook/100/200 or DagBoard/100A/200A) using User variable and an array of gains

asoftware trigger and foreground acquisition. After definitions (use defined constant

the channel and trigger are configured, the software DchHighSpeedDig for

trigger is executed and foreground acquisition starts. high speed digital input)

At this point, program execution is suspended until dagAdcSetScan Set scan sequence and

all the datais gathered. Functions used include: gains using defined arrays
QBdagA dcSetScan%(chans%o(), gains%(),

count) dagAdcSetTrig Define and arm trigger (use

defined constant DtsSoftware

QBdagAdcSetTrig%(sourcedo, level %, for software trigger)
ctrOM ode%o, pacerM ode%o) Y
QBdagAdcSoftTrig% AdcSoftTrig Software trigger

QBdagA dcRdFore%s(sampl €%6)

DIM chans%(1), gains%(1), buf%(10),
danchdFore Read data in foreground
retih (program stops until all

The QBdagAdcSetScan function loads the scan data is collected)
sequencer with alist of channels and associated ! At this point, the data is in
gains. The function call requires 2 arrays; an array Output data the buffer provided by the
of channels and an array of associated gains. This to screen user in binary format
example will access only the high-speed digital input ¢

port, so only one entry isrequired in the array. The
last parameter in the function call is the number of elementsin the array, which in our caseis 1. The
variables DchHighSpeedDig% and DgainX 1% are both constants found in DAQBOOK .BI.
chans%(0) = DchHighSpeedDig%
gains%(0) = DgainX1%
ret% = QBdagAdcSetScan%(chans%(), gainsk®(), 1)

The pacer clock is set using the QBdagAdcSetClk function. Its 2 arguments adjust 2 internal counters
which affect the scanning speed of the analog inputs. Assuming the internal clock jumper isin the
default position of 1 MHz, the scan rate will be equal to 1 MHz/(argument1* argument2). In this case,
1,000,000/(10* 10) leads to a scan rate of 10 kHz.

ret% = QBdagAdcSetClk%(10, 10)

After setting up the sequencer, the trigger must be configured. This example uses a software trigger to
start the acquisition. The function QBdagAdcSoftTrig serves asthe trigger. The variable
DtsSoftware% is a defined constant in DAQBOOK .BI. The one-shot parameter is set to continuous.
The Level parameter isirrelevant when using the software trigger. The ctrOmode argument is also not
relevant since the trigger is not DtsTTLRise or DtsTTLFall.

ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 1)
ret% = QBdagAdcSoftTrig%

After the software trigger, the data can be collected.

ret% = QBdagAdcRdNFore%(buf%(),10)
FOR x =0 TO 9

PRINT USING “##/\ \” ; x + 1 ; “&H” ; HEX$(buf%(x))
NEXT

4-8 Programmer’s Manual

Chapter 4 Standard API Programming Models

Background Acquisition, Multi-Channel, Multi-Scan

This program (ADCEX4.BAS) sets up an
acquisition that collects scansin the

e User variable Define an array of channels
background. After the acquisitionis definitions and an array of gains.
configured and armed, the program continues *
in the foreground while datais being collected
in the background. The foreground program | dagAdcSetScan | Set scan sequence and

AN ains using defined arrays
can poll the background acquisition to Y g g y

determine its status. dagAdcSetClk Set two counter values
This example reads multiple channels and ; for the pacer clock
scans in the background mode to get 10 - : ;
samples from channels 0 through 7 (triggered @ ailnge?irr]\i: rcn;r:gtga%?r
by an analog level) with a1 Hz sampling DtsRisePos to set analog
frequency and unity gain. After the acquisition Y level trigger)
has been started, data is transferred to the user dagAdcRdNBack Se|t| upa background data
buffer asit is being collected (the user program §§n‘;ﬁj,"e"s S@’L?,ﬂﬁ;“ta
continues to run in the foreground). Functions is being collected)
used include:
- QBdagAdcSetScan%(chans¥%(),
gains%o(), count)
QBdagA dcSetClk%(ctr1%, ctr2%)
QBdagAdcSetTrig%o(source, level %,
ctrOM ode%o, pacerM ode%o)

User program code

No
daqAdcGetBackStat
Yes

Check the status of

the background

(yes, background complete;
no, not incomplete).

QBdagAdcRdNBack%(Buf%(),

count%, cycle%, armNotEmpty%o) Output data

QBdagAdcGetBack Stat%(activeds, to screen @]t eﬂgj ffeﬁ";trv otclg ;‘;tgyitsh:
Count%) * user in binary format
QBdagAdcSetTag%(Tag%)

QBdagAdcConvertTagged%(taggedData%o(), buf%(), tags%(), count%)
DIM taggedData%(80), buf%(80), tags¥%(80), active%, count%

The QBdagAdcSetScan function loads the scan sequencer with alist of channels and associated gains.
The function call requires two arrays; an array of channels, and an array of associated gains. This
example will load the sequencer with channels 0 through 7, all with again of x1. The last parameter in
the function call isthe number of elementsin the array, which in our caseis 8. The variable DgainX1%
isaconstant found in DAQBOOK .BI.

FOR x% = 0 TO 7
chans®%(x%) = x%
gains®%(x%) = DgainX1l%
NEXT x%
ret% = QBdagAdcSetScan%(chans%(), gains®(), 8)

Although not required, this example enables channel tagging. When analog input channelsin the base
unit are accessed, the upper 4 bits of the 16-bit value are a channel tag. The following function call
enables the channel tags.

ret% = QBdagAdcSetTag%(l)
The pacer clock is set using the QBdagAdcSetClk function. Its 2 arguments adjust 2 internal counters
which affect the scanning speed of the analog inputs. Assuming the internal clock jumper isin the

default position of 1 MHz, the scan rate will be equal to 1 MHz/(argument1* argument2). In this case,
1,000,000/(1,000*1,000) = 1 Hz.

ret% = QBdagAdcSetCIlk%(1000, 1000)

The trigger is then set up using the QBdagAdcSetTrig function. An analog level trigger is used to
trigger the acquisition. The trigger channel is always the first one in the scan sequence, in this case
channel 0. A level of 10 countsis selected.

ret% = QBdagAdcSetTrig¥h(DtsAnalogRisePos%, 0, 10, 0, 1)

Programmer’'s Manual 4-9

Standard API Programming Models Chapter 4

After setting up and arming the trigger, the function QBdagAdcRdNBack can be called to collect the
datain the background. Thisfunction will wait until the trigger is satisfied before attempting to collect
thedata. The following line collects 10 scans, placing them in the array taggedData%. This example
shows the Cycle flag as OFF which will stop background operation after 10 scans have been collected.
An Update Size parameter of 1 indicates the user buffer will be updated after every sample. A
parameter of O indicates the user buffer will be updated after 256 samples.

ret% = QBdagAdcRdNBack%(taggedData%(), 10, 0, 1)
At this point, the Dag* is armed and, depending on the state of the trigger, possibly collecting data.

The program, however, proceeds to the next line. In our case, we enter into a polling loop to check the
status of the background operation.

DO
ret% = QBdagAdcGetBackStath(active%, count%)
LOCATE 3, 1
PRINT “Transfer in progress. ”; count%; “ samples acquired”
LOOP WHILE active% <>0
PRINT “Acquisition complete : ”; count%; “ samples acquired”: PRINT

After the data has been collected and placed in a QuickBASIC array, the QBdagAdcConvertTagged
function can be used to separate the channel datafrom the tag data. After the function call, the datais
in the buf% array and the tags are in the tags% array.

ret% = QBdagAdcConvertTagged(taggedData%(), buf%(), tags%(), 80)
PRINT “Data acquired : - PRINT
FOR x = 0 TO 7
PRINT USING “& # & 7; “Channel:”; tags®%(x); “Data:”;
FOR y = 0 TO 9
PRINT USING “#### ; bufu((y * 8) + x);
NEXT y
PRINT
NEXT x
ret% = QBdaqClose%
END

4-10

Programmer’s Manual

Chapter 4

Standard API Programming Models

Background Acquisition, Direct-To-Disk In Cycle Mode

operation

Data written/v
to array by v

background
operation

Buffer Write-to-Disk Model

This program continuously reads data in the
background and periodically writes datato
disk in the foreground. In cycle mode, this
data transfer can contiune indefinitely. When
the background transfer reaches the end of the
data array, it will reset its array pointer back
to the beginning of the array and continue
writing datato it. Thus, the allocated buffer
can be used repeatedly like a FIFO buffer.

While reading and writing data, the program
must track two variables. Thefirst isthe
number of scans already processed and
written to disk (ScansProcessed) versus the
number of scans actually read by the Dag*
hardware. The difference between this
number and the count returned by
dagADCGetBackStat is the number of new
scans to be processed. The second item
tracked isthe array position. The program
must write data to the disk until it reaches the
end of the data array and then set the read
index back to the beginning. Asthe
background operation isfilling dataArray, the
foreground operation CollectDataTimer will
empty dataArray to disk. The foreground
emptying of dataArray will alwayslag
background filling, but both will loop back to
the beginning of dataQrray whentheend is
reched. Either the entire block of data can be
written to disk, or the data needs to be broken
up into two smaller blocks to be written to
disk (seefigure).

Scans already
sent to disk
in foreground

Data written e
to disk by /i .
foreground ' <4+—Read Index

¥—_New scans read
in background

Latest data sampled

Note: data array is filled
sequentially and repeated
from top to bottom.

Data Array

'

User variable
definitions

| dagGetBackStat

\ User code

Does data overlap
end of array?

User code

\ User code

4 Read Index

Single
¥~ block of
new scans

Data Array

Contiguous Block

(1 segment)

Use of a Data Array in Cycle Mode

Define an array of channels
and an array of gains.

Set scan sequence and
gains using defined arrays

Set sampling frequency

Define and arm trigger
(use defined constant
DtsRisePos to set analog
level trigger)

Set up background operation
(program continues while
data is being collected)

Open output files and set
up variables for tracking
counts and array

Get total number of scans

Calculate number of
new scans

In cycle mode, when function
reaches the end of the data
array, it will cycle back to the
beginning of the array

Write data to disk file until the
end of the array is reached;
then set array pointer back to
start of array

Write data to disk, keeping
track of array position.
Update count of scans
processed.

User code to decide if it has
received enough data.

Second-half
v of new scans

v\Latest

data

sampled
<— Read Index
¥—_First-half

of new scans

Data Array

Fragmented Block
(2 segments)

Programmer’'s Manual

4-11

Standard API Programming Models Chapter 4

DIM bufferl%(8000), buf%(8000), active%, count&, scansprocessed&
DIM newscansé&, arrayposition&, j&
bufsize% = 1000

" Define arrays of channels and gains : 0-7 , unity gain
FOR x% = 0 TO 7

chans%(x%) = x%

gains®h(x%) = DgainX1l%
NEXT x%

" Load scan sequence FIFO
ret% = QBdagAdcSetScan%(chans%(), gains®(), 8)

" Set Sampling Frequency
ret% = QBdagAdcSetFreq%(3000)

" Define and arm trigger
ret% = QBdagAdcSetTrigh(DtsPacerClock%, 0, 0, 0, 0)

" Read data in the background
ret% = QBdagAdcRdNBack¥%(bufferi%(), bufsize%, 1, 0)

" Write data to disk

OPEN "c:dasqdata.bin' FOR OUTPUT AS #1
scansprocessed& = 0

arrayposition& = 0

DO
ret% = QBdagAdcGetBackStat%(active%, count&)
LOCATE 3, 1
newscans& = count& - scansprocessed&
PRINT "Number of scans acquired:"; count&
PRINT "Number of scans saved to disk:'"; scansprocessed&

"Write scans to end of array.

IF ((newscans& * 8) + arrayposition&) > (bufsize% * 8) THEN
newscans& = newscans& - ((bufsize% * 8 - arrayposition&) / 8)
FOR arrayposition& = arrayposition& TO (bufsize% * 8)

PRINT #1, bufferl%(arrayposition&)
NEXT arrayposition&
arrayposition& = 0
END IF

"Write scans to disk

numloops& = newscans& * 8

FOR j& = 0 TO numloopsé&

PRINT #1, bufferl%(arrayposition&)
arrayposition& = arrayposition& + 1
NEXT j&

scansprocessed& = count&

LOOP WHILE scansprocessed& < 5000

PRINT "Acquisition complete.”: PRINT
CLOSE #1

4-12 Programmer’s Manual

Chapter 4 Standard API Programming Models

Analog Output

The program DACEX1.BAS shows how to output analog voltages
on analog output channels 0 and 1. These commands only have to
be issuedg oneFt)i me unless explicity changed. The output \>//oltages
will be sustained. This example demonstrates the use of the two
digital-to-analog converters (values used assume bipolar mode). User Code
Functions used include:
QBdagDacWt%(chan%, dataV al %)
QBdagDacWtBoth%(chanlVa %, chan2Va %)

Output voltage on
specific channel.

Output voltage on

daqDacWtBoth| ' ny/A channels.

Assuming the voltage reference to be connected to the internal,
default of 5V, the next function will set channel 0 to an output
voltage of 5V. Sincetheinternal digital-to-analog converter has
12-bit resolution, 4095 represents full-scale. Channel 1isequal to 0.

ret% = QBdaqgDacWt%(0, 4095)
Prompt the user to hit a key to continue.

PRINT “5 VDC on channel 1.”
PRINT “hit any key to continue...”
WHILE INKEY$ = “’: WEND: PRINT

The QBdagDacWtBoth writes to both anal og outputs simultaneously. The next line sets channel 0to 5
V and channel 1t0 2.5V. At full-scale, adigital value of 4095 correspondsto 5 V; adigital value of
2048 correspondsto %2 of 5V.

ret% = QBdagDacWtBoth%(4095, 2048)

Prompt the user to hit a key to continue.

PRINT “5 VDC on channel 1, 2.5 VDC on channel 2.”
PRINT “hit any key to continue...”
WHILE INKEY$ = “’: WEND: PRINT

The next line sets both outputsto 0 V.
ret% = QBdagDacWtBoth%(0,0)

Programmer’'s Manual 4-13

Standard API Programming Models

Chapter 4

Generating DAC FIFO Waveforms with User-Level Commands (DaqBoard Only)

This program (DACEX2.BAS) demonstrates the use
of the DAC FIFO to generate waveforms with user-
level commands. The DAC is configured for output
on both channels, and the user waveformis
constructed. Output begins after the waveform is
assigned to achannel. At this point, the program
continues while the waveforms are generated.

The user-level command set does not require an in-
depth knowledge of the FIFO hardware.
(DACEX3.BAS demonstrates the use of the low-
level commands to directly manipulate the FIFO
hardware.) Functions used include:

- QBdagBrdDacSetM odeY%(updateRate! ,
mode%, cycledo)
QBdagBrdDacPredefWaveYs(DAC%,
samples%, waveType%o, amplitudeo, offset%,
dutyCycle%, phaseShift%)
QBdagBrdDacUserWaveYs(DAC%, buf%(),
samples%o)

QBdagBrdDacStart%

- QBdagBrdDacStop%

Commands from the hardware-level and user-level
command sets should not be used together in the
same program. Note: This example uses the high-
speed DAC FIFO to generate waveforms and can
only be used with the DagBoard product line.

DIM waveBuf%(512)

+

| dagBrdDacSetMode |

Build user-defined
waveform in an array

‘ dagBrdDacUserWave ‘

)
‘danrdDacPrederVave ‘

\

!
dagBrdDacStart

User program code

dagBrdDacStop

Configure DACs (use
defined constant
DacFIFOBoth to use both
channel 0 and channel 1)

Specify user waveform
for channel 0

Specify predefined wave-
form for channel 1

(use defined constant
Pdwsine for sine wave)

Start waveforms

Stop waveforms

The next command sets the update rate (first parameter) to 10 us per sample; enables waveform output
on both DACs (second parameter); and sets the waveforms to cycle continuously.

ret% = QBdagBrdDacSetMode%(10, DacFIFOBoth%, 1)

The next series of statements build the waveform that will be output on DAC channel 0. The waveform
will be aramp from the low-voltage level up to the high-voltage level for the first 128 samples (half of
the waveform). It will then drop back down to the low-voltage level for the next quarter of the
waveform and then rise to alevel midway between the low and high references for the last quarter of
the waveform. Note: The voltage references depend on the configuration of the hardware (refer to

hardware sections of the manual as needed).

point% = O

FOR x = 0 to 127
waveBufh(x) = point%
point% = point% + &H20

NEXT x

FOR x = 128 to 191
waveBuf(x) = 0

NEXT X

FOR x = 192 to 255
waveBufh(x) = &H800

NEXT x

The next line assigns the 256 sample waveform we have just built to DAC channel 0.
ret% = QBdagBrdDacUserWave%(0, waveBuf®(), 256)

The next line assigns a 256-sample sine wave to DAC channel 1. The sine wave will have a peak-to-
peak amplitude equal to the full-scale output of the DAC and will be centered around the half-scale
point. The waveform will have a 50% duty-cycle and a phase shift that lags DAC channel 0 by 90

degrees. Thiswaveform is built for you by the driver.

4-14

Programmer’s Manual

Chapter 4 Standard API Programming Models

ret% = QBdaqgBrdDacPredefWave®%(l, 256, PdwSine%, &HFFF, &H800, 50 , 90)

The next line starts all the waveforms that have been set up by the QBdagBrdDacSetM ode,
QBdagBrdDacPredefWave, and QBdagBrdDacUserWave commands.

ret% = QBdagBrdDacStart%

After the user is prompted to stop the waveforms by pressing a key on the computer, the next line stops
all the waveforms that have been set up by the QBdagBrdDacSetM ode, QBdagBrdDacPredefWave,
and QBdagBrdDacUserWave commands and started by the QBdagBrdDacStart command.

PRINT “The wafeforms are being outputted on DACs O and 1.”
PRINT “Press a key to stop the waveforms and end the program.”
WHILE INKEY$="":WEND:PRINT

ret% = QBdaqgBrdDacStop%

Programmer’'s Manual 4-15

Standard API Programming Models Chapter 4

Generating DAC FIFO Waveforms with Hardware-Level Commands (DaqBoard Only)

This program (DACEX3.BAS) demonstrates
the use of the DAC FIFO to generate

waveforms with hardware-level commands. | dagBrdDacResetFIFO | Reset DAC FIFO
The programmer must understand the 8255 Set DAC mode (use
integrated circuit. After configuration and dagBrdDacCtrl defined constant

DacFIFOBypass for

output enabled, the program continues while the bypass mode)

waveforms are generated. Functions used

. | dagBrdDacClockSrc | Set clock source (use
include: defined constant
- QBdagBrdDacResetFIFO% DacPcrStop to stop
QBdagBrdDacCtrl%(mode% build user-defined the pacer clock)
' waveforms in arrays

retransmit%o)
QBdagBrdDacClock Src%o(source%o) |

QBdagBrdDacSet TimeBase%o(frequency | dagBrdDacWriteFIFO | Load waveforms into FIFO
%) _
QBdagAdcConfCnitr0%(configob) | dagBrdDacCtrl | ng?;gé‘gﬁ's':;t(use
QBdagAdcWtCntr0%(cntr0%) DacFIFOlnterleave to
QBdagBrdDacWriteFI FO%(samples%, \ interleave two waveforms)
storage%()) ‘ dacBrdDacSetTimeBase ‘ Set pacer-clock time base

Note: This example uses the high-speed DAC
FIFO to generate waveforms and can only be ‘ ‘ ‘

used with the DagBoard product line. dagAdcConfCntr0 ﬁj‘;’:'g:{ﬁgg‘;’;tne;tgm
We first define a constant for the waveform's E;Si'zh’rﬁi'r‘;c" for divide
size and then dimension an array to build a ! -
waveformin. ‘ dagAdcWitCntrO ‘ Set number to divide by
CONS'!'0 WavePo ionts = 512 \ Set clock
DIM 1%, point%, ‘ daqBrdDacClockSrc ‘ et clock source (use

defined constant
DacPcrTBInt to enable
the pacer clock using the
\ internal time base)

‘User program code‘

No
Stop waveforms?

Yes

waveBufh(WavePoints)

Thefirst steps are to reset the FIFO. Thisclears
any previous samples from the FIFO.

Ret% = QBdagBrdDacResetFI1FO0%

Set the DAC FIFO to the DagBook compatible
(or FIFO bypass) mode. Note: This step is not
required, it isonly shown hereasa
demonstration of how to put the DACs in the
DagBook compatible mode.
Ret% =
QBdaqgBrdDacCtr1%(DacFIFOBypass%
» 0)

And turn off the DAC FIFO's pacer clock.
Ret% = QBdagBrdDacClockSrc%(DacPcrStop%)

Set clock source (use

dagBrdDacClockSrc defined constant
‘ 9 ockSr ‘ DacPcrStop to disable

\ pacer clock)
| dagBrdDacResetFIFO] Reset DAC FIFO

The next series of statements build the waveforms that will be output on DAC channelsOand 1. The
waveform on channel 1 will ramp from the low-voltage reference level to the high-voltage reference
level. The waveform on channel O will ramp from the high-voltage reference level down to the low-
voltage reference level. The waveform samples are interleaved in the buffer with channel 1 samplesin
the first buffer and channel 0 samplesin the second buffer. Note: The voltage references depend on the
hardware configuration. (See sections of the manual on your hardware configuration for more
information.)

FOR x = 0 to WavePoints% - 1 STEP 2
waveBufh(x) = point%
waveBufh(x+1) = &HFFF - pointh
point% = point% + &H10

NEXT x

4-16

Programmer’s Manual

Chapter 4

Standard API Programming Models

The next line loads the buffer we have built into the DAC FIFO hardware.
Ret% = QBdagBrdDacWriteFIFO%(WavePoints%, waveBuf%(0))

The next line specifies that the waveform samples are interleaved in the FIFO and that the samples
should be re-transmitted when the end of the FIFO is reached.

Ret% = QBdagBrdDacCtri%(DacFIFOInterleave%, 1)

Next we will set the main time base for the DAC pacer clock to 5 MHz; and then, we will configure
counter O of the 8254 (which the DAC pacer clock passes through) to be a divide by 10 counter. This
will give us a update rate of 500 kHz per sample. Since the samples are interleaved in the FIFO, each
waveform will be updated at a rate of 250 kHz.

Ret% = QBdagBrdDacSetTimeBase%(TB5Mhz%)
Ret% = QBdagAdcConfCntrO%(DcOcDivByNCtr%)
Ret% = QBdagAdcWtCntr0%(10)

To start the waveforms, we will turn on the DAC pacer clock and tell the hardware to use the internal
time base for this clock. After the user is prompted to stop the waveforms by pressing akey on the
computer, the next line stops all the waveforms that have been set up by stopping the clock pulsesto
the DAC FIFO and clearing the FIFO with the QBdagBrdDacResetFIFO command. Issuing either
command is enough to stop the waveform generation.

PRINT “The wafeforms are being outputted on DACs 0 and 1.”
PRINT “Press a key to stop the waveforms and end the program.”
WHILE INKEY$=""":WEND:PRINT

Ret% = QBdagBrdDacClockSrc%(DacPcrStop%)

Ret% = QBdagBrdDacResetFI1FQO%

Programmer’'s Manual 4-17

Standard API Programming Models Chapter 4

Background Counter Acquisition Using Interrupts

This program (CTREX2.BAS) setsup a
counting acquisition that counts events in the

. . . DaqCtrSetMasterMod Initialize 9513 master
background. First, asignal isgenerated on ‘ ageeastertiode ‘ mode register
the fout pin of P3 and must be physically \
connected to the interrupt input. After ‘ daqCtrSetCtrMode ‘ Configure the counter

configuring and arming the counter for
background acquisition, the program Y
continues in the foreground. The foreground @@ Set the load register
program can poll the background acquisition

to determine its status. A 10 Hz square wave Y

will be placed on the oscillator output. Useit daqCtrSetHold Set the hold register
to trigger the External Interrupt. Note: these

counters are only available on the !

!

DagBook/100/200 and daqCtrMultCtrl Load and arm counter 1
DagBoard/100A/200A. Functions used
include:)

. QBdaqCtrSetCtrM ode%(ctrNum®b, | dagCtrRdNBack | E::fgf:&’:ée(r;rg;ram

gateCtrl%, cntEdgeY%, cntSource%o,
specGate%, reload%, cntRepeat%,
cntType%, cntDir%, outputCtl%)
QBdaqCtrSetlL oad%(ctrNum%o,

continues while data is
being collected)

User program code

This function returns two
values.

ctrval%) I first value is 0, then
QBdagCtrSetHol d%(ctrNum%, daqCtrGetBackStat background acquisition is
ctrVal%) still in progress.

QBdaqCtrMultCtrl%(ctrCommand%s, Igﬁnﬁ?os';?nvséuse;qauired.
Ctrl%, ctr29%, ctr3%, ctrd%, ctrs%) ‘1
At this point, the data is in

QBdaqCtrRdNlctrVal ck%(ctr1Buf%(),

ctr2Buf%(), ctr3Buf%(), ctr4Buf%(), convert data format the buffer provided by the
ctr5Buf%:(), count%, startl PO%, to long integers user in binary format
cycleY%) *
o .
QBda;thrGetBackStat Yo(activedo, Output data
count%) to screen
DIM active®%, counth, &, ret®h
DIM ctr1Buf%(1000),
ctr2Buf%(10), ctr3Buf%(10), daqCtrMultCtrl Disable Counters

ctr4Buf%(10), ctr5Buf%(10) (use defined constant

DmccDisarm)
The QBdagCtrSetMasterM ode function will
be used to generate a 10 Hz pulse train on the fout signal located on connector P3. The F5 internal
clock of 100 Hz is used as the source for fout, and the divisor is 10. Fout hasto be physicaly
connected to the interrupt input with IR Enable enabled (see figure).

ret% = QBdaqCtrSetMasterMode%(10,

2 & & &
0 9 NSRS
DcsF5%, 0, O, DtodDisabled%) . 0,;&\3, . ©02§v0\;‘§02§ S
an i A o0 QL LLELRZ LR
The QBdaqCtrSetCtrMode function is used to &Q@\ %0\20\ %0\20%%)\'\09\@& ENENEN (/):\ ENENIS
configure counter 1 as an up-counter with a NAYD KDoA B 0o RO X000 00
source of F3, theinternal 10 kHz clock. IR
q deth(\A&éééé&&&éééééé&ééy
reth = QBdaqCtrSetCtrMode%(1,
DgcNoGating%, 1, DcsF3%, 0, O, 1‘) T‘) T T T T j‘) ‘ T‘) T T T T T T T i‘) T
1, 0, 1, DocTCToggled%) PP P FRP D R VDo P P A
.)) . . A\O@,\v%w;\,@@@/\é\/\/\/\&e@
When the counter is triggered, it will load itsalf ~ © PSS 909?2,0\2,0‘,0?50?»0\1%\\0‘;
with the contents of the load register, set to 0 by SRR %\Q?

the QBdagCtrSetL oad.
ret% = QBdaqCtrSetLoad%(1, 0)

P3 Pin Numbers and Signal Labels

The Hold Register is reset to zero.

4-18 Programmer’s Manual

Chapter 4

Standard API Programming Models

ret% = QBdaqCtrSetHold%(1, 0)

The next function loads and arms counter 1, which will start it at zero and prepare it to start counting.
ret% = QBdaqCtrMultCtri%(DmccLoadArm%, 1, 0, 0, 0, 0)

Read the countersin the background using interrupts count: 10, startlPO: immediate(0), cycle: no(0).
QBdagCtrRdNBack will set up aread of the values of the specified counters in the background and
place the 16-bit count values in the supplied arrays. The count argument specifies how many values to
storeinthe arrays. Counter 1 counts at 10 kHz. Readings (samples) are taken every 10 Hz, so the
counter isincremented by 1000 each timeit is read.

ret% = QBdaqCtrRdNBack®(ctriBuf®%(), ctr2Buf%(), ctr3Bufu(), ctr4Bufs(),
ctr5Buf%(), 10, 0, 0)

After the background read command is called, the program continues on the next line of execution. In
our program, we immediately go into a polling loop to check the status of the background operation.

DO
ret% = QBdaqCtrGetBackStat%(active%, count%)
LOCATE 6, 1
PRINT “Transfer in progress. ”; count%; “ samples acquired”

LOOP WHILE active% <>0
PRINT “Acquisition complete.”: PRINT

QuickBASIC' sinteger values are signed, ranging from -32766 to +32767. The values returned from
the 16-bit counters are not signed, ranging from 0 to 65,535. The integer values must be converted to
long integers to be properly interpreted.

FOR x = 0 TO 9
longBuf&(x) = ctriBufh(x)
IT longBuf&(x) < 0 Then longBuf&(x) = longBuf&(x) + 65536
NEXT
PRINT “data: ~
FOR x = 0 TO 9
PRINT USING “## ######”; x + 1; longBuf&(x)
NEXT

Next, stop and disarm all of the counters.
ret% = QBdaqCtrMultCtri%(DmccDisarm%, 1, 0, 0, 0, 0)

Programmer’'s Manual 4-19

Standard API Programming Models Chapter 4

Variable Rate, Variable Duty-Cycle Square-Wave Output

This program (CTREX1.BAS) demonstrates the
use of the counter/timer section of a
DagBook/100/200 or DagBoard/100A/200A

with the P3 port. After configuring the counter DagCirSetMastertode | Lﬂg‘jﬁﬁzgiﬁj master
and setting the load and hold registers, the \
counter isarmed. At this point, program ‘ daqCtrSetCtrMode ‘ Configure the counter
execution continues while the counter outputs the
signal. This example generates avariable rate, \
variable duty-cycle square wave. Functions used ‘ daqCtrSetLoad ‘ Set the load register
include:
- QBdagCtrSetM asterM ode%(foutDiv9s, |
foutSource%, compl1%, comp2%, tod%) \ daqCtrSetHold \ Set the hold register
QBdaqCtrSetCtrM ode%o(ctrNum9s,
gateCtrl%, cntEdgeY%, cntSource%o, ‘
specGate%, reload%, cntRepeat%, ‘ daqCtrMultCtrl ‘ Load and arm counter 1
cntType%, cntDir%, outputCtl%) ‘

QBdaqCtrSetHol d%(ctrNum%%, ctrVal%)
QBdaqCtrSetlL oad¥%(ctrNum%, ctrVal %)
QBdagCtrMultCtrl%(ctrCommand%s,
Ctr1%, ctr2%, ctr3%, ctrd%, ctr5%)

‘User program code‘

itiali - St ter?
Initialize the 9513 master mode register fout Op counter

divider: 10, fout source: DcsF2 (100 kHz),
comparel: no, compare 2: no, time of day

disabled. Thiswill place a 10 kHz pulse on the daqCtrMultCtrl)

oscillator output. The QBdagCtrSetMasterMode daqCtrSetMasterMode Disable counter output
function will initialize the counter/timer section

and configure several of its parameters. Thisisa ‘

system-wide function which affects all 5 counter

timers. Note: for acomplete understanding of counter/timer operation, read the data book on the 9513
chip supplied by AMD. Aside from initializing the counter/timer section, this application does not use
most of the capabilities of the QBdaqCtrSetMasterMode function. The first two argumentsin this
function select a clock source for the fout signal found on connector P3, then select a divider for that
signal. F2inthisapplication isafixed, internal frequency source of 100 kHz. Our example divides
this fixed frequency by 10 yielding asignal on fout of 10 kHz.

ret% = QBdaqCtrSetMasterMode%(10, DcsF2%, 0, O, DtodDisabled%)

The QBdagCtrSetCtrMode function configures an individual counter in the 9513. The first argument
specifies the counter to be configured, the second specifies the internal operation of the gate control.
Our application does not use the gate, so it is disabled. The fixed 100 kHz internal clock (F1) isused
asthe source. By setting the reload parameter to 1, the counter will use the 'load’ register and the
"hold’ register to generate the pulse train. When the counter is armed, the’load’ register valueis
loaded then decremented on every edge of the F1 clock. The output signal will be high during this
phase. When the terminal count is reached, the 'hold’ register isloaded then decremented on every
edge of the F1 clock. The output signal islow during this phase. If the reload argument is set to O,
only the'load’ register is used, aways yielding a 50% duty-cycle pulse train. The cntRepeat argument
specifies whether the pulse train should execute once or repeat continuously. The counter interprets the
load and load register as either binary or BCD depending on the value of the cntType argument. The
cntDir specifies whether the internal counter should count up or down to reach the terminal count. A
value of 5 counted down has the same effect as a value of 65,530 counted up.

ret% = QBdaqCtrSetCtrMode%(1l, DgcNoGating%, 1, DcsFl%, O, 1, 1, O, O,

DocTCToggled%)

Set the load register to 75 and the hold register to 25. This produces a high duty-cycle of 75% and
(with 100 total countsto count down) a frequency of 10 kHz.

ret% = QBdaqCtrSetLoad%(1, 75)

4-20

Programmer’s Manual

Chapter 4 Standard API Programming Models

ret% = QBdaqCtrSetHold%(1, 25)

The QBdagCtrMultCtrl function will arm counter 1.

ret% = QBdaqCtrMulCtri% (DmccDisarm%, 1, 0, 0, 0, 0)
ret% = QBdaqCtrSetMasterMode% (0O, 0, O, O, DtodDisabled%)
Print “Outputs disabled.”

Continue the pulse train until akey is pressed.

PRINT “A 10 kHz 25% duty-cycle square wave is on the counter 1 output.”
PRINT “press any key to halt counter 1 output.”
WHILE INKEY$ = “”: WEND

QBdaqCtrMultCtrl will stop the pulsetrain.
ret% = QBdaqCtrMultCtri%(DmccDisarm®%, 1, 0, 0, 0, 0)

Programmer’'s Manual 4-21

Standard API Programming Models Chapter 4

Single Square-Wave Output

This program (ADCEX5.BAS) demonstrates the use of
the 8254’ s counter 0 (accessible viathe
DagBook/DagBoard P1 connector—not available via Configure counter
Dag PCMCIA). After configuring the control register [dacAdeConfCntrd | (use defined constant
and loading the down-count register of the counter, the DcOcSquareWave for

. square wave output)
trigger is defined and armed. At this point, program | _
execution continues while the counter outputs the dagAdcWtCntr0 |-f°ad down count register
signal. This program will initialize the Dag* hardware, (frequency output =

100 KHz / n
then generate a 50 kHz pulse train on the counter 0 ‘ .]) _
signal of P1. Functions used include: dagAdcSetTrig ?ef'”g ?.”dé’"m niager
S 1 consta
QbdagA dcConf Cntr0%(config%o) Btsepaier:&oc?(nfor "
QbdagA dcWtCntr0%(cntr0%) immediate trigger)

QBdagA dcSet Trig%o(source%, oneShot%,
level %, ctrOM ode%, pacerM ode%)

To operate the counter, it must first be configured by the QBdagAdcConfCntr function. In this
program, the counter is configured to generate a square wave.

ret% = QBdagAdcConfCntr0%(DcOcSquareWave)
This counter contains a down-counter which effectively divides the counter source by the loaded count.

The next line loads the count-down register with a 2, which divides the source count (100 kHz) by 2 to
equal apulsetrain of 50 kHz.

ret% = QBdagAdcWtCntro%(2)
To start the pulse train, it must be armed and triggered by the QBdagAdcSetTrig function. This
function also arms an analog input acquisition, if configured, which will be synchronized with the start

of this pulsetrain. With atrigger source of the internal pacer clock, the pulse train will start
immediately.

ret% = QBdagAdcSetTrig%(DtsPacerClock%, 0, 0, 1, 0)

4-22

Programmer’s Manual

Chapter 4

Standard API Programming Models

Digital 1/0 on P2

This program (DIGEX1.BAS) demonstrates the
functions controlling digital 1/0 on connector P2 of the
DagBook/100/200 and DagBoard/100A/200A. First,
the 3 digital ports on the 8255 are configured as input,
output (or both in the case of port C); then, appropriate
I/O commands areissued. Functions used include:
QBdagDigConf%(port%, config%)
QBdagDigWiByteY%(port%, byteVal %)
QBdagDigRdByte%o(port%, byteVal %)
QBdagDigW1Bit%(port%, bitNum%%, bitVa %)
QBdagDigRdBit%(port%, bitNum%, bitVal%)
DIM byteval%, bitVal%
ret% = QBdagDigGetConf% (0,1,0,1,
configh)

The function QBdagDigGetConf returns the appropriate
configuration value to use inQBdagDigConfig. The
QBdagDigConf function tellsthe Dag* whether the
digital 1/0O islocated in the base unit, or on an expansion
card. The second argument is the byte to be sent to the
8255's control register.

reth =

Write hex 55 to port A on the Dag*’ s base unit.

Hf

daqDigGetConf

dagDigConf

il

daqDigWiByte

|
daqDigRdByte
!

gWiBit

Pi

o
o
o
=

dagDigRdBit

+

QBdagDigConf%(DdcLocal%, configure)

Configure mode of ports
A, B, & C on 8255 chip

Set configuration

Write to port A
(use defined constant
DdpLocalA)

Read from port B
(use defined constant
DdpLocalB)

Write to high nibble of
port C (use defined
constant DdpLocalCHigh)
(repeat for each bit)

Read from low nibble of
port C (use defined
constant DdpLocalCLow)
(repeat for each bit)

ret% = QBdaqgDigWtByte%(DdpLocalA%, &H55)
Read port B and put the value into the variable byteVa %.

ret% = QBdaqDigRdByte%(DdpLocalB%, byteVal%)
PRINT “The value on digital port B : &H”; HEX$(byteVal%): PRINT

The following lines write to individua bits on the base unit’s port C.

ret% = QBdagDigWtBit%(DdpLocalCHigh%, 0, 1)
ret% = QBdagDigWtBit%(DdpLocalCHigh%, 1, O
ret% = QBdagDigWtBit%(DdpLocalCHigh%, 2, 1)
ret% = QBdagDigWtBit%(DdpLocalCHigh%, 3, 0)

PRINT “The high nibble of digital port C set to : 0101": PRINT

The next lines read the low nibble of port C on the base unit.

FOR x% = 0 TO 3

ret% = QBdaqgDigRdBit%(DdpLocalCLow%, x%, bitVal%)
PRINT “The value on bit ”; x%; “ of digital port C
NEXT x%

1 &H”; HEX$(bitval%)

Programmer’'s Manual

4-23

Standard API Programming Models Chapter 4
Temperature Measurements Using Single TC Type on a Single DBK19 Card
The 4 examples follow the same command sequence
except for their arguments or program code for data *
output: User variable Define an array of channels
) definitions and an array of gains

Example 1 demonstrates repeated
measurements of TC inputs.

Example 2 demonstrates block averaging of
the same TC inputs as example one. This
example performs each reading 5 times and
averages them together.

Example 3 uses the same data as example 2,
but rather than averaging the 5 scans, it
outputs each of them to the screen.
Example 4 gather the same data as the
previous examples but applies a moving
averageto that data.

DBK19 Example 1: Type J
Thermocouples

In this example, we wish to repeatedly measure the
temperatures sensed by 2 type J thermocouples
attached to channels 18 and 19 through a DBK 19
card. The DBK19 CJC signal is awaysthe first
signal on the card and the shorted channel (used for
zero compensation) is always the second signal on
the card. Inthis case, they are on channels 16 and
17. First welist the configuration (see table).

daqReadCalFile Read calit_)r_atior_1 constants
* from specified file

dagAdcSetScan Configure scans

Configure parameters for

daqTCSetup subsequent temperature

dagAdcSetTrig

dagAdcSoftTrig

conversions

Set trigger type (use
defined constant DtsSoftware
for software trigger)

Software trigger

Read data in foreground

Y
dagAdcRdNFore | (program stops until all

data is collected)
Y Configure order and type of

[daqCalSetupConvert| data to calibrate and then

perform calibration for
CJC channels

[daqCalSetupConvert] Configure order and type of

Card Channel Channel Type
DBK19 16 cJC
17 Shorted (zero)
18 Type J
19 Type J
Local 0 Used for DBK19
1-15 Free for other uses

Now we must specify the scan, the sequence of channel numbers
and gains that are to be gathered as one burst of readings. In this
example, we are only interested in the temperature channels; the
scan must first include the CJC zero, thermocouple zero and CJC,
and then the temperature channels (see table). The thermocouples

need not be scanned in any particular order. We might have
specified channel 18 before channel 17, but keeping thingsin

order will make the calibration easier.

For each scan position, we must specify the

data to calibrate and then
perform calibration for
Y TC channels

daqTCConvert Convert raw A/D readings to
temperature readings in
itenths of a degree Celsius

At this point, the data is in
a user buffer in degrees
Celsius (data type is
floating point)

PGA gain code. Assuming the Dag* is

configured for bipolar operation (to allow

measurement of temperatures below the

temperature at the DBK 19 card), we choose

the gain codes from the table and add them to

the scan description.

Scan Channel
Position Type Channel
0 CJC Zero 17
1 Type J Zero 17
2 CJC 16
3 Type J 18
4 Type J 19
Scan Channel
Position Type Channel Gain Code
0 CJC Zero 17 Dbk19BiCJC
1 Type J Zero 17 Dbk19BiTypeJ
2 CJC 16 Dbk19BiCJC
3 Type J 18 Dbk19BiTypeJ
4 Type J 19 Dbk19BiTypeJ

4-24

Programmer’s Manual

Chapter 4

Standard API Programming Models

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement 0 1 2 3 4
1 CJC Zero Type J Zero CJC Type J Type J
2 CJC Zero Type J Zero CJC Type J Type J
3 CJC Zero Type J Zero CJC Type J Type J
10 CJC Zero Type J Zero CJC Type J Type J
Results After daqgTCConvert
Results
Measurement 0 1
1 Temp °C Temp °C
2 Temp °C Temp °C
3 Temp °C Temp °C
10 Temp °C Temp °C

Now we can configure the Dag* with this information:
DIM chans%(5), gains%(5), buf%(5), temp%(2)

" read calibration file

reth%

" Set array

QBdagReadCalFile%(*"dagbook.cal™)

of channels and gains

chans%(0) = 17

gains%(0) = Dbk19BiCJC%
chans®%(1) = 17

gains%(1l) = Dbk19BiTypeJ%
chans%(2) = 16

gains%(2) = Dbk19BiCJC%
chans%(3) = 18

gains®%(3) = Dbk19BiTypeJ%
chans%(4) = 19

gains®%(4) = Dbk19BiTypeJ%

" Load scan

sequence FIFO :

ret% = QBdagAdcSetScan%(chans%(), gains%(), 5)

" Temperature measurements require 16-bit data

reth%

* Configure
ret%

FOR i

QBdagAdcSetTag®%(1)

for the conversion to temperatures

QBdaqTCSetup%(5, 2, 2, Dbkl19TCTyped%, 1, 1)

1 T0 10

" Define and arm trigger :

ret% = QBdagAdcSetTrigh(DtsSoftware%, 1, 0, 0, 0)
" Trigger
ret% = QBdagAdcSoftTrig%

" Read the data

ret%

QBdagAdcRdNFore®(bufh(), 1)

" Calibrate the CJC -1 channel starting at position 2
reth QBdaqgCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, bufu(Q, 1)

" Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTyped%,
18, 1, 1, bufs(Q), 1)

Programmer’'s Manual

4-25

Standard API Programming Models Chapter 4

* Convert "scans” scans of counts to two temperatures
ret% = QBdagTCConvert%(buf%(), 1, temp%(), 2)

"Display the temperatures
PRINT *"*Channel 18: *; .01 * temp%(0); ™ Channel 19: *; .01 * temp%(l1)
NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN

IntToUint = IntVal "Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(IntVal) + 1 "Convert negative values to
"positive
END IF

END FUNCTION

DBK19 Example 2: Block Averaged TC readings

In this example, we want to acquire the same information asin example 1, except we wish to use the
Dag*’ s high speed to reduce the noise by taking each reading 5 times and averaging them together.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement [Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CcJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CcJC Type J Type J
1 4 CJC Zero Type J Zero CcJC Type J Type J
1 5 CJC Zero Type J Zero CcJC Type J Type J
2 1 CJC Zero Type J Zero CcJC Type J Type J
2 2 CJC Zero Type J Zero CcJC Type J Type J
10 5 CJC Zero Type J Zero CcJC Type J Type J
Results After daqTCConvert
Results
Measurement | 0 1
1 Temp °C | Temp °C
2 Temp °C | Temp °C
3 Temp °C | Temp °C
10 Temp °C | Temp °C

Assuming we are using the same thermocoupl es connected in the same way, the scan configuration is
like example 1:

DIM chans%(5), gains®%(5), buf%(25), temp%(2)

" read calibration file
ret% = QBdaqReadCalFile%(*'"dagbook.cal'™)

" Set array of channels and gains

chans%(0) = 17

gains%(0) = Dbk19BiCJC%
chans®%(1) = 17

gains®%(1l) = Dbk19BiTypeJ%
chans®%(2) = 16

gains®%(2) = Dbk19BiCJC%
chans%(3) = 18

gains®%(3) = Dbk19BiTypeJ%
chans%(4) = 19

gains®%(4) = Dbk19BiTypeJ%

4-26 Programmer’s Manual

Chapter 4 Standard API Programming Models

" Load scan sequence FIFO :
ret% = QBdagAdcSetScan®%(chans®%(), gains%(), 5)

" Temperature measurements require 16-bit data
ret% = QBdagAdcSetTag®h(1)

" Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbkl19TCTyped%, 1, 0)

FOR i =1 TO 10
" Define and arm trigger :
ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)

" Trigger
ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf%(), 5)

" Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert®%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, counts%(), 5)

" Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert®%(5, 3, 2, DcalTypeDefault®%, Dbk19BiTypeJd%,
18, 1, 1, bufs(Q), 5)

" Convert "scans” scans of counts to two temperatures
ret% = QBdagTCConvert%(buf®(), 5, temp%(), 2)

"Display the temperatures
PRINT "*Channel 18: '; .01 * temp%(0); ™ Channel 19: "; .01 * temp%(l1)
NEXT i

" Close DagBook/100 and end program
ret% = QBdaqClose%
END

ErrorHandler:

PRINT "ERROR! Program aborted"

PRINT "BASIC Error :"; ERR

IF ERR = 100 THEN PRINT '"DaqBook/100 Error : '; HEX$(dagErrno%)
END

FUNCTION IntToUint (IntvVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN
IntToUint = IntVval "Return positive values with no change

ELSE
IntToUint = 65535 + CLNG(Intval) + 1 "Convert negative values to
"positive
END IF

END FUNCTION

Programmer’'s Manual 4-27

Standard API Programming Models Chapter 4

DBK19 Example 3: Multiple Sequential Measurement

In this example, we wish to collect the same data as in example 2; but instead of averaging the groups
of 5 consecutive scans, we want to convert each scan’s measurements into individual temperature
values.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement | Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CJC Type J Type J
1 2 CJC Zero Type J Zero CJC Type J Type J
1 3 CJC Zero Type J Zero CJC Type J Type J
1 4 CJC Zero Type J Zero CJC Type J Type J
1 5 CJC Zero Type J Zero CJC Type J Type J
2 1 CJC Zero Type J Zero CJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
10 5 CJC Zero Type J Zero CJC Type J Type J
Results After daqTCConvert
Results
Measurement Scan | O 1
1 1 Temp °C Temp °C
1 2 Temp °C Temp °C
1 3 Temp °C Temp °C
1 4 Temp °C Temp °C
1 5 Temp °C Temp °C
2 1 Temp °C Temp °C
2 2 Temp °C Temp °C
10 5 Temp °C Temp °C

The scan setup isthe same as in examples 1 and 2 and is omitted here for brevity. We again configure
for the conversion to temperatures, thistime (as in example 1) specifying no averaging:

DIM chans%(5), gains®%(5), buf®%(25), temp%(5, 2)
CLS
PRINT "DBK19_3": PRINT

"Set error handler and initialize DagBook/100
ret% = QBdagSetErrHandler%(100)

ON ERROR GOTO ErrorHandler

ret% = QBdagInit%(LPT1%, 7)

" read calibration file
ret% = QBdaqReadCalFile%(‘'dagbook.cal™™)

" Set array of channels and gains

chans®%(0) = 17

gains%(0) = Dbk19BiCJC%
chans®%(1) = 17

gains®%(1l) = Dbk19BiTypeJ%
chans®%(2) = 16

gains®%(2) = Dbk19BiCJC%
chans%(3) = 18

gains®%(3) = Dbk19BiTypeJ%
chans%(4) = 19

gains®%(4) = Dbk19BiTypeJ%

" Load scan sequence FIFO :
ret% = QBdagAdcSetScan%(chans%(), gains%(), 5)

" Temperature measurements require 16-bit data
ret% = QBdagAdcSetTag®%(l)

4-28

Programmer’s Manual

Chapter 4 Standard API Programming Models

" Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbkl19TCTyped%, 1, 1)

FOR i =1 TO 10
" Define and arm trigger :
ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)

* Trigger
ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf%(), 5)

" Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert®%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, bufs(Q, 5)

" Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert®%(5, 3, 2, DcalTypeDefault®%, Dbk19BiTypeJd%,
18, 1, 1, bufs(Q), 5)

" Convert "scans” scans of counts to two temperatures
ret% = QBdagTCConvertw(buf®(), 5, temph(), 10)

FOR j =1 T0 5
"Display the temperatures

PRINT "Channel 18: *; .01 * temp%(j, 0); " Channel 19: "™; .01 *
temp%(g, 1)
NEXT j
NEXT i

FUNCTION IntToUint (IntVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF O <= IntVal THEN

IntToUint = Intval "Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1 "Convert negative values to
"positive
END IF

END FUNCTION

Programmer’'s Manual 4-29

Standard API Programming Models Chapter 4

DBK19 Example 4: Moving Averaged Measurements

In this example, we wish to collect the same data as in example 3; but to reduce noise, we will use a
moving average to average consecutive triplets of scans.

The following tables show the raw data input and the resulting temperature data output for this sample

program.
Raw Data Input
Readings
Measurement | Scan 0 1 2 3 4
1 1 CJC Zero Type J Zero CcJC Type J Type J
1 2 CJC Zero Type J Zero CcJC Type J Type J
1 3 CJC Zero Type J Zero CcJC Type J Type J
1 4 CJC Zero Type J Zero CcJC Type J Type J
1 5 CJC Zero Type J Zero CcJC Type J Type J
2 1 CJC Zero Type J Zero cJC Type J Type J
2 2 CJC Zero Type J Zero CJC Type J Type J
10 5 CJC Zero Type J Zero CcJC Type J Type J
Results After daqTCConvert
Results
Measurement | O 1
1 Temp °C | Temp °C
2 Temp °C | Temp °C
3 Temp °C | Temp °C
10 Temp °C | Temp °C

The scan setup is the same as in the previous examples and is omitted here for brevity. We again
configure for the conversion to temperatures, thistime (asin example 1) specifying moving averaging
of 3 scans.

DECLARE FUNCTION IntToUint! (IntVal AS INTEGER)

" DBK19_4.BAS

* In this example we will collect the same data as example three but we
" will use a moving average to average consecutive triplets of scans.
"$INCLUDE: "dagbook.bi*

DIM chans%(5), gains®%(5), buf®(25), temp%(5, 2)

CLS

PRINT "DBK19_4": PRINT

"Set error handler and initialize DagBook/100
ret% = QBdagSetErrHandler%(100)

ON ERROR GOTO ErrorHandler

ret% = QBdaqInit%(LPT1%, 7)

read calibration file
ret% = QBdaqReadCalFile%(''dagbook.cal')

" Set array of channels and gains

chans%(0) = 17

gains®%(0) = Dbk19BiCJC%
chans®%(1) = 17

gains®%(1) = Dbk19BiTyped%
chans%(2) = 16

gains®%(2) = Dbk19BiCJC%
chans%(3) = 18

gains®%(3) = Dbk19BiTyped%
chans%(4) = 19

gains®%(4) = Dbk19BiTyped%

" Load scan sequence FIFO :
ret% = QBdagAdcSetScan®%(chans®%(), gains%(), 5)

4-30 Programmer’s Manual

Chapter 4

Standard API Programming Models

" Temperature measurements require 16-bit data
ret% = QBdagAdcSetTag%(1)

" Configure for the conversion to temperatures
ret% = QBdaqTCSetup%(5, 2, 2, Dbk19TCTyped%, 1, 3)

FOR i = 1 TO 10
* Define and arm trigger :
ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)

" Trigger
ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf®(), 5)

" Calibrate the CJC -1 channel starting at position 2
ret% = QBdaqCalSetupConvert%(5, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, bufu(), 5)

" Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(5, 3, 2, DcalTypeDefault%, Dbk19BiTyped%,
18, 1, 1, bufs(Q), 5)

" Convert "scans” scans of buf to two temperatures
ret% = QBdaqTCConvertl(buf®(), 5, temp%(), 10)

FOR j =1 TO 5
"Display the temperatures

PRINT "*Channel 18: *; .01 * temp%(j, 0); " Channel 19: "; .01 *
temp (g, 1)
NEXT j
NEXT i

FUNCTION IntToUint (IntvVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntvVal THEN
IntToUint = Intval “Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1 "Convert negative values to
"positive
END IF
END FUNCTION

Programmer’'s Manual

4-31

Standard API Programming Models

Chapter 4

Temperature Measurements Using Multiple TC Types on Multiple DBK19 Cards

This program demonstrates temperature
acquisitions using multiple TC types and
multiple DBK19 cards. The two commands
dagTCSetup and dagTCConvert have been
combined into the one dagT CSetupConvert
command. The sequence of the last 3 blocks
on the flow chart must be used multiple times,
once for each card, and if thereis multiple TC
types on a card, once for each TC type on that
card.

In this example, we wish to repeatedly
measure the temperatures sensed by 2 Type J
and 2 Type K thermocouples attached through
1 DBK19 card and 2 more Type J
thermocoupl es attached through another
DBK19. The DBK19 CJC signd isaways
the first signal on the card, and the shorted
channel (used for zero compensation) is
always the second channel onthe card. First
we list the configuration:

Now we must specify the scan, the sequence
of channel numbers and gains that are to be
gathered as one burst of readings. In this
example, we are only interested in the
temperature channels; and so, the scan must
first include the CJC and then immediately the
temperature channels (see table).

'

User variable
definitions

!

dagReadCalFile

!

dagAdcSetScan

!

dagAdcSetTrig

!

dagAdcSoftTrig

dagAdcRdNFore

|

‘danaISetu

\

‘danaISetupConvert ‘

\

‘ dagqTCSetupConvert ‘

e

Define an array of channels
and an array of gains

Read calibration constants
from specified file

Configure scans

Set trigger type (use
defined constant DtsSoftware
for software trigger)

Software trigger

Read data in foreground
(program stops until all
data is collected)

Configure order and type of

pConvert | data to calibrate and then

perform calibration for

CJC channels

Configure order and type of
data to calibrate and then
perform calibration for

TC channels

Configure order and type of
data to convert and then
perform conversion of raw

Card Channel Channel Type A/D data for TC channels
DBK19 | 16 CJC Note: The last 3 steps At this point, the data is in
17 Shorted (zero) must be repeated for the buffer provided by the
18 Type J each DBK 19/52 card user _in bina_ry format (data
19 Type J and for each type of TC type is floating point)
20 Type K attached to the card.
21 Type K
DBK19 | 32 cJC
33 Shorted (zero)
34 Type J Scan
35 Type J Position Channel Type | Channel Gain Code
Local |01 Used ff°r DhBKlg 0 CJC Zero 17 DbK19BICJC
215 Free for other uses 1 Type J Zero 17 Dbk19BiTypeJ
2 cJc 16 Dbk19BiCJC
. 3 Type J 18 Dbk19BiTypeJ
The thermocouples are separated in the 4 Type J 19 Dbk19BiTypeJ
scan by type. The readings from each type 5 CJC Zero 17 Dbk19BiCJC
are consecutive and immediately preceded ? ;ypecﬁc % BEESS!B%EK
by their CJC Zero, thermocouple zero, and 8 T%‘; ” 2 DbklgB:Typ »
CJC readings for calculation reference. It 9 Type K 21 Dbk19BiTypeK
is not appropriate to consolidate the 4 Type 10 CJC Zero 33 Dbk19BiCJC
J thermocouples because they are E (T:%F(’:e J Zero gg Bgﬁgg?g%ﬂ
connected through 2 different DBK 19s. 13 Type J 34 DbleB:Type ;
Each DBK 19 hasits own CJC and offset 14 Type J 35 Dbk19BiTypeJ

errors as areference for thermocouples
attached to that DBK19.

For each scan position, we must specify the PGA gain. Assuming the Dag* is configured for bipolar
operation (to allow measurement of temperatures below the temperature at the DBK 19 cards), we
choose the gain codes from the table above and add them to the scan description.

4-32

Programmer’s Manual

Chapter 4

Standard API Programming Models

The following tables show the raw data input and the resulting temperature data output for this sample program.Raw Data Input

Measure-
ment

Scan

0

Readings
1 2 3 4 5 6 7 8 9

10

. (1-3)

14

1

1

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

1

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

cJC
Zero

TypeJ | CIC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type

. J

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

cJC
Zero

TypeJ | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJC
Zero

Type
J

10

cJc
Zero

Typed | CIJC | Type | Type | CIC | TypeK | CIC | Type | Type
Zero J J Zero Zero K K

cJc
Zero

Type

-J

Results After daqTCConvert

Measurement

0

Results
1 2 3 4 5

1

Temp °C

Temp°C | Temp°C [Temp°C | Temp°C | Temp °C

2

Temp °C

Temp°C | Temp°C | Temp°C [Temp°C | Temp °C

10

Temp °C

Temp°C | Temp°C | Temp°C [Temp°C | Temp °C

Now we can configure the DagBook/DagBoard with this information:

DIM chans%(15), gains%(15), buf%(75), templ%(2), temp2%(2), temp3%(2)

read calibration file

ret% = QBdaqReadCalFile%(''dagbook.cal')

chans®%(0) = 17: gains%(0)
chans%(1)
chans%(2)
chans%(3)
chans%(4)
chans%(5)
chans%(6)
chans%(7)
chans%(8)
chans%(9)
chans%(10)
chans%(11)
chans%(12)
chans%(13)
chans%(14)

Set array of channels and gains
Dbk19BiCJC%
Dbk19BiTypeJd%
Dbk19BiCJC%
Dbk19BiTypeJd%
Dbk19BiTypeJ%
Dbk19BiCJC%
Dbk19BiTypeK%

17: gains®%(1)
16: gains%(2)
18: gains®%(3)
19: gains%(4)
17: gains%(5)
17: gains%(6)
16: gains®%(7) Dbk19BiCJC%

20: gains%(8) Dbk19BiTypeK%
21: gains%(9) = Dbk19BiTypeK%
33: gains%(10) Dbk19BiCJC%
33: gains%(11l) Dbk19BiTypeJd%
32: gains®(12) Dbk19BiCJC%
34: gains%(13) Dbk19BiTypeJd%
35: gains%(14) Dbk19BiTypeJ%

Load scan sequence FIFO :

ret% = QBdagAdcSetScan®%(chans®%(), gains®%(), 15)

Temperature measurements require 16-bit data

ret% = QBdagAdcSetTag%(l)
FOR i = 1 TO 10

" Define and arm trigger :

ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)
* Trigger

ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf%(), 5)

* Calibrate the CJC -1 channel starting at position 2

Programmer’'s Manual

4-33

Standard API Programming Models Chapter 4

ret% = QBdaqCalSetupConvert%(15, 2, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf®(), 15)

" Calibrate the TCs -2 channel starting at position 3
ret% = QBdaqCalSetupConvert%(15, 3, 2, DcalTypeDefault%, Dbk19BiTypeJd%,
18, 1, 1, bufs(), 15)

" Calibrate the TCs -1 channel starting at position 7
ret% = QBdaqCalSetupConvert%(15, 7, 1, DcalTypeCJC%, Dbk19BiCJC%, 16, 1,
1, buf®(), 15)

" Calibrate the TCs -2 channel starting at position 8
ret% = QBdaqCalSetupConvert%(15, 8, 2, DcalTypeDefault%, Dbk19BiTypeK%,
20, 1, 1, bufs(), 15)

" Calibrate the CJC -1 channel starting at position 12
ret% = QBdaqCalSetupConvert%(15, 12, 1, DcalTypeCJC%, Dbk19BiCJC%, 32,
1, 1, bufu(), 15)

" Calibrate the TCs -2 channel starting at position 13
ret% = QBdaqCalSetupConvert%(15, 13, 2, DcalTypeDefault%, Dbk19BiTyped%,
34, 1, 1, bufs(), 15)

" Convert "scans® scans of counts to two temperatures
ret% = QBdaqTCSetupConvert®%(15, 2, 2, Dbkl19TCTyped%, 1, 0, buf®w(), 15,
templ% (), 2)

"Display the temperatures
PRINT "*Channel 18: "; .01 * templ%(0); ™ Channel 19: "; .01 *
templ%(l)

" Convert "scans® scans of counts to two temperatures
ret% = QBdaqTCSetupConvert®%(15, 3, 2, Dbk19TCTypeK%, 1, 0, buf®w(), 15,
temp2%(), 2)

"Display the temperatures
PRINT "*Channel 20: "; .01 * temp2%(0); ™ Channel 21: "; .01 *
temp2%(1)

" Convert "scans® scans of counts to two temperatures
ret% = QBdaqTCSetupConvert®%(15, 6, 2, Dbk19TCTyped%, 1, 0, bufw(), 15,
temp3%(), 2)

"Display the temperatures

PRINT "*Channel 34: "; .01 * temp3%(0); ™ Channel 35: "; .01 *
temp3%(1)
NEXT i

FUNCTION IntToUint (IntvVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF O <= IntVal THEN
IntToUint = IntvVal "Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1
"Convert negative values to positive
END IF
END FUNCTION

4-34 Programmer’s Manual

Standard API Programming Models

This program demonstrates temperature
acquisitions using multiple RTD types and asingle
DBK9 card. After this program configures and
arms the DBK card, it begins acquiring datain the
foreground acquisition mode. At this point,
program execution is suspended until al the datais
gathered. The program demonstrates the
conversion of data as both atwo-step process and a
single-step process. Note the conversion routines
need to be called for each type of RTD in the scan.
The temperature at the RTD is derived from 4
voltage values.

In this example, we wish to acquire some
temperature readings from 3 RTDs. There aretwo
100-ohm RTDs attached to channels 16 and 17 of
the DBK9 and one 1000-ohm RTD attached to
channel 18. The configuration looks like this:

First we must specify the scan sequence of channel
numbers and gains that are to be gathered as one
burst of readings. In this example, we are only
interested in the RTD channels. The scan must
include the 4 voltage readings in the correct order
for each channel (seetable).

Note that the RTDs need not be scanned in any
particular order but the 4 readings for each RTD
must be placed in the scan sequentially. We might

!

User variable
definitions

!

dagAdcSetScan

!

dagAdcSetFreq

st |

dagAdcSetTrig

!

dagAdcRdNFore

dagRtdSetup

VF
onvert

dagRtdC

|

Temperature Measurements Using Multiple RTDs on a Single DBK9 Card

Define an array of channels
and an array of gains

Configure scans

Set sample frequency

Define and arm trigger

Read data in foreground
(program stops until all
data is collected)

Setup conversion for RTD
channels.

Convert data for RTDs and
place data in user defined
buffer.

‘ daqRtdSetupConvert ‘

Setup and convert data for

have specified channel 17 before channel 16. It isbest
to group al the RTD reading groups of the same value
together because this makes using the temperature
conversion functions easier.

Now we can configure the Dag* with thisinformation.
First we will define some constants that will make the
program easier to modify.

Card Channel Channel Type
DBK9 16 100 ohm RTD
17 100 ohm RTD
18 1000 ohm RTD
Local 0 Used for DBK9
1-15 Free for other uses

RdsPerRtd = 4

NRtds = 3

FirstRtdChanNo = 16

Nscans% = 10

ReadingsPerScan% = NRtds * RdsPerRtd
BufSize = Nscans% * ReadingsPerScan%
VaOffset
VbOffset
VcOffset
VdOffset

WNEFLO

second RTD type and place
in user-defined buffer (this
function performs setup and
conversion in one call)

Scan Channel *Channel Gain
Position Number
0 16 Dbk9VoltageA
1 16 Dbk9VoltageB
2 16 Dbk9VoltageD
3 16 Dbk9VoltageD
4 17 Dbk9VoltageA
5 17 Dbk9VoltageB
6 17 Dbk9VoltageD
7 17 Dbk9VoltageD
8 18 Dbk9VoltageA
9 18 Dbk9VoltageB
10 18 Dbk9VoltageD
11 18 Dbk9VoltageD
* These are not actual gains. They are used to
select voltages A-D for each RTD channel.

DIM chans%(ReadingsPerScan%), gains%(ReadingsPerScan%), buf%(BufSize),

templ%(Nscans% * 2), temp2%(Nscans%)

Programmer’'s Manual

4-35

Standard API Programming Models Chapter 4

" Set array of channels and gains
FOR RTD% = O TO NRtds - 1
FOR j% = O TO RdsPerRtd
chans%(RTD% * RdsPerRtd + j) = RTD% + FirstRtdChanNo

NEXT j%

gains%(RTD% * RdsPerRtd + VaOffset) = Dbk9VoltageA%
gains%(RTD% * RdsPerRtd + VbOffset) = Dbk9VoltageB%
gains%(RTD% * RdsPerRtd + VcOffset) = Dbk9VoltageD%
gains%(RTD% * RdsPerRtd + VdOffset) = Dbk9VoltageD%

NEXT RTD%

" Load scan sequence FIFO :
reth% = QBdagAdcSetScan®%(chans®%(), gains%(), ReadingsPerScan%)

" Set sampling freq.
ret% = QBdagAdcSetFreq%(10000)

" Define and arm trigger :
ret% = QBdagAdcSetTrig%(DtsPacerClock%, 0, 0, 0, 0)

" Read the data
ret% = QBdagAdcRdNFore%(buf®%(), Nscans%)

" Setup the conversion for the first two RTDs
ret% = QBdagRtdSetup%(ReadingsPerScan%, 0, 2, Dbk9RtdTypel00%, 1)

" Convert the data for the first two RTDs
ret% = QBdagRtdConverth(buf%(), Nscans%, templ%(), Nscans% * 2)

" Setup and convert the data for the 1000 ohm RTD in one step
ret% = QBdagRtdSetupConvert%(ReadingsPerScan%, 8, 1, Dbk9RtdTypelK%, 1,
buf%(), Nscans%, temp2%(), Nscans%)

"Display the temperatures for the 100 ohm RTDs
FOR scan = 0 TO Nscans%
PRINT *'Scan: *'; scan
FOR x = 0 TO 2
tmptemperature! = (templ%(scan * 1 + x)) / 10
PRINT tmptemperaturel; "
NEXT x
PRINT
NEXT scan

"Display the temperatures for the 1000 ohm RTDs
FOR scan = 0 TO Nscans%
PRINT *'Scan: *'; scan
tmptemperature! = (templ%(scan * 1 + x)) / 10
PRINT tmptemperature!; " "
NEXT scan
" Close DagBook/100 and end program

FUNCTION IntToUint (IntvVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntvVal THEN

IntToUint = IntVval "Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1 "Convert negative values to
"positive
END IF

END FUNCTION

4-36 Programmer’s Manual

Chapter 4 Standard API Programming Models

Using DBK Card Calibration Files

Software calibration functions are designed to adjust
Dag* readings to compensate for gain and offset

H«

errors. Calibration constants are calculated at the dagAdcSetScan | Configure scans

factory by measuring the gain and offset errors of a ‘
card at each programmable gain setting. These

constants are stored in a calibration text file which @
can be read by a program at runtime. Thisallows ‘

updating this calibration file rather than recompiling

|
|
the program. Calibration constants and instructions |

SetFreq Set frequency

defined constant DtsSoftware
for software trigger)

new boards to be configured for calibration by @:@ Define and arm trigger (use

are shipped with the related DBK boards. Programs dagAdcSoftTrig | Software trigger

like DagView support this calibration and use the
same constants. Y

Read data in foreground

The calibration operation removes static gain and | dagAdeRdNFore | - (program stops untilall

offset errors that are inherent in the hardware. The

calibration constants are measured at the factory and
do not change during the execution of a program but
are different for each card and programmable-gain Y

data is collected)

‘danaISetupConvert ‘ Perform calibration
on readings at X1 gain

setting. They may even be different for each channel [dagCalSetupConvert | Perform calibration
depending on the design of the expansion card. on readings at X2 gain

Note: the DBK 19 is shipped with calibration
congtants. Other cards use on-board potentiometers
to perform hardware calibration.

The calibration process has 3 steps:
Initialization consists of reading the calibration file.
Setup describes the characteristics of the data to be calibrated.
Conversion does the actual calibration of the data.

Function prototypes, return error codes, and parameter definitions are located in the DAQBOOK.H

header file for C (or similar files for other languages).

Cards that support the calibration functions are shipped with a floppy disk containing a calibration
constantsfile. The name of the file will be the serial number of the card shipped withit. Thisfile
holds the calibration constants for each programmable-gain setting of that card. These constants should
be copied to a calibration text file (DAQBOOK.CAL) located in the same directory as the program

performing the calibration.

To set up the calibration file, perform the following steps:
1. Locatethefloppy disk containing the calibration constants file.

Configure the card according to the hardware configuration section of the DBK chapter.

2

3. Edit the calibration file, DAQBOOK.CAL, using atext editor.

4. Add the card number information within brackets, aslisted in the calibration file.

5. Add the calibration constants immediately after the card number. (These should
be entered in the order given in the calibration file.)

6. Repeat steps4 and 5 for each card.

7. Verify that no two cards are configured with the same card/channel number.

The table shows an example of acalibration file for configuring the main Dag* unit
and two DBK 19 cards connected to Dag* expansion channels 3 and 5.

Theinitialization function for reading-in the calibration constants from the calibration
text fileis dagReadCalFile. The C language version of dagReadCalFileis similar to
other languages and works as follows:

The filename with optional path information of the calibration file. If calfileisNULL
or empty (“"), the default calibration file DAQBOOK.CAL will beread. Thisfunction
isusually called once at the beginning of a program and will read all the calibration
constants from the specified file. If calibration constants for a specific channel

[MAIN]

32760,32769
32801,32750
32740,32777
32810,32768

[EXP3]

32780,32779
32800,32756
32768,32780
32750,32742

[EXP5]

32752,32764
32783,32757
32749,32767
32777,32730

Programmer’'s Manual

4-37

Standard API Programming Models Chapter 4

number and gain setting are not contained in the file, ideal calibration constants will be used
(essentially not calibrating that channel). If an error occurs while trying to open the calibration file,
ideal calibration constants will be used for all channels and a non-zero error code will be returned by
the dagReadCalFile function.

Once the calibration constants have been read from the cal file, they can be used by the dagCal Setup
and dagCalConvert functions. The dagCal Setup function will configure the order and type of datato
be calibrated. This function requires data to be from consecutive channels configured for the same
gain, polarity, and channel type. The calibration can be configured to use only the gain calibration
constant and not the offset constant. This allows the offset to be removed at runtime using the zero

compensation functions described later in this section.

In this example, several Dag* channels will be read and calibrated. This example assumes the
calibration file has been created according to the initializing calibration constants section of this
chapter. Expansion cards could perform the same type of calibration if the calibration constants are
available for the card and a specified channel number. First list the configuration:

Now specify the scan (the sequence of channel

Scan Gain
numbers and gains that are to be gathered as Position Channel Type Channel Code
one burst of readings). In this example, al the 0 Voltagel @ X1 gain 0 DgainX1
channels at each gain will be read together in 1 Voltage2 @ X2 gain 1 DgainX2
consecutive order to make the calibration 2 Voltages @ X2 gain 2 Dgainx2

. 3 Voltage4 @ X2 gain 3 DgainX2
easier.
Now configure the Dag* with thisinformation, and read 5 scans of Channel Channel Type
data: 0 Voltagel @ X1 gain
1 Voltage2 @ X2 gain
DIM chans%(4), gains%(4), buf%(20) ' xg::gg:j g - o

ret% = QBdagInit%(LPT1%, 7)

" Set array of channels and gains

chans%(0) = 0

gains®%(0) = DgainX1%

chans%(1) = 1

gains®%(1) = DgainX2%

chans%(2) = 2

gains®%(2) = DgainX2%

chans%(3) = 3

gains®%(3) = DgainX2%

" Load scan sequence FIFO :

ret% = QBdagAdcSetScan®%(chans®%(), gains®%(, 4)
" Set Clock

ret% = QBdagAdcFreq%(10)

" Define and arm trigger :

ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)

" Trigger
ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf%(), 5)

" Print the first scan of unconverted data
PRINT "Before Calibration:"

PRINT "*Channel 0 at x1 gain: '; buf%(0)
PRINT "'Channel 1 at x2 gain: "; buf%(1)
PRINT "*Channel 2 at x2 gain: '; buf%(2)
PRINT "'Channel 3 at x2 gain: "; buf%(3)

"Perform zero compensation on readings sampled at x1 gain

4-38

Programmer’s Manual

Chapter 4

Standard API Programming Models

ret% = QBdaqCalSetupConvert%(4, 0, 1, 0, DgainXi%, 0, 1, 0, buf%u(), 5)

"Perform zero compensation on readings sampled at x2 gain
ret% = QBdagCalSetupConvert%(4, 1, 3, 0, DgainX2%, 1, 1, 0, bufw(), 5)

" Print the first scan of converted data
PRINT "After Calibration:"

PRINT "*Channel 0 at x1 gain: "; buf%(0)
PRINT "*Channel 1 at x2 gain: '; buf%(1)
PRINT "'Channel 2 at x2 gain: "; buf%(2)
PRINT "*Channel 3 at x2 gain: '; buf%(3)

FUNCTION IntToUint (IntVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF O <= IntVal THEN

IntToUint = IntVal
ELSE
IntToUint = 65535 + CLNG(Intval) + 1

"Return positive values with no change

"Convert negative values to
"positive

END IF
END FUNCTION

Programmer’'s Manual

4-39

Standard API Programming Models

Chapter 4

Zero Compensation

Zero compensation removes offset errors while a
program isrunning. Thisisuseful in systems
where the offset of achannel may change dueto
temperature changes, long-term drift, or
hardware calibration changes. Reading a shorted
channel on the same card at the same gain as the
desired channel removes the offset at run-time.

Note: Zero compensation is not available for all
expansion cards. The DBK 19 has channel 1
permanently shorted for zero compensation;
other cards require a channel to be shorted
manually.

The zero-compensation functions require a
shorted channel and a number of other channels
to be sampled from the same card at the same
gain as the shorted channel. These functions will
work with cards that have one anal og path from
the input to the A/D converter such asthe
DBK12, DBK13, and DBK19. Other cards do
not support the zero compensation functions
because they have offset errors unique to each
channel. The DBK19 is designed with channel 1

dagAdcSetScan

Y
dagAdcSetFreq
Y
dagAdcSetTrig
Y
dagAdcSoftTrig

Y
dagAdcRdNFore
Y

‘ dagZeroSetupConvert ‘

!

‘ dagZeroSetupConvert ‘

already shorted for performing zero compensation.

Configure scans

Set frequency

Define and arm trigger (use
defined constant DtsSoftware
for software trigger)

Software trigger

Read data in foreground
(program stops until all
data is collected)

Perform zero compensation
on readings at X1 gain

Perform zero compensation
on readings at X2 gain

The dagZeroSetup function configures the location of the shorted channel and the channels to be
zeroed within a scan, the size of the scan, and the number of readings to zero compensate. (This
function does not do the conversion.) A non-zero return value indicates an invalid parameter error.

In this example, several Dag* channelswill be read using various
gains and zero-compensated to remove any offset errors. This
example assumes that channel 0 of the Dag* has been manually
shorted. Expansion cards could perform the same type of zero
compensation as this example by shorting a channel on the expansion
card and specifying card channel numbers. First list the

configuration:

Channel

Channel Type

0 Shorted Channel

Voltagel @ X1 gain

Voltage2 @ X2 gain

Voltage3 @ X2 gain

AlWIN|F

Voltage4d @ X2 gain

Now specify the scan, the sequence of
channel numbers, and gains that are to be

gathered as one burst of readings. In this

example, we will first read the shorted

channel at each gain that we plan on using,

in thiscase x1 and x2. All the channels at

Scan Gain
Position Channel Type Channel Code

0 Shorted Channel @ X1 0 DgainX1

1 Shorted Channel @ X2 0 DgainX2

2 Voltagel @ X1 gain 1 DgainX1

3 Voltage2 @ X2 gain 2 DgainX2

4 Voltage3 @ X2 gain 3 DgainX2

5 Voltage4 @ X2 gain 4 DgainX2

each gain will be read together to make the
actual zero compensation easier.

DIM chans%(6), gains®%(6), buf%(30
ret% = QBdaqInit%(LPT1%, 7)

" Set array of channels and gains
chans%(0) = 0

gains®%(0) = DgainX1%
chans%(1) = 0
gains®%(1) = DgainX2%
chans%(2) = 1
gains®%(2) = DgainX1%
chans%(3) = 2
gains®%(3) = DgainX2%
chans%(4) = 3
gains®%(4) = DgainX2%

)

4-40

Programmer’s Manual

Chapter 4

Standard API Programming Models

chans%(5)
gains®%(5)

4
DgainX2%

" Load scan sequence FIFO :
ret% = QBdagAdcSetScan®%(chans®%(), gains®%(), 6)

" Set Clock
ret% = QBdagAdcFreq%(10)

" Define and arm trigger :
ret% = QBdagAdcSetTrigh(DtsSoftware%, 0, 0, 0, 0)

" Trigger
ret% = QBdagAdcSoftTrig%

" Read the data
ret% = QBdagAdcRdNFore%(buf%(), 5)

" Print the first scan of unconverted data
PRINT "Before Zero Compensation:"

PRINT ""Channel 1 at x1 gain: '; buf%(2)
PRINT "'Channel 2 at x2 gain: "; buf%(3)
PRINT "*Channel 3 at x2 gain: '; buf%(4)
PRINT "'Channel 4 at x2 gain: "; buf%(5)

"Perform zero compensation on readings sampled at x1 gain
ret% = QBdagZeroSetupConvert%(5, 0, 2, 1, buf%(), 5)

"Perform zero compensation on readings sampled at x2 gain
ret% = QBdagZeroSetupConvert®(5, 1, 3, 3, buf®(), 5)

" Print the first scan of converted data
PRINT "After Calibration:"

PRINT "'Channel 0 at x1 gain: "; buf%(2)
PRINT "*Channel 1 at x2 gain: '; buf%(3)
PRINT "'Channel 2 at x2 gain: "; buf%(4)
PRINT "*Channel 3 at x2 gain: '; buf%(5)

FUNCTION IntToUint (IntVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF O <= IntVal THEN

IntToUint = Intval "Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1 "Convert negative values to
"positive
END IF

END FUNCTION

Programmer’'s Manual

4-41

Standard API Programming Models

Chapter 4

Linear Conversion

Several DBKs use conversions from A/D
readings to corresponding values that are a
linear (straight-line) relationship. (Non-linear
relationships for RTDs and thermocouples
require specia conversion functions—refer to
the Thermocouple and RTD Linearization
section later in this chapter.) Thelinear
conversion functions are built into the API.

Six parameters are used to specify alinear
relationship: the A/D input range (minimum
and maximum values), and the transducer
input signal level and output voltage at two
pointsin the range.

Three functions are used to perform linear
conversions. daqLinearSetup,
daqLinearConvert, and
daqLinearSetupConvert. These functions
are defined in the following pages. After their
definitions, parameter examples and a
program example show how they work.

DBK7 programmed for 50 to 60 Hz:

The DBK7 output rangeisfrom-5V to+5V,
and the Dag* must be configured for bipolar
operation at again of x1 for the DBK7
channels. Thus, theinput range-5V to +5V
corresponds to the ADmin and ADmax
settings. When a DBK7 programmed for a 50
to 60 Hz range measures a 50 Hz input signal,
it outputs -5 V. With a60 Hz input signal, it

outputs +5 V. Thus, signall is 50, voltagel is-5, signal2 is 60,

and voltage2 is 5.

Pressure-transducer:

Assume that a pressure transducer outputs 1 to 4 mV to represent
0to 1000 psi, and that a DBK 13 with again of x1000 is used
with a Daqg in bipolar mode to measure the signal. In bipolar

dagAdcSetBank

| dagDbkSetChanOption |

All
required options
set for each
channel?

Yes

User-variable
definitions

]
| dagAdcSetScan |

dagAdcSetFreq
dagAdcSetTrig
dagAdcRdNFore

\ dagLinearSetupConvert \

|daqLinearSetupConvert]

| Output data to screen |

Configure specified bank for
DBK?7 card.

Configure specified DBK7
channel with various options.
(dagAdcSetBank should be
called before
dagAdcSetChanOption)

All channels configured?

Define an array of channels
and an array of gains.

Set scan sequence and
gains using defined arrays.

Set sampling frequency.

Define and arm trigger.

Read data in foreground
(program stops until
all data is collected).

Convert channels to Hz.

Convert channels to PSI.

Measurement | Signal | Voltage |

1 50 Hz 5V
2 60 Hz +5V
Measurement Signal Voltage
1 0 psi 1mV
2 1000 psi | 4 mV

mode, at again of 1000, the analog signal input rangeis0to 5 mV. Thus ADmin should be set to
0.000, and ADmax should be set to 0.005. A pressure of O psi generates an output of 1 mV, and 1000
ps generates4 mV. Thussignall isO, voltagel is 0.001, signal2 is 1000 and voltage2 is 0.004.

This program uses the linear conversion functions to convert voltage readings from a DBK7 frequency-
to-voltage card and a DBK 13 voltage input card with a pressure transducer to actual frequencies (Hz)

and pressures (psi).

DIM bufferl%(80), buf%(80), chans%(3), gains®%(3), hz!(20), psi!(10)

"Set Channel 16 to be a DBK7, this will configure and auto calibrate all
"channels on the DBK7 which includes channels 16,17,18 and 19. (4 ch.

card)

"This step not required by DBK13.

ret% = QBdagAdcSetBank%(16, bankDBK7)

"Set channel option common to both channels.

"This step not required by DBK13.

FOR chan% = 16 TO 19

ret% = QBdagDbkSetChanOption%(chan%, DcotSlope, 1)

4-42

Programmer’s Manual

Chapter 4

Standard API Programming Models

ret% = QBdagDbkSetChanOption%(chan%, DcotDebounceTime,
DcovDebounceNone)
ret% = QBdagDbkSetChanOption%(chan%, DcotMinFreq, 501!)
ret% = QBdagDbkSetChanOption%(chan%, DcotMaxFreq, 60!)
NEXT chan%

"Configure the scan sequence

chans%(0) = 16 "DBK7 channel 0O
gains%(0) = DBK7X1 "X1 gain
chans®%(1) = 17 "DBK7 channel 1
gains%(1) = DBK7X1 "X1 gain
chans®%(2) = 32 "DBK7 channel 0O
gains%(2) = DBK13X2000 "X1000 gain

" Load scan sequence FIFO :
ret% = QBdagAdcSetScan%(chans%(), gains®(), 3)

" Set Clock : 1 Hz - xtal set to 1MHz
ret% = QBdagAdcSetFreq%(1000)

" Define and arm trigger :
ret% = QBdagAdcSetTrigh(DtsPacerClock%, 0, 0, 0, 0)

" Read data in the foreground
ret% = QBdagAdcRdNFore%(bufferi%(), 10)

"convert channels 16 and 17 to Hz where -5 volts corresponds to 50 Hz

"and 5 volts corresponds to 60 Hz

ret% = QBdagLinearSetupConvert(3, 0, 2, -5!, 5, 50!, -51, 60!, 5!, 1,
bufv(), 10, hz!'(), 20)

"convert channel 32 to PSI where 1 mV corresponds to O PSI

"and 4 millivolts corresponds to 1000 PSI

ret% = QBdaglLinearSetupConvert(3, 2, 1, -.005, .005, 0, .001, 1000!,
.004, 1, buf%(), 10, psi!(), 10)

"Print results
PRINT "Results:"
FOR x = 0 TO 9

PRINT ""Scan "; x; " "; hz'(x * 2); " Hz "; hzt((x * 2) + 1); " Hz ";
psi!(x); " psi”
NEXT x

FUNCTION IntToUint (IntvVal AS INTEGER)
"Converts 16-bit signed integer to unsigned integer.
IF 0 <= IntVal THEN
IntToUint = Intval “Return positive values with no change
ELSE
IntToUint = 65535 + CLNG(Intval) + 1
"Convert negative values to "positive
END IF
END FUNCTION

Programmer’'s Manual

4-43

Standard API Programming Models Chapter 4

Summary Guide of Selected Standard API Functions

The following table organizes the standard API functions by type including notes on when to use them.

Simple Foreground Routines
For single gain, consecutive channel, foreground transfers, use the following functions:

Foreground Operation Single Scan Multiple Scans
Single Channel dagAdcRd dagAdcRdN
Consecutive Multiple Channels dagAdcRdScan dagAdcRdScanN

Complex Scan Routines
For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan

functions.
dagAdcSetScan Set scan sequence using arrays of channel and gain values.
dag200SetScan Set scan sequence using arrays of channel, gain, and polarity values.
Trigger Options

After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.

- In one-shot mode, a trigger is required to start each A/D scan.

- In continuous mode, a single trigger starts the scans and the pacer clock determines the rate between scans.
Note: If the trigger source is analog, the trigger level is also required.

dagAdcSetTrig Set the trigger using source, one-shot, and level parameters. Also sets the pacer clock gate source
and Counter 0 clock source.

dagAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the
analog trigger source and value.

If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing

If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the
following functions:

dagAdcSetCIk Set the pacer clock with the given frequency scalers.

dagAdcSetFreq Set the pacer clock to the given frequency.

Data Transfer
After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:

dagAdcRdFore Read single sample from the A/D FIFO.
dagAdcRdNFore Read multiple scans from the A/D FIFO.
dagAdcRdNBack Inform acquisition routine where to store multiple scans. Also indicates whether the buffer should be

recycled when it is full.

To find out whether a background A/D transfer is complete or to stop transfers, use the following functions:
dagAdcGetBackStat Return whether the background transfers are in progress and the number of valid scans in the buffer.
dagAdcStopBack Stop the background A/D transfers.

D/A Conversions

The 2 D/A outputs are multiplying DACs. The voltage output is a fraction of the voltage reference. This fraction is the digital value
sent to the DAC divided by 4096. Using the internal -5 V reference, any voltage between 0 and 4.9988 V can be set. Two
routines are used to set the D/A outputs:

dagDacWt Set a single DAC.

dagDacWtBoth Set both DACs.

DAC1 is also set by any A/D routine which uses analog triggering. This DAC is used to set the comparison level.

Digital Functions

Several routines read and write the digital inputs and outputs. The first routine to call is the configure routine:

dagDigGetConf Using the 4 port input/output direction selections, return a configuration byte.

dagDigConf Set the input/output configuration of a local or expansion port group.

After the digital group is configured, the ports can be read or written a byte at a time. (Port C low/high and P1 digital /O are
accessed a nibble at a time.) A single bit of a digital channel can be read or written using the following routines:

dagDigRdBit Return indicated bit from selected channel.

dagDigWrBit Send indicated bit to selected channel.

Counter Functions

Three counter/timer elements are in a DaqBook/112, and 9 counter/timer elements are in a DaqBook/100/200. Two counters are
the ADC pacer clock. The FOUT counter element is a simple square-wave generator. Counter O is capable of more complex
waveform and counter operations. Counters 1 through 5 are full-fledged counter/timer elements with many operating modes.

Counter 0 Functions
Counter 0 is a binary/BCD down-counter capable of 5 modes: event counter, pulse generator, rate generator, square-wave
generator, software and hardware triggered strobes. Use the following commands with Counter O:

dagAdcConfCntr0 Set up counter 0 in the indicated mode.

dagAdcRdCntrO Read the contents of counter 0.

dagAdcWtCntrO Set counter 0 countdown register.

dagAdcSetTrig Sets Counter 0 clock source. Also sets the A/D scan trigger source and pacer clock gate source.

4-44 Programmer’s Manual

Chapter 4 Standard API Programming Models

Counter 1 - Counter 5 Functions - For the DaqBook/100/200 Only

Counters 1 through 5 are binary/BCD, up/down 16-bit counters that can be internally cascaded. Each counter is capable of 24
modes including: hardware and software triggered strobes, rate generator, retriggerable and non-retriggerable one-shots,
software- and hardware-triggered delayed one-shots, variable duty-cycle rate generator, rate generator with sync, frequency-shift
keying, and hardware save. Most modes can be gated. Counters 1 and 2 can be set up as a time-of-day counter, with 100 Hz
resolution. Counters 1 and 2 are also capable of alarm outputs. In the alarm mode, whenever the counter value equals the
alarm value, the counter output is set. This can be used with the time-of-day mode to cause an alarm at a particular time of day.
To use counters 1 through 5 or the FOUT square-wave generator, the master mode register must be set:

daqCtrSetMasterMode Set FOUT source and scaler. Also set the counters 1 and 2 alarm mode and time-of-day mode.

dagCtrSetAlarm Set the alarm comparison value for counter 1 or 2.

High-Level Counter Functions

The high-level counter functions simplify programming of a given counter task by eliminating many complex options available
through low-level functions. After setting the Master Mode, counters 1 through 5 can be programmed using the following
command:

daqCtrRdFreq Read the frequency on a SRC or GATE line. This command uses counter 4 as a gate source and

counter 5 for counting.

Low-Level Counter Functions

The low-level counter functions allow custom-programming of the counters. After setting the Master Mode, counters 1 through 5
can be programmed using the following commands:

daqCtrSetCtrMode Set counter to given mode.

daqCtrSetLoad Set counter load register.

dagCtrSetHold Set counter hold register.

To read back a given counter, use one or both of:

daqCtrMultCtrl Issue a command to the indicated counters. To read the current contents of a counter, issue the
DmccSave command, and read the hold register.

daqCtrGetHold Read a given hold register.

Counter Interrupt Save And Transfer
When an application program needs to read counters based on an external interrupt, the daqCtrRd functions are used.
Whenever the interrupt on P3 is asserted, the programmed counters are saved in an application buffer.

daqCtrRdNFore Read counters on interrupt and transfer data in foreground.

daqCtrRdNBack Read counters on interrupt and transfer data in background.

daqCtrGetBackStat Return whether the background transfers are in progress and the number of valid scans in the buffer.
daqCtrStopBack Stop the background counter saves and transfers.

Programmer’'s Manual 4-45

Standard API Programming Models Chapter 4

@J Notes

4-46 Programmer’s Manual

Daq* Command Reference (Standard API)

Overview

Thefirst part of the chapter describes the Dag* driver commands for DOS, Windows 3.1, Windows for

Workgroups (not NT), and the 16-bit mode of Windows95 (this isthe standard APl and is not to be

confused with the enhanced API). Thefirst table lists the commands by their function types and

provides a page index. Included at the end of the chapter are several tables that define A/D Channel

Descriptions, Thermocouple Types, A/D Trigger Software Definitions, A/D Gain Definitions, Digital

I/0 Port Connection, and the API Error Codes.

Function | Description | Page |
High and Low-Level A/D Functions-
dagAdcCalcTrig Calculate the trigger level and trigger source for an analog trigger 5-3
dagAdcConfCntr0 Configure the counter 0 mode 5-4
dagAdcConvertTagged Convert array that contains channel tags into two separate arrays 5-5
dagAdcExpToChan Calculate a channel number that can be used with all other A/D functions 5-5
dagAdcGetBackStat Read the status of a background A/D transfer 5-6
dagAdcGetFreq Read the current pacer clock frequency 5-6
dagAdcGetScan Read the current scan configuration 5-7
dagAdcRd Configure an A/D acquisition and read one sample from a channel 5-7
dagAdcRdCntrO Read the current value of the counter 0 5-8
dagAdcRdFore Read a single A/D sample and increment the channel mux 5-8
dagAdcRdN Configure an A/D acquisition and read multiple scans from a channel 5-9
dagAdcRdNBack Read count A/D scans in the background using interrupts 5-10
dagAdcRdNBackPreT Read multiple A/D scans, initiated by dagAdcSetrigPreT, in the background 5-11
dagAdcRdNFore Read count A/D samples in the foreground (polled mode) 5-12
dagAdcRdNForePreT Read multiple A/D scans, initiated by dagAdcSetTrigPretT, in the foreground 5-12
dagAdcRdNForePreTWait | Read multiple A/D scans, initiated by dagAdcSetTrigPretT, in the foreground without 5-13
returning until the acquisition completes
dagAdcRdScan Configure an A/D acquisition and read one scan 5-14
dagAdcRdScanN Configure an A/D acquisition and read multiple scans 5-14
dagAdcSetBank Sets which channels are DBK50 to allow programming of gains prior to the acquisition. 5-15
dagAdcSetCIk Set the pacer clock counters 5-15
dagAdcSetFreq Configure the pacer clock frequency in Hz 5-16
dagAdcSetMux Configure a scan specifying start and end channels 5-16
dagAdcSetScan Configure up to 256 channels making up an A/D or HS digital input scan 5-17
dagAdcSetTag Configure whether A/D data contains channel tags 5-17
dagAdcSetTrig Configure an A/D trigger 5-18
dagAdcSetTrigPreT Set the trigger of analog level triggering & initiates the collection of pre-trigger data 5-19
acquisition
dagAdcSoftTrig Save a software trigger command to the DagBook/DagBoard 5-20
dagAdcStopBack Stop a background A/D transfer 5-20
dagAdcWtCntroO Write a value to counter O 5-21
Counter/Timer Functions
daqCtrGetBackStat Read the status of a background counter transfer 5-31
daqCtrGetHold Read the hold register of the specified counter 5-31
dagCtrMultCtrl Simultaneously configure multiple counters 5-32
daqCtrRdFreq Read up to 9 frequency inputs 5-33
daqCtrRdNBack Read count values from up to 5 counters using interrupts 5-34
daqCtrRdNFore Read count values from up to 5 counters in the foreground 5-35
dagCtrSetAlarm Set the specified alarm register 5-35
daqCtrSetCtrMode Set the 9513's mode register for the specified counter 5-36
daqCtrSetHold Output a value to the counter hold register 5-39
daqCtrSetLoad Output a value to the counter load register 5-39
dagCtrSetMasterMode Initialize various counter/timer values 5-40
daqCtrStopBack Stop a background counter transfer 5-42
D/A Functions
dagDacWt Output a D/A value 5-42
dagDacWtBoth Output D/A values to both DACs 5-43
dagbDacWtMany Output D/A values to several DACs 5-43
Programmer’'s Manual 5-1

Dag* Command Reference (Standard API) Chapter 5
Digital I/O Functions
dagDigConf Configure the mode of the 8255 digital I/O ports 5-44
daqgDigGetConf Execute an interrupt handler on an external digital I/O interrupts 5-45
dagDigRdBit a bit on a digital input port 5-45
dagDigRdByte Read a byte from a digital input port 5-46
dagDigWtBit Program a bit on a digital output port 5-46
dagDigWtByte Output a byte to a digital output port 5-47
Thermocouple Functions
dagRtdConvert Converts raw A/D readings from RTDs to temperature readings 5-51
dagRtdSetup Set up parameters for subsequent RTD temperature conversions 5-52
dagRtdSetupConvert Set up and convert raw A/D readings from RTDs into temperature readings 5-53
dagTCConvert Convert raw A/D readings from thermocouples to temperature readings 5-57
daqTCSetup Set up parameters for subsequent thermocouple temperature conversions 5-59
dagTCSetupConvert Set up and convert raw A/D readings from thermocouples into temperature readings 5-60
DaqBook/200 Functions
dagq200GetScan Retrieves a scan sequence, similar to dagAdcGetScan 5-63
dag200SetMode Program the gain amp and set the default polarity 5-63
daq200SetScan Configure a scan sequence with polarity mode per channel 5-64
DagBoard Functions
dagBrdAdcSetTimeBase Set the timebase for the ADC pacer clock 5-21
dagBrdDacClockSrc Select the source for DAC FIFO pacer clock 5-22
dagBrdDacCtrl Set the mode of the DAC FIFO 5-23
dagBrdDacPredefWave Build a waveform and assign to a DAC channel 5-24
dagBrdDacRestFIFO Reset DAC FIFO and its pointers 5-25
dagBrdDacSetMode Set the mode of DAC FIFO, the cycling mode of FIFO and update rate per sample 5-25
dagBrdDacSetTimeBase Set the time base for the DAC FIFO pacer clock 5-26
dagBrdDacStart Start the waveforms 5-26
dagBrdDacStop Stop the waveforms 5-27
dagBrdDacUserWave Assign a user defined waveform to a DAC channel 5-27
dagBrdDacWriteFIFO Load sample data directly into DAC FIFO 5-28
dagBrdSetDmaMode Set the direction for DMA transfers 5-28
Software Calibration and Zero Compensation Functions
dagCalConvert Perform the actual calibration of one or more scans 5-29
daqCalSetup Configure the order and type of data to be calibrated 5-29
dagCalSetupConvert Perform both the setup and convert steps with one call 5-30
daqReadCalFile Read all the calibration constants from the specified file 5-50
dagZeroConvert Perform zero compensation on one or more scans 5-61
dagZeroDbk19 Configure thermocouple linearization functions for automatic zero compensation 5-61
dagZeroSetup Configure data for zero compensation 5-62
dagZeroSetupConvert Perform both the setup and convert steps with one call 5-62
Linear Conversion Functions
dagLinearConvert Convert ADC readings into floating point numbers 5-49
dagLinearSetup Save data required for dagLinearConvert 5-49
dagLinearSetupConvert | Combine setup and conversion into one function 5-50
General Functions
daqgClose End communication with the DagBook/DagBoard 5-30
daqGetProtocol Return the current parallel port communications protocol 5-47
daglnit Initialize a single DagBook/DagBoard 5-48
dagSelectPort Select an initialized DagBook/DagBoard as the current DagBook/DagBoard 5-54
dagSetErrHandler Specify a user-defined routine to call when an error occurs in any command 5-55
dagSetProtocol Specify the type of parallel-port implementation and protocol available on the computer 5-56
dagVersion Return the hardware version 5-61

Commands in Alphabetical Order

The following pages give the details for each APl command. Listed in aphabetical order, each section
starts with atable that summarizes the main features of the command (language prototypes for C,
QuickBASIC, and Turbo Pascal, and the related parameters). An explanation follows with related
information and in some cases a programming example. Typographic note: Commands, parameters,
values, and code use a bold, mono-spaced Courier font to distinguish characters that can be
ambiguous in other fonts.

5-2

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcCalcTrig

DLL Function

dagAdcCalcTrig(uchar bipolar, uint gain, float vset, uchar rising, float vref,
uint *level, uchar *source);

C dagAdcCalcTrig(uchar bipolar, uint gain, float vset, uchar rising, float vref,
uint far *level, uchar far *source)
QuickBASIC QBdagAdcCalcTrigh(bipolar%, gain%, vset!, rising%, vref!, level%, source%)

Turbo Pascal

dagAdcCalcTrig(bipolar:byte; gain:word; vset:real; rising:byte; vref:real;
level :WordP);

Parameters
uchar bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar
uint gain A gain value of the trigger channel

float vset

The analog trigger setpoint

uchar rising

A flag that if non-zero will calculate a rising analog trigger, otherwise calculates a falling analog trigger

float vref

The external reference voltage of D/A channel 1
Valid values: 0 >vref > -10

uint _far *level | The trigger level to be passed to the dagAdcSetTrig command

uchar _far

The trigger source to be passed to the dagAdcSetTrig command

*source
Returns DerrinvDaclLevel - vset or vref out of valid range
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetTrig, dagAdcSetMux, dagAdcSetScan, dag200SetScan

Program References | None

Used With

dagAdcCalcTrig caculates the trigger level and source for an analog trigger. The level and source
parameters can be passed to the dagAdcSetTrig function to configure the analog trigger.

The source and trigger parameters are calculated from the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. Thetrigger channel isthefirst channel in the current A/D scan group.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the trigger
channel. This parameter isjumper selectable when using a DagBook/100/112 and
DagBoard/100A/112A and software-programmable when using the DagBook/200/200A.

The gain value sent to the dagAdcCal cTrig should be the actual gain of the trigger channel, not
the gain definition used by the rest of the DagBook/DagBoard A/D functions. For example, if the
trigger channel uses the gain definition Dga i nX8, the gain parameter of dagAdcCalcTrig should
be 8.

The vset and rising parameters define the analog voltage at which the Dag* will trigger and
whether the analog signal must be rising or falling through this setpoint. The setpoint must be within
the valid input range of the trigger channel. For example, the setpoint range for a bipolar channel with
unity gain would be 0 to 10 V (for x8 gain, the range would be 0 to 1.25 V) for a DagBook or a
DagBoard.

The vreT parameter is the external reference voltage of D/A channel 1. This reference must be
negative for analog triggers to work. The value -5 should be passed if the internal referenceis used.

When using the Dag PCMCIA, the external reference (Float vref) and polarity (uchar
bipolar) parameters are ignored.

Programmer’'s Manual 5-3

Dag* Command Reference (Standard API)

Chapter 5

dagAdcConfCntrO

DLL Function dagAdcConfCntrO(uchar config);

C dagAdcConfCntrO(int conf)

QuickBASIC QBdagAdcConfCntro%(config%)

Turbo Pascal dagAdcConfCntrO(config:byte) :integer;
Parameters

uchar config [

The configuration of Counter 0 (See table below for definitions.)

Counter 0 Configuration Definitions

Description Value Note

DcOcHighTermCnt 30h High on terminal count

DcOcOneShot 32h Hardware retriggerable one-shot

DcOcRateGen 34h Rate Generator

DcOcSquareWave 36h Square wave

DcOcSoftTrigStrobe | 38h Software triggered strobe

DcOcHardTrigStrobe | 3Ah Hardware triggered strobe

Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also dagAdcWtCntrO, dagAdcRdCntrO, dagAdcSetTrig

Program References

ADCS5 (All Languages)

Used With

Does not apply to DagPCMCIA models

dagAdcConfCntr0 programs the control register of Counter Oin 1 of 6 modes. Counter Oisa
general purpose counter with input, gate and output lines. The input of counter O can be configured
using the ctrOmode parameters of the dagAdcSetTrig command.

The 6 modes are:

0, high on terminal count, istypically used to count events. After theinitial count value (see
dagAdcWtCntrO) is set, the counter will decrement on each pulse of the Counter 0 input (pin
21 of P1). The count value at any time can be read using dagAdcRdCntr0. Counter O output
(pin 2 of P1), which isinitially low, will go high when the counter decrementsto O.

1, hardware retriggerable 1-shot, is used to generate a pul se following the occurrence of arising
edge of the Counter O gate (pin 24 of P1). The output, which isinitially high, will go low after
the hardware trigger is received until the count decrementsto 0.

2, rate generator, a divide-by-N counter. The output will be high until the counter value
decrements to 1, when the output goes low for 1 clock pulse before going high again.

3, square wave generator, is similar to mode 2 except for the duty-cycle. The output will be high
for half of the count value, and low for the other half. If the count valueis odd, the output will
remain high for the extra clock pulse.

4, software triggered strobe, will strobe each time the count value is loaded. The output is
initialy high. After the count value is written and has decremented to 1, the output will go low
for one clock pulse before going high again.

5, hardware triggered strobe, is similar to mode 4 except the strobe is initiated by a hardware
trigger (rising edge of Counter O gate).

Note: Using counter O requires the JP2 jumpersto be in the -OCTOUT and -OCLKIN positions.

CTR 0 Mode
100 kHz Clock

+5V
% 10K

O
Gate 0
P1, Pin 24

-

Counter 0 Block Diagram

O
CTROIN
P1, Pin 21

Input Out

Counter 0

CTR 0 Out
P1, Pin 2

Gate

5-4

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcConvertTagged

DLL Function

dagAdcConvertTagged(uint *taggedData, uint *buf, uchar *tags, uint count);

Cc

dagAdcConvertTagged(int *taggedData, int *buf, int *tags, int count)

QuickBASIC

QBdagAdcConvertTagged%(taggedData%(), bufh(), tagsh(), count%

Turbo Pascal

dagAdcConvertTagged (taggedData:DataP; buf:DataP; tags:ByteP; count:word)
zinteger;

Parameters
uint *taggedData An array containing the raw tagged A/D scans
uint *buf An array where the A/D scans will be returned or (unit *) 0 if the A/D data is not desired.
Valid values: 0 - 4095
uchar*tags An array where the channel tags will be returned or (uchar *) 0 if the channel tags are not desired.

Valid values: 0 - 15

uint count

The number of scans in the taggedData array to convert

Returns

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcSetTag

Program References

ADC1, ADC2, ADC4 (All Languages)

Used With

Does not apply to Dag PCMCIA models

dagAdcConvertTagged converts 16-bit channel-tagged datainto an array of 4-bit channel tags and
an array of 12-bit A/D scans. The A/D converter of the DagBook/DagBoard returns the datain a 16-bit
tagged format which consists of the 12-bit A/D reading in the upper 12 bits of the data and a channel
number in the lower 4 bits. This function strips the channel tags and A/D scansinto separate buffers
and shiftsthe A/D dataright by 4 bits. If an expansion card is used, the jumper setting of the expansion
card will be returned in the channel tag location. Thisfunction is not necessary if data was collected
after disabling channel tags with dagAdcSetTag. (taggedData and buf can be the same array.)
Note: dagAdcConvertTagged should not be used on data from the high-speed digital 1/O port.
The data from this port will be stripped and shifted along with the rest of the A/D data.

dagAdcExpToChan

DLL Function

dagAdcExpToChan(uint expCard, uint expChan, uint *chan);

[dagAdcExpChan(int expCard, int expChan, int *chan)

QuickBASIC QBdagAdcExpChan%(expCard%, expChan%, chan%)

Turbo Pascal dagAdcExpToChan(expCard:byte; expChan:byte; chan:DataP) :integer;
Parameters

uint expCard

The expansion card number
Valid values: 0 - 15

uint expChan

The channel number on the expansion card
Valid values: 0 -15

uint *chan A variable to hold the channel number
Returns DerrlInvChan - Invalid analog input channel

DerrNoError - No errors (also, refer to API Error Codes on page 5-68)
See Also

Program References

None

Used With

dagAdcExpToChan is used to calculate a channel number that can be used with all other A/D
functions from an expansion card number and an expansion card channel.

Programmer’'s Manual

Dag* Command Reference (Standard API)

Chapter 5

dagAdcGetBackStat

DLL Function

dagAdcGetBackStat(uchar *active, ulong *count);

C dagAdcGetBackStat(int *active, int *count)

QuickBASIC QBdagAdcGetBackStat®%(active%, count%)

Turbo Pascal dagAdcGetBackStat(active: ByteP; count:LongP):integer;
Parameters

uchar *active

A flag which will be returned non-zero if a background transfer is in progress, or 0 if not

ulong *count

The number of scans acquired by the last or current background transfer

Returns DerrOverrun - Internal data buffer overrun

DerrFI1FOFull - ADC FIFO Overrun

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcRdNBack, dagAdcStopBack

Program References

ADC4 (All Languages)

Used With

daqAdcGetBackStat determinesif a background operation is still in progress. It also reads the
number of bytes acquired by the last or current background operation initiated by the
dagAdcRdNBack function.

dagAdcGetBackStat can return two possible error codes:

DerrFIFOFull isreturned if the data FIFO in the DagBook/DagBoard isfilled before the data
can beread. The dataread may beinvalid.

DerrOverrun isreturned if the dagAdcRdNBack is called with the cycle flag enabled. The
software is just fast enough to read one buffer of data. If this error occurs, the amount of data
available (specified by count) isvalid, but the transfer was stopped.

dagAdcGetFreq

DLL Function

dagAdcGetFreq(float *freq);

C dagAdcGetFreq(float *freq)

QuickBASIC QBdagAdcGetFrequ(freql)

Turbo Pascal dagAdcGetFreq(freq:FloatP) :integer;
Parameters

float *freq

A variable to hold the currently defined sampling frequency in Hz
Valid values: 100000.0 - 0.0002

Returns

DerrNoError - No errors (also, refer to API Error Codes on page 5-68)

See Also

dagAdcSetFreq, dagAdcSetClk

Program References

None

Used With

dagAdcGetFreq reads the sampling frequency of the pacer clock.

Note: dagAdcGetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1

MHz.

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcGetScan

DLL Function

dagAdcGetScan(uint *chans, uchar *gains, uint *count);

C dagAdcGetScan(int *buf)

QuickBASIC QBdagAdcGetScan%(buf%())

Turbo Pascal dagAdcGetScan(chans:DataP; gains:ByteP; count:DataP) :integer;
Parameters

uint *chans

An array to hold up to 512 channel numbers or 0 if the channel information is not desired.

uchar *gains

An array to hold up to 512 gain values or 0 if the channel gain information is not desired

uint count

A variable to hold the number of values returned in the chans and gains arrays

Returns

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcSetScan, dagAdcSetMux

Program References

None

Used With

dagAdcGetScan reads the current scan sequence consisting of up to 512 channels and gains.

dagAdcGetScan

DLL Function

dagAdcRd(uint chan, uint *sample, uchar gain);

C dagAdcRd(int *sample, uchar gain)

QuickBASIC QBdagAdcRd%(chan%, sample%)

Turbo Pascal dagAdcRd(chan:word; sample:DataP; gain:byte) :integer;
Parameters

uint chan A single channel number

unit *sample

A pointer to a value where an A/D sample is stored. Valid values: (See dagAdcSetTag)

unchar gain

The channel gain

Returns DerrFI1FOFull - Buffer Overrun

DerriInvGain -Invalid gain

DerriInvChan - Invalid channel

DerrNoError -No Error (also, refer to API Error Codes on page 5-68)
See Also dagAdcRdN, dagAdcSetMux, dagAdcSetTrig, dagAdcSoftTrig, dagAdcRdFore

Program References

ADC1 (All Languages)

Used With

dagAdcRd is used to take asingle reading from the given local A/D channel. Thisfunction will use a
software trigger to immediately trigger and acquire one sample from the specified A/D channel.

Programmer’'s Manual

5-7

Dag* Command Reference (Standard API) Chapter 5

dagAdcRdCntrO

DLL Function

dagAdcRdCntrO(uint *cntrO, uchar<_>latch);

C

dagAdcRdCntrO(uint *cntr0)

QuickBASIC QBdagAdcRdCntrO%(cntr0%)
Turbo Pascal dagAdcRdCntrO(cntrO:DataP; mode:Byte):integer;
Parameters

uint *cntro

The value read back from the Counter 0 hold register
Valid values: 0 -65535

uchar latch

If latch is non-zero, the count register will be latched into the hold register before reading. If latch is
zero, the count register will be read directly. Direct reading should only be performed when no clock
pulses are present.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcConfCntrO, dagAdcWtCntrO
Program References None
Used With Does not apply to Dag PCMCIA models
dagAdcRdCntrO readsthe hold register of counter 0. Thisfunction is normally used with mode O of
counter 0 (see dagAdcConTCntroO) to read the current count value.
Note: Using counter O requires that the JP1 jumpers are in the -OCTOUT and -OCKLIN positions.
dagAdcRdFore

DLL Function

dagAdcRdFore(uint *sample);

Cc

dagAdcRdFore(int *sample)

QuickBASIC QBdagAdcRdFore%(samplel%)
Turbo Pascal dagAdcRdFore(sample:DataP) :integer;
Parameters

uint *sample

A pointer to a value where an A/D sample is stored
Valid values: (See dagAdcSetTag)

Returns DerrFI1FOFull - Buffer overrun
DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also dagReadFIFO, dagAdcSetTag, adcSetClk, dagAdcSetTrig, dagAdcSetScan
Program References ADC2, ADC3 (All Languages)
Used With
dagAdcRdFore will read one sample from the A/D data FIFO. Thisfunction, unlike dagAdcRd,
will not configure the trigger source. It assumes that the A/D converter has already been configured to
acquire data.
Note: If the A/D converter has not been configured to acquire data, this function may wait indefinitely
and hang the compuiter.
5-8 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcRdN

DLL Function

uint level, float freq, uchar gain);

dagAdcRdN(uint chan, uint *buf, uint count, uchar trigger, uchar oneshot,

C dagAdcRdN(int chan, int *buf, int count, int mode, int cycle, int trigger,
int level, float freq, uchar gain)
QuickBASIC QBdagAdcRdN%(chan%, buf%(), count%, mode%, trigger%, oneshot%, level %,

freq!, gain%)

Turbo Pascal

dagAdcRdN(chan:word; buf:DataP; count:word; trigger:byte;):integer;

Parameters
unit chan A single channel number
uint *buf An array where the A/D scans will be returned

uint count

The number of scans to be taken
Valid values: 1 - 32767

uchar trigger

The trigger source

uchar one shot

A flag that if non-zero enables one-shot trigger mode, otherwise enables continuous mode.

uint level

The trigger level if an analog trigger is specified
Valid values: 0 -4095

float freq

The sampling frequency in Hz (100000.0 to 0.0002)

uchar gain

The channel gain

Returns

DerrFIFOFull - Buffer overrun
DerriInvGain -Invalid gain

DerriIncChan - Invalid channel
DerrinvTrigSource - Invalid trigger
DerrinvLevel - Invalid level

(also, refer to API Error Codes on page 5-68)

See Also

dagAdcRd, dagAdcRdScan, dagAdcRdNScan, daqAdcRdNFore, dagAdcSetFreq,
dagAdcSetMux, dagAdcSetTag, dagAdcSetClk, dagAdcSetTrig

Program References

ADC1(VB,C)

Used With

dagAdcRadN isused to take multiple scans from asingle A/D channel. This function will:

Configure the pacer clock
Arm the trigger
Acquire count scans from the specified A/D channel.

Programmer’'s Manual

5-9

Dag* Command Reference (Standard API)

Chapter 5

dagAdcRdNBack

DLL Function

dagAdcRdNBack(uint *buf, uint count, uchar cycle, uchar update Single);

C

dagAdcRdNBack(int *buf, int count, int cycle)

QuickBASIC QBdagAdcRdNBack%(buf%(), count%, cycle%, update single %)

Turbo Pascal dagAdcRdNBack(buf:DataP; count:word; cycle:byte; updateSingle:byte):integer;
Parameters

uint *buf An array where the A/D scans will be placed

uint count The number of scans to be taken Valid values: 1 - 32767

uchar cycle

A flag that if non-zero will enable continuous operation, or if 0 will disable it

uchar

updateSingle

One of three possible modes. See table below.

Modes

Mode

Value Description

DusBlock

00h

DusSingle

01lh

DusDMA

02h DMA transfers are valid for DagBoard products only

Returns

DerrMultBackXfer - Background read already in progress
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcGetBackStat, dagAdcStopBack, dagAdcSetTag, daqAdcSetClk, dagAdcSetTrig

Program References

ADC4 (All Languages)

Used With

dagAdcRdNBack reads multiple A/D scans in the background using interrupts. This function will
return control back to the user’s program after initiating the background transfer. The user can then
monitor the status of the background transfer with the dagAdcGetBackStat function or stop the
transfer with the dagAdcStopBack function. Because the transfer occurs in the background, the
user can perform other tasksin the foreground. This function assumes the A/D acquisition has already
been setup.

If the cycle flag istrue, the background transfer will run continuously looping back to the beginning
of buf after count scans have been read. Thus large amounts of data can be read without calling
dagAdcRdNBack multiple times. Aslong asyou monitor how much datais in the buffer and process
the data before it gets overwritten, the background transfer can run indefinitely. In this mode, you
should get the total number of scans written into buf using dagAdcGetBackStat and keep track of
the total number of scans processed in avariable. The difference between these two totalsis the
number of unprocessed valid scansin buf that you can process.

The updateSingle flag allows you to control whether the Dag* updates buf 1 sample at atime or
in blocks of 256 samples. Enabling updateSingle alowsthe user to read A/D data during slow
acquisitions as each sampleis acquired. Becausethe updateSingle flagisdirectly tied to the
number of interrupts generated on the computer, the flag should not be enabled if the acquisition rate is
greater than 500 scans per second (sampling rate times the number of channels). For example, an
acquisition running at 1 Hz might enable the updateSingle flag so that the data can be read each
second rather than waiting for 256 seconds. An acquisition running at 10,000 Hz would disable the
flag so that the computer does not hang.

If you are using a product that supports DMA, you can transfer scan readings to memory using DMA
by calling this function with updateSingle equal to DusDMA. Thiswill enable DMA transfersin
the direction specified by the dagBrdSetDmaMode command.

5-10

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcRdNBackPreT

DLL Function dagAdcRdNBackPreT(uint *buf, uint count, uchar cycle);
C dagAdcRdNBackPreT(uint *buf, uint count, uchar cycle)
QuickBASIC QBdagAdcRdNBackPreT%(buf%(), count%, cycle%)
Turbo Pascal dagAdcRdNBackPreT(buf:count:cycle):integer;
Parameters
uint *buf An array where the A/D scans will be placed
uint count The number of scans to be taken (1-32767)
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it.
Returns DerrMultBackXfer - Background read already in progress

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcGetBackStat, dagAdcStopBack, dagAdcSetTag, dagAdcSetTrigPreT
Program References ADCPRET3.C
Used With

dagAdcRdNBackPreT reads multiple A/D scans, initiated by the dagAdcSetTrigPreT
command, in the background. This function will return control to the user’s program after initiating the
background transfer. The user can then monitor the status of the background transfer with the
dagAdcGetBackStat function or stop the transfer with the dagAdcStopBack function. Because
the transfer occurs in the background, the user can perform other tasksin the foreground. This function
assumes the pre-trigger acquisition has already been setup using dagAdcSetTrigPreT.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning
of buf after count scans have been read. Under this mode the background transfer will continue
until the acquisition completes. This allows the user to collect large amounts of data without calling
dagRdNBackPreT severa times. Aslong asthe user monitors how much dataisin the buffer and
processes the data before it gets overwritten, the background transfer can run until the acquisition
completes. In this mode the user should get the total number of scans written into buf using the
dagAdcGetBackStat function and keep track of the total number of scans processed in avariable.
The difference between these two totals is the number of unprocessed valid scansin buf that the user
can process.

If, however, the cycle flag isfalse, the background transfer will only collect the number of scans
specified in count. If thisisthe case, then a number of dagAdcRdNBackPreT calls may be
necessary to read all the data collected during the pre-trigger mode acquisition.

Programmer’'s Manual 5-11

Dag* Command Reference (Standard API) Chapter 5

dagAdcRdNFore
DLL Function dagAdcRdNFore(uint *buf, uint count);
C dagAdcRdNFore(int *buf, int count)
QuickBASIC QBdagAdcRdNFore%(buf%(), count %)
Turbo Pascal dagAdcRdNFore(buf:DataP; count:word):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken.
Valid values: 1 -32767
Returns DerrFIFOFull - Buffer overrun
DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetTag, dagAdcSetClk, dagAdcSetTrig
Program References ADC2, ADC3 (All Languages)
Used With
dagAdcRdNFore reads multiple A/D scans in the foreground. Unlike dagAdcRdNBack, this
function does not use interrupts and does not return control immediately to the program. 1t will return
only when count scans have been read. This function will not configure the A/D acquisition and
assumes that the A/D converter has already been configured to acquire data.
Note: If the A/D converter has not been configured to acquire data, this function may wait indefinitely,
hanging the computer.
dagAdcRdNForePreT
DLL Function dagAdcRdNForePreT(uint *buf, uint count, uint *retcount, uchar *active);
C dagAdcRdNForePreT(uint *buf, uint count, uint *retcount, uchar *active)
QuickBASIC QBdagAdcRdNForePreT%(buf%(), count %, retcount%, active%)
Turbo Pascal dagAdcRdNForePreT(buf:count:retcount:active):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken.
Valid values: 1 -32767
uint *retcount Pointer to an integer representing the number of scans actually taken
uchar *active Pointer to a flag indicating whether or not the pre-trigger acquisition is still active
Returns DerrFIFOFull - Buffer overrun
DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetTrigPreT, dagAdcSetTag, dagAdcRdNForePreTWait, dagAdcRdNBackPreT
Program References | ADCPRET1.C
Used With
dagAdcRdNForePreT reads multiple A/D scans, initiated by the dagAdcSetTrigPreT
command, in the foreground. Unlike the dagAdcRdNBackPreT command, this function does not
use interrupts and does not return control immediately to the application program. It will only return
when either the specified count has been satisfied or the acquisition completes. Note: If the A/D
converter has not been configured to acquire data, this function may wait indefinitely, hanging the
computer.
This function may be called subsequent to configuring a pre-trigger acquisition using the
dagAdcSetTrigPreT command. Once thiscommand has been called, it will return only when one
of two possible conditions are met:
The specified number of scans has been collected.
The trigger has been detected and the acquisition has completed. The returned active flag will
be 0, and the number of scans actually collected will be returned in retcount.
5-12 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcRdNForePreTWait

DLL Function dagAdcRdNForePreTWait(uint *buf, uint count, uint *retcount);
C dagAdcRdNForePreTWait(uint *buf, uint count, uint *retcount)
QuickBASIC QBdagAdcRdNForePreTWaith (buf%(), count %, retcount%)
Turbo Pascal dagAdcRdNForePreTWait(buf:count:retcount:active):integer;
Parameters
uint *buf An array where the A/D samples will be placed
uint count The number of scans to be taken
Valid values: 1 - 32767
uint *retcount Pointer to an integer representing the number of scans actually taken
Returns DerrFI1FOFull - Buffer overrun
DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetTrigPreT, dagAdcSetTag, dagAdcRdNForePreT, dagAdcRdNBackPreT
Program References | ADCPRET2.C
Used With

dagAdcRdNForePreTWai t reads multiple A/D scans, initiated by the dagAdcSetTrigPreT
command, in the foreground. Unlike the dagAdcRdNForePreT command, this function will not
return until the acquisition completes. 1t will only return when the specified trigger event has occurred
and the specified post trigger count has been satisfied.

This function may be called subsequent to configuring a pre-trigger acquisition using the
dagAdcSetTrigPreT command. Once thiscommand has been called, it will return only when the
trigger has been detected and the acquisition has completed. The amount in the count parameter
specifies the length of the supplied buffer in scans. Unlike dagAdcRdNForePreT, thiscommand
will not return when count is satisfied; instead it will continue acquiring by wrapping the scansto the
beginning of the buffer until the final post-trigger scan is collected and the acquisition completes.

When the acquisition completes, control will be returned to the application program along with the
actual number of scans collected in the retcount parameter.

Note: If the A/D converter has not been configured to acquire data or the trigger event never occurs,
this function may wait indefinitely, hanging the computer.

Programmer’'s Manual 5-13

Dag* Command Reference (Standard API)

Chapter 5

dagAdcRdScan

DLL Function

dagAdcRdScan(uint startChan, uint endChan, uint *buf, uchar gain);

C dagAdcRdScan(int startChan, int endChan, int *buf)

QuickBASIC QBdagAdcRdScan®%(startChan%, endChan%, buf®%(), gain%)

Turbo Pascal dagAdcRdScan(startChan:word; endChan:word;buf:DataP; gain:byte):integer;
Parameters

uint startChan

The starting channel of the scan group

uint endChan

The ending channel of the scan group

uint *buf An array where the A/D scans will be placed
unchar gain The channel gain
Returns DerrlInvGain - Invalid gain
DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcRd, dagAdcRdN, dagAdcRdNScan, dagAdcSetMux, dagAdcRdFore, dagAdcSetTag,

dagAdcSetClk, dagAdcSetTrig

Program References

ADC1 (All Languages)

Used With

dagAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel starting with startChan
and ending with endChan.

dagAdcRdScanN

DLL Function

dagAdcRdScanN(uint startChan, uint endChan, uint *buf, uint count, uchar
trigger, uchar one Shot, uint level, float freq, uchar gain);

C dagAdcRdScanN(int startCan, int endChan, int *buf, int scans, int mode, int
cycle, int trigger, float freq)
QuickBASIC QBdagAdcRdScanN%(startChan%, endChan%, buf%(), scan%, mode%, cycle%, trigger%,

freq!, gain%)

Turbo Pascal

dagAdcRdScanN(startChan:word; endChan:word; buf:DataP; count:word;
trigger:byte; oneShot:byte;level:word; freq:real; gain:byte) :integer;

Parameters

uint startChan

The starting channel of the scan group (see table at end of chapter)

uint endChan

The ending channel of the scan group (see table at end of chapter)

uint *buf

An array where the A/D scans will be placed

uint count

The number of scans to be read
Valid values: 1 - 65536

uchar trigger

The trigger source (see table at end of chapter)

uchar one Shot

A flag that if non-zero enables one-shot trigger mode

uint level

The trigger level if an analog trigger is specified
Valid values: 0 -4095

float freq

The sampling frequency in Hz
Valid values: 100000.0 - 0.0002

uchar gain

The channel gain (See tables at end of chapter).

Returns

DerrlInvGain - Invalid gain
DerriInvChan -Invalid channel
DerrinvTrigSource - Invalid trigger
DerrinvLevel - Invalid Level
DerrFI1FOFul I -Buffer Overrun

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcRd, dagAdcRdN, dagAdcRdScan,
dagAdcSetTrig

dagAdcRdNFore, dagAdcSetTag, dagAdcSetCIk,

Program References

ADCL1 (VB, C)

Used With

dagAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure the
pacer clock, arm the trigger and acquire count scans consisting of each channel starting with
startChan and ending with endChan.

5-14

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcSetBank
DLL Function dagAdcSetBank (int chan, int type)
C dagAdcSetBank(unsigned int chan, unsigned int bankType);
QuickBASIC QBdagAdcSetBank%(chan%, bankType%)
Turbo Pascal dagAdcSetBank(chan:word; bankType:word) : integer;
Parameters
int chan Channel number on the DBK card. Channel numbers are in groups of 16 channels per bank.
int type Type of channel bank.
Returns DerrlInvChan - Invalid Channel Number (also, refer to API Error Codes on page 5-68)
See Also
Program References | None
Used With

dagAdcSetBank internaly programsintelligent DBK card channels so the Dag* gains may be set
just before the acquisition. A bank consists of 16 channels, but dagAdcSetBank must be called once
for each card in the bank. For example, if four 4-channel cards (such asa DBK7) are used in the first
expansion bank, you must call dagAdcSetBank 4 times with channels 16, 20, 24, and 28. With only
1 such card, you cannot fill the remainder of the bank with another type of device.

dagAdcSetCIlk

DLL Function dagAdcSetClk(uint ctrl, uint ctr2);
C dagAdcSetClk(uint ctrl, uint ctr2)
QuickBASIC QBdagAdcSetClk®%(ctrl%, ctr2%)
Turbo Pascal dagAdcSetClk(ctrl:word; ctr2:word):integer;
Parameters
uint ctrl The value of the counter 1 divisor

Valid values: 0 - 65535
uint ctr2 The value of the counter 2 divisor

Valid values: 0 - 65535
Returns DerrinvClock - Invalid clock

DerrNoError -No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetFreq, dagAdcGetFreq
Program References | ADC3(VB, C) ? ADC4(All Languages)
Used With

dagAdcSetClk setsthe frequency of the pacer clock using the two specified counter values. The
pacer clock can be used to control the sampling rate of the A/D converter.

The pacer clock is primarily used in two ways:

Asan internal trigger source to acquire scan data at a constant frequency. Thetrigger sourceis
programmed as the PacerClock (dagAdcSetTrig()); and setting the scan frequency is done
using dagAdcSetCIlk() or dagAdcSetFreq(). When configured, scan datawill be
acquired immediately at the frequency selected and without an external or software trigger.

To control the frequency at which continuous mode acquisition is acquired. Here, the pacer
clock is not used as atrigger source to initiate an acquisition. Instead it is used to pace the
acquisition of data that has been initiated by another trigger source in continuous mode. The
pacer clock is configured using dagAdcSetClk() and dagAdcSetFreq() functions. The
trigger source, however, is something other than the pacer clock. When configured, the Dag*
will wait for the selected trigger. When the trigger is detected, the Dag* will collect scans at the
selected pacer-clock frequency.

The frequency is defined to be x4 / ctrl* ctr2) where x., is the frequency of the board crystal (either 1
MHz or 10 MHz). For Dag PCMCIA, the following equation can be used to calculate frequency —Xy
can be 5 MHz, 1 MHz, 100 kHz, or Ext and is set by the dagBrdAdcSetTimeBase command.

frequency = xtal / [(ctrl * 65536) + ctr2 + 1]

Programmer’'s Manual

5-15

Dag* Command Reference (Standard API)

Chapter 5

dagAdcSetFreq
DLL Function dagAdcSetFreq(float freq);
C dagAdcSetFreq(float freq)
QuickBASIC QBdagAdcSetFreqh(freql)
Turbo Pascal dagAdcSetFreq(freq:real) :integer;
Parameters
float freq The sampling frequency in Hz
Valid values: 100000.0 - 0.0002
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcGetFreq, dagAdcSetClk
Program References None
Used With

dagAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency specified in
Hz. Thefrequency is converted to two counter values that control the frequency of the pacer clock (in
this conversion, some resolution of the frequency may belost). dagAdcRdFreq can be used to read
the exact frequency setting of the pacer clock. dagAdcSetCIlk can be used to explicitly set the two

counter values of the pacer clock. The pacer clock can be used to control the sampling rate of the A/D
converter.

Note: The Dag PCMCIA may limit the maximum frequency settings when configured for differential
mode operation.

dagAdcSetMux

DLL Function

dagAdcSetMux(uint startChan, uint endChan, uchar gain);

C dagAdcSetMux(uint startChan, uint endChan)

QuickBASIC QBdagAdcSetMux%(startChan%, EndChan%)

Turbo Pascal dagAdcSetMux(startChan:word; endChan:word; gain:byte) :integer;
Parameters

uint startChan

The starting channel of the scan group

uint endChan

The ending channel of the scan group

uchar gain The gain value for all channels
Returns DerrInvGain - Invalid gain

DerriIncChan - Invalid channel

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcSetScan, dagAdcGetScan, dag200GetScan, dag200SetScan

Program References

ADC?2 (All Languages)

Used With

dagAdcSetMux sets asimple scan sequence of local A/D channelsfrom st ar t Chan to endChan
with the specified gain values. This command provides a simple alternative to dagAdcSetScan if
consecutive channels need to be acquired.

5-16

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcSetScan

DLL Function

dagAdcSetScan(uint *chans, uchar *gains, uint count);

C

dagAdcSetScan(uint *chans, uchar *gains, uint count)

QuickBASIC QBdagAdcSetScan%(buf%())
Turbo Pascal dagAdcSetScan(chans:DataP; gains:ByteP; count:word) :integer;
Parameters

uint *chans

An array of up to 512 channel numbers

uchar *gains

An array of up to 512 gain values

uint count

The number of values in the chans and gains arrays
Valid values: 1 -512

Returns DerrNotCapable - No high speed digital

DerrlInvGain - Invalid gain

DerriInvChan - Invalid channel

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcGetScan, dagAdcSetMux, dag200SetScan

Program References | ADC3, ADC4 (All Languages)

Used With

dagAdcSetScan configures a scan sequence consisting of multiple channels and corresponding
gains. Asmany as 512 entries can be made in the scan configuration. Any analog input channel at any
gain can be included in the scan including local channels and channels on an expansion card. Channels
can be entered multiple times at the same or different gain. The high-speed digital 1/O port can be
included athough its gain value will be ignored.

dagAdcSetTag

DLL Function | dagAdcSetTag(uchar tag);

C dagAdcSetTag(int cycle, int tag)

QuickBASIC QBdagAdcSetTag%(tag%)

Turbo Pascal dagAdcSetTag(tag:byte) :integer;

Parameters

uchar tag A flag which if non-zero will enable the channel tag in the A/D data, or if O will disable it

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcConvertTagged

Program References ADC1, ADC2 (All Languages)

ADC4 (VB, C)

Used With

For Dag*100 series only

dagAdcSetTag enables/disables channel numbers or tagsto beincluded in the A/D data. The A/D
converter of the Dag* returns data in a 16-hit tagged format which consists of the 12-bit A/D reading in
the upper 12 bits and a channel number in the lower 4 bits. Disabling channel tagging will cause all
A/D functions to strip the channel tags and shift the A/D dataright by 4 bits before the datais returned
totheuser. If an expansion card is used, the jumper setting of the expansion card will be returned in
the channel tag location. The dagAdcConvertTagged function can be used to convert data
acquired with channel tags into separate channel and data arrays. High-speed acquisitions should
enable channel tagging to increase throughput because no time is spent converting the data.

Note: The channel tag should not be disabled when reading data from the high-speed digital 1/O port.
The data from this port will be stripped and shifted like A/D data.

Note: The Dag PCMCIA/112B does not support channel tagging. Enabling channel tagging with a
Dag/112B will simply cause the 12-bit data to be converted to 16-bit data. The least significant nibble
will be filled with OH rather than a channel tag value. The remaining 12 bitswill be shifted left 4
places.

Programmer’'s Manual 5-17

Dag* Command Reference (Standard API)

Chapter 5

dagAdcSetTrig

DLL Function

dagAdcSetTrig(uchar trigger, uchar one shot, int level, uchar ctrO mode, uchar

pacer Mode);

C

dagAdcSetTrig(int source, int slope, int level)

QuickBASIC

QBdagAdcSetTrigh(source%, slope%, level%)

Turbo Pascal

dagAdcSetTrig(trigger:byte; oneShot:byte;
byte):integer;

level:word; ctrOMode:byte;pacerMode:

Parameters

uchar trigger

The trigger source

uchar one Shot

A flag that if non-zero enables 1-shot trigger mode, otherwise enables continuous mode

uint level

The trigger level if an analog trigger is specified
Valid values: 0 -4095

ctrOmode A flag that if non-zero, selects an internal 100 kHz clock to be the input to counter 0. If the flag is zero,
only the external clock on P1, pin21 is the input to counter O (see figure in dagAdcConfCntrO0). Counter
0 can act as a trigger source if the Counter 0 output (pin 2 of P1) is connected to the external trigger
input (pin 25 of P1). The JP1 jumper must be configured for Counter O for this operation.
pacer Mode A flag that if zero, disables the external TTL Trigger (P1, pin 25) from affecting the pacer clock. If the flag
is non-zero, any low-level on the TTL trigger will cause the pacer clock to pause.
Returns DerriInvTrigSource - Invalid trigger
DerrinvLevel - Invalid level
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcConfCntrO

Program References

ADC2, ADC3, ADC4, ADCS5 (All Languages)

Used With

dagAdcSetTrig sets and armsthe trigger of the A/D converter. Eight trigger sources and several
mode flags can be used for avariety of acquisitions. dagAdcSetTrig will stop current acquisitions,
empty acquired data, and arm the Dag* using the specified trigger.

The pacer-clock trigger is used to acquire data at a constant frequency. The sampling rate can be set
using the dagAdcSetCIlk or dagAdcSetFreq functions. The 1-shot flag has no meaning when
using this trigger source, and the analog-level value isignored.

The software trigger allows the user to trigger the A/D from software using the dagAdcSoftTrig
function. When the 1-shot mode is enabled, a single scan will be initiated by the software trigger. In
the continuous mode (1-shot disabled), sending a software trigger will cause the A/D converter to
sample at the rate of the pacer clock. The analog level valueisignored.

An external TTL pulse trigger can be used to initiate a scan or start an acquisition when using the
external TTL rising or falling edge trigger source. The external TTL pulse should be applied to trig0
(pin 25 of P1). The pulse will initiate a single scan in one-shot mode, and a continuous acquisition at
the pacer clock frequency in continuous mode. The analog level valueisignored.

Four analog triggers use arising or falling slope and a positive or negative level. Data acquisition will
start when the first channel of the scan group (defined by dagAdcSetScan or dagAdcSetMux)
passes through the specified trigger level with the proper slope. Analog triggers are used with the 1-
shot mode disabled, so datawill be collected at the frequency of the pacer clock after the analog trigger
issatisfied. With an analog trigger, D/A channel 1 is set to the specified trigger level.

Note: The Dag* includes hysteresis to prevent false triggers on the wrong slope of the waveform due to
noise. This hysteresis may cause the actual trigger level to differ from the program trigger level. For
example, with arising slope specified, the actual trigger level will be higher than the program trigger
level depending on the frequency of the waveform on the trigger channel.

Setting the counter 0 mode flag true enables an onboard 100 kHz clock to be ANDed with the
counter 1 input (pin 21 of P1) to produce the input to counter O. If nothing is connected to counter 1
input, the line will float high and clock counter O from the 100 kHz clock. If theflagis false,
counter 0 can only be clocked from the counter O input pin. Counter O can be used as an aternative
trigger source by connecting the counter 0 output (pin 2 of P1) to trig0 (pin 25 of P1) and choosing an
external TTL trigger. Counter O can also be used for general counter applications.

The pacer mode flag enables/disables operation of the pacer clock. If thisflag is non-zero, the pacer
clock will be gated with trig0 (pin 25 of P1). If it iszero, the pacer clock will be enabled.

5-18

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcSetTrigPreT

DLL Function

dagAdcSetTrigPreT(uchar trigger, uint channel, uint level, uint precount, uint
postcount);

C dagAdcSetTrigPreT(uchar trigger, uint channel, uint level, uint precount, uint
postcount)

QuickBASIC QBdagAdcSetTrigPreT%(trigger%, channel%, level%, precount%, postcount%)

Turbo Pascal dagAdcSetTrigPreT(trigger:channel:level :precount:postcount):integer;

Parameters

uchar trigger

The analog trigger source - DtsAnalogRisePos, DtsAnalogFallPos, DtsAnalogRisNeg, DtsAnalogFallNeg

uint channel

The channel in the current scan group to trigger on

uint level

The level for the specified channel at which to detect the trigger

uint precount

The number of pre-trigger scans to collect before arming the trigger (1-32767)

uint postcount

The number of post-trigger scans to collect after the occurrence of the trigger (1-32767)

Returns

DerrinvTrigSource - Invalid trigger
DerrinvLevel - Invalid level
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcSetFreq, dagAdcSetCtr, dagAdcRdNForePreT, dagAdcRdNForePreTWait,
daqgAdcRdNBackPreT

Program References

ADCPRET1.C, ADCPRET2.C, ADCPRET3.C

Used With

dagAdcSetTrigPreT setsthetrigger for analog level triggering and initiates the collection of apre-
trigger data acquisition. dagAdcSetTrigPreT will stop a current acquisition, empty data acquired,
arm the Dag* using the specified analog-level trigger source, and immediately begin the collection of
the specified amount of pre-trigger data.

This command can configure a data acquisition that includes both pre-trigger and post-trigger data.

The pre-trigger amount indicates the number of pre-trigger scans to be collected before the
trigger isarmed. The trigger event will only be recognized after the specified pre-trigger amount

has been satisfied and the trigger isarmed. The specified pre-trigger amount represents the
minimum amount of pre-trigger data that will be collected.

The post-trigger amount represents the number of scans taken after the detection of the trigger

event. Thisamount represents the exact number of scans taken subseguent to the detection of the

trigger event.

The pacer clock may be used to set up the sampling rate for the acquisition. The sampling rate can best
be set by using the dagAdcSetClk or dagAdcSetFreq commands.

The four analog trigger sources (rising or falling slope with a positive or negative level) can be used
with any one of the channelsin the currently defined scan group. This channel parameter represents the
relative channel within the scan group (not necessarily the actual channel number).

The level parameter isthe A/D count level (normalized to a 12-bit quantity) at which the trigger isto
occur. Sincetheinternal DAC is not used to set the trigger level, there is no need to call
dagAdcCalcTrig to determine the appropriate level. Thelevel issimply calculated by:

Level (if unipolar) = (Vser/V span X 4096)

When setting up a pre-trigger acquisition, a specific command set must be used to retrieve the data.
This command set includes dagAdcRdNForePreT, dagAdcRdNForePreTWait and
dagAdcRdNBackPreT (refer to their description in this chapter).

Programmer’'s Manual

5-19

Dag* Command Reference (Standard API)

Chapter 5

dagAdcSoftTrig

DLL Function dagAdcSoftTrig(void);

C dagAdcSoftTrig(void)

QuickBASIC QBdagAdcSoftTrigh

Turbo Pascal dagAdcSoftTrig():integer;

Parameters None

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagAdcSetTrig

Program References ADC3 (All Languages)

Used With
dagAdcSoftTrig isused to send a software trigger command to the DagBook/DagBoard. This
software trigger can be used to initiate a scan or an acquisition from a program after configuring the
software trigger as the trigger source.

dagAdcStopBack

DLL Function dagAdcStopBack(void);

C dagAdcStopBack(void)

QuickBASIC QBdagAdcStopBack®%()

Turbo Pascal dagAdcStopBack() : integer;

Parameters None

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagAdcRdNBack, dagAdcGetBackStat

Program References ADC4 (All Languages)

Used With
dagAdcStopBack stops a background operation initiated by the dagAdcRdNBack function.

5-20 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagAdcWtCntrO

DLL Function

dagAdcWtCntro(uint cntr0);

C

dagAdcWtCntrOo(uint cntr0)

QuickBASIC QBdagAdcWtCntro%(cntr0%)
Turbo Pascal dagAdcWtCntrOo(cntrO:word) :integer;
Parameters

uint cntrO

The value to write to the count down register of Counter O
Valid values: 0 -65535

Returns

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcConfCntrO, dagAdcRdCntrO

Program References

ADCS5 (All Languages)

Used With

dagAdcWtCntroO loads the count-down register of Counter 0. See dagAdcCon¥CntroO for various

applications of counter O.
Note: Using counter O requires the JP2 jumpersto be in the -OCTOUT and -OCLKIN positions.

dagBrdAdcSetTimeBase

DLL Function

dagBrdAdcSetTimeBase(uchar frequency);

C

dagBrdAdcSetTimeBase(unsigned char frequency);

QuickBASIC QBdagBrdAdcSetTimeBase%(frequency®)

Turbo Pascal dagBrdAdcSetTimeBase(frequency:byte):integer;

Parameters

uchar | One of four predefined constants (see below).

Frequencies:

Description Value Notes

TB10MHz 00h Used by DagBoards only

TB5MHz 0lh Used by DagBoard and Dag PCMCIA

TB1MHz 02h Used by DagBoard and Dag PCMCIA

TB100kHz 03h Used by DagBoard and Daq PCMCIA

TBExternal 04h Used by Daq PCMCIA only

Returns DerrinvClock - An invalid frequency was specified
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagBrdDacSetTimeBase

Program References None

Used With

dagBrdAdcSetTimeBase is used to set the main timebase for the ADC pacer clock. The timebase
can be set to 10 MHz, 5 MHz, 1 MHz, or 100 kHz. A 1-MHz clock is set as the default value when the
hardware isinitialized. The main timebase is then divided by Counter 1 & Counter 2 of the 8254 to

determine the pacer clock frequency that will drive the ADC scan rate.

Programmer’'s Manual

5-21

Dag* Command Reference (Standard API) Chapter 5

dagBrdDacClockSrc
DLL Function dagBrdDacClockSrc(uchar source);
C dagBrdDacClockSrc(source:byte):integer;
QuickBASIC QBdagBrdDacClockSrch(source)
Turbo Pascal dagBrdDacClockSrc(source:byte):integer;
Parameters
uchar source | One of five predefined constants. See table below for listing.
Clock Sources:
Source Value Description
DacPcrExt 00hD AC FIFO driven by user supplied external clock
DacPcrTB9513 01hD AC FIFO driven by 9513 Counter 1
DacPcrTBInt 02hD AC FIFO driven by DAC clock which is set by software to 10 MHz, 5 MHz, 1 MHz or 100 kHz
DacPcrGated 03h The internal DAC time base (10, 5, 1, 0.1 MHz set by dagBrdDacTimeBase) is gated by the
external TTL trigger found on pin 25 of P1.
DacPcrAdcPcr 04h DAC FIFO driven by ADC pacer clock
Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacCtrl, dagBrdDacResetFIFO, dagBrdDacSetTimeBase, dagBrdDacWriteFIFO
Program References DAC3 (All Languages)
Used With

dagBrdDacClockSrc isused to select the source for the DAC FIFO pacer clock. There are 4
sources for the pacer clock:
the internal DAC time base (set to 1 of 4 frequencies by dagBrdDacSetimeBase)
atime base driven by Counter 1 of the 9513
an external time base that is supplied by P1 pin 21
the ADC pacer time base.

Thefirst 3 of these potential clock sources pass through and are divided by Counter 0 of the 8254
before they reach the DAC FIFO.

The DAC FIFO pacer clock’s frequency is the rate that a sample will be sent from the FIFO to the
DACs. If the DACFIFOChanO or DACFIFOSimul modes are selected, samples will be sent to DAC
0 or both DACs at thisrate.

If themode is set to DACFIFOInterleave, sampleswill leave the FIFO at thisrate. Since samples
are sent alternately to DAC 0 and DAC 1, each DAC’ s value will be updated at half this rate.

5-22 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagBrdDacCtrl

DLL Function

dagBrdDacCtrl(uchar mode, uchar retransmit);

C dagBrdDacCtri(mode:byte; retransmit:byte):integer;
QuickBASIC QBdagBrdDacCtril%(mode%, retransmitl%)

Turbo Pascal dagBrdDacCtri(mode:byte; retransmit:byte):integer;
Parameters

uchar mode

One of four predefined constants (see below)

uchar retransmit

A flag that if non-zero will enable the FIFO to be output continuously to the DAC channels.

Modes:
Mode Value Description
DacFIFOBypass 00h DagBook compatible mode. DAC value updated by dagDacWt command. To stop the
waveforms, use this mode.
DacFIFOChan0 01lh FIFO data goes to chan0, chanl set in FIFO bypass mode.
DacFIFOInterleav | 02h Chan 0 and chanl’s samples are interleaved in the FIFO.
e
DacFIFOSimul 03h FIFO data goes to chan0 and chanl simultaneously.
Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacClockSrc, dagBrdDacResetFIFO, dagBrdDacSetTimeBase, dagBrdDacWriteFIFO

Program References

DAC3 (All Languages)

Used With

dagBrdDacCtr1 isused to set the mode of the DAC FIFO. Thefirst parameter determines which
DAC channels the samplesin the FIFO are sent to. The second parameter determines whether the
FIFO is transmitted continuously or only once.

Programmer’'s Manual

5-23

Dag* Command Reference (Standard API) Chapter 5

dagBrdDacPredefWave

DLL Function dagBrdDacPredefWave(uchar dac, uint samples, uchar waveType, uint amplitude,
uint offset, uint dutyCycle, uint phaseShift);

C dagBrdDacPredefWave(dac:byte; samples:word; waveType:byte amplitude:word;
offset:word; dutyCycle:word; phaseShift:word):integer;

QuickBASIC QBdagBrdDacPredefWave%(DAC%,samples%, waveType%, amplitude%, offset%,
dutyCycle%, phaseShift%)

Turbo Pascal dagBrdDacPredefWave(DAC:byte; samples:word; waveType:byte amplitude:word;
offset:word; dutyCycle:word; phaseShift:word):integer;

Parameters

uchar dac The DAC channel to assign the waveform to.

uint samples The number of samples in one cycle of the waveform. (QuickBASIC Note: Waveforms constructed with
this command are limited to 256 samples per waveform.)

uchar waveType One of the three predefined waveforms from table below.

uint amplitude The peak to peak amplitude of the waveform in D/A counts. 0 -4095

uint offset The voltage level that the waveform will be centered around in D/A counts. 0 -4095

uint dutyCycle The duty cycle of the waveform as a percentage.

uint phaseShift The number of degrees that the waveform is shifted from the waveform of the other DAC channel.

Predefined Waveforms:

Description Value

PdwSine 00h

PdwSquare 01h

PdwTriangle 02h

Returns DerriInvDacChan - The DAC channel number doesn't exist

DerrInvDacParam - Parameters were out of range
DerriInvPredefWave - Predefined waveform is not supported
DerrMemAl loc - Not enough memory was available to build the waveform
DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacSetMode, dagBrdDacStart, dagBrdDacStop, dagBrdDacUserWave
Program References | DAC2 (All Languages)

Used With

dagBrdDacPredefWave builds awaveform to the user’s specifications and assigns it to one of the
DAC channels. Waveforms assigned with this command are started with the dagBrdDacStart
command and stopped with the dagBrdDacStop command. daqBrdSetMode is used to set the
update rate and cycling mode for this waveform.

5-24 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagBrdDacResetFIFO

DLL Function dagBrdDacResetFIFO(void);
C dagBrdDacResetFIFO() :integer;
QuickBASIC QBdagBrdDacResetFIFO%()
Turbo Pascal dagBrdDacResetFIFO() :integer;
Parameters None
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacClockSrc, dagBrdDacCtrl, dagBrdDacSetTimeBase, dagBrdDacWriteFIFO
Program References DAC3 (All Languages)
Used With

dagBrdDacResetF 1 FO resets the DAC FIFO and its pointers.

dagBrdDacSetMode

DLL Function

dagBrdDacSetMode(ulong period, uchar mode, uchar cycle);

C dagBrdDacSetMode(period: longintmode:byte; cycle:byte):integer;
QuickBASIC QBdagBrdDacSetMode%(period!, mode%, cycle%)

Turbo Pascal dagBrdDacSetMode(period: longintmode:byte; cycle:byte):integer;
Parameters

ulong period

The rate that sample data will be sent to the DACs specified in microseconds.
sample per DAC channel regardless of what mode the FIFO is set to.

Note: This rate is per

uchar mode

One of four modes for the DAC FIFO from the table below.

uchar cycle

A flag that if non-zero will enable the waveforms to be output continuously to the DAC channels.

Modes:
Mode Value Description
DacFIFOBypass 00h DagBook compatible mode. DAC value updated by dagDacWt command.
DacF1FOChanO 01h FIFO goes to chan0, chanl set in FIFO bypass mode.
DacFIFOBoth 02h Sends waveforms defined by dagBrdUserWave and dagBrdDacPredfedWave to the DACs.
DacFIFOSimul 03h FIFO goes to chan0 and chanl simultaneously from waveform defined in DacO by
dagBrdDacUserWave or dagBrdDacPredefWave
Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacPredefWave, dagBrdDacStart, dagBrdDacStop, daqBrdDacUserWave

Program References

DAC2 (All Languages)

Used With

dagBrdDacSetMode sets the mode of the DAC FIFO (which DAC channels the FIFO samples will be
sent to), the cycling mode of the FIFO, and the update rate per sample. This command worksin
conjunction with the dagBrdDacStart, daqBrdDacStop, dagBrdDacPredefWave and
dagBrdDacUserWave commands. Note: It does not configure the hardware registers until
dagBrdDacStart iscalled.

Programmer’'s Manual

5-25

Dag* Command Reference (Standard API)

Chapter 5

dagBrdDacSetTimeBase

DLL Function

dagBrdDacSetTimeBase(uchar frequency);

C dagBrdDacSetTimeBase(frequency:byte):integer;
QuickBASIC QBdagBrdDacSetTimeBase%(frequency%)

Turbo Pascal dagBrdDacSetTimeBase(frequency:byte):integer;
Parameters

uchar frequency

One of four predefined constants (see below)

Frequencies:

Description Value
TB10MHz 00h
TB5MHz 01h
TB1MHz 02h
TB100kHz 03h
Returns DerriInvClock - An invalid frequency was specified
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacClockSrc, dagBrdDacCtrl, dagBrdDacResetFIFO, dagBrdDacWriteFIFO

Program References

DAC3 (All Languages)

Used With

dagBrdDacSetTimeBase is used to set the main timebase for the DAC FIFO pacer clock. This
clock can be set to 10 MHz, 5 MHz, 1 MHz, or 100 kHz. The default valueis 1 MHz and is set when
the hardware and the driver are initialized. Thistimebaseis then divided by Counter O of the 8254
chip. Thisfrequency will be the rate at which the DACswill be updated with samples from the FIFO
(if the clock source is set to DacPcrTBInt). Note: Thistimebase may be changed by

dagBrdDacSetMode.
dagBrdDacStart
DLL Function dagBrdDacStart(void);
C dagBrdDacStart():integer;
QuickBASIC QBdagBrdDacStart®%()
Turbo Pascal dagBrdDacStart():integer;
Parameters None
Returns DerrInvDacWave - Inappropriate dac mode is set
DerrInvBackDac - Waveforms would not fit in FIFO or their sample sizes were not equal
DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacPredefWave, dagBrdDacSetMode, daqBrdDacStop, dagBrdDacUserWave
Program References | DAC2 (All Languages)
Used With

dagBrdDacStart starts the waveforms specified by dagBrdDacPredefWave,
dagBrdDacSetMode, and dagBrdDacUserWave. Thetota size in samples of all the waveforms
started with this command must be smaller or equal to the size of the DAC FIFO (4096 samples). If
two waveforms are configured, the number of samplesin each waveform must be equal.

5-26

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagBrdDacStop

DLL Function dagBrdDacStop(void);
C dagBrdDacStop() :integer;
QuickBASIC QBdagBrdDacStop%()
Turbo Pascal dagBrdDacStop() :integer;
Parameters None
Returns DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacPredefWave, dagBrdDacSetMode, dagBrdDacStart, dagBrdDacUserWave
Program References | DAC2 (All Languages)
Used With

dagBrdDacStop stops the waveforms specified by dagBrdDacPredefWave,
dagBrdDacSetMode, and dagBrdDacUserWave that were started with dagBrdDacStart.
Note: Use the DAC FIFO bypass mode to stop the waveforms.

dagBrdDacUserWave

DLL Function

dagBrdDacUserWave(uchar dac, uint *buf, uint samples);

C

dagBrdDacUserWave(dac:byte; buf:WordP; samples:word):integer;

QuickBASIC QBdagBrdDacUserWave%(DAC%, buf%(), samples®)

Turbo Pascal dagBrdDacUserWave(DAC:byte; buf:WordP; samples:word):integer;

Parameters

uchar dac The dac channel to assign the waveform to.

uint *buf A pointer to the beginning of an array that contains the samples that will be assigned to the DAC channel.

uint samples

The number of samples contained in the array. (QuickBASIC Note: Waveforms constructed with this
command are limited to 256 samples per waveform.)

Returns

DerrlInvDacChan - The DAC channel number doesn't exist

DerrInvBuf - A waveform buffer was not specified

DerrMemAl loc - Not enough memory was available to build the waveform

DerrNotCapable - Hardware is not capable of this function

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagBrdDacPredefWave, dagBrdDacSetMode, dagBrdDacStart, dagBrdDacStop

Program References | DAC2 (All Languages)

Used With

dagBrdDacUserWave assigns a user-defined waveform to one of the DAC channels. Any arbitrary
waveform can be built in an array. dagBrdDacUserWave can then be called by specifying a pointer
to the beginning of the waveform, the size of the array, and the target DAC channel to send the
waveform. The waveform will start when dagBrdDacStart iscalled, aslong as al parameters have
been set properly. Note: the waveform is not loaded into its FIFO until dagBrdDacStart iscalled.

Programmer’'s Manual 5-27

Dag* Command Reference (Standard API)

dagBrdDacWriteFIFO
DLL Function dagBrdDacWriteFIFO(uint samples,uint far *storage);
C dagBrdDacWriteFIFO(samples:word; storage:WordP):integer;
QuickBASIC QBdagBrdDacWriteFIFO%(samples, storage®%()))
Turbo Pascal dagBrdDacWriteFIFO(samples:word; storage:WordP):integer;
Parameters
uint samples The number of samples to be loaded into the FIFO
uint far A pointer to the beginning of an array that contains the samples that will be load into the DAC FIFO
*storage
Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagBrdDacClockSrc, dagBrdDacCtrl, dagBrdDacResetFIFO, dagBrdDacSetTimeBase
Program References | DAC3 (All Languages)
Used With

dagBrdDacWriteFIFO loads sample data directly into the DAC FIFO.

dagBrdSetDmaMode

DLL Function dagBrdSetDmaMode(int mode);

C dagBrdSetDmaMode(int mode);

QuickBASIC QBdagBrdSetDmaMode%(mode%)

Turbo Pascal dagBrdSetDmaMode(mode:integer):integer;

Parameters

int | One of two predefined constants (see below)

Modes:

Mode Value Description

DmaNone 00h Do not use DMA

DmaRead 02h Use DMA to transfer scan data from the ADC FIFO to memory

Returns DerrNotCapable - Hardware is not capable of this function
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagAdcRdNBack, daglnit

Program References | ADC6

Used With

Chapter 5

dagBrdSetDmaMode is used to set the direction for DMA transfers. Of the two possible modes,
DmaNone will disable any DMA transfers and DmaRead will enable scan data to be transferred from
the ADC FIFO to memory viaaDMA channel. For thistransfer to take place, the DMA channel
number (5, 6, or 7) must be specified when dagInit iscaled and dagAdcRdNBack must be called

with the updateSingle parameter set to DusDma (02h).

5-28

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagCalConvert

DLL Function dagCalConvert(uint *counts, uint scans);
C daqCalConvert(uint *counts, uintscans)
QuickBASIC QBdagCalConvert%(counts%, scans%)
Turbo Pascal dagCalConvert(counts:scans):integer;
Parameters
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrzZClInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagReadCalFile, daqCalSetup, dagCalSetupConvert
Program References | None

Used With

dagCalConvert function performs the actual calibration of one or more scans according to the
previously called dagCal Setup function. This function will modify the array of data passed to it.

dagCalSetup

DLL Function

daqCalSetup(uint nscan, uint readingsPos, uint nReadings, uint chanType, uint
chanGain, uint startChan, uint bipolar, uint noOffset);

C daqCalSetup(uintnscan, uint readingsPos, uint nReadings, uintchanType,
uintchanGain, uint startChan, uintbipolar, uintnoOffset)
QuickBASIC QBdaqCalSetup%(scan%, readingsPos%, nReadings%, chanType%, chanGain%,

startChan, bipolar%, noOffsetl%)

Turbo Pascal

daqCalSetup(nscan:readingsPos:nReadings:chanType:chanGain:startChan:bipolar:n
oOffset):integer;

Parameters

uint nscan

The number of readings in a single scan.

uchar readingsPos

The position of the readings to be calibrated within the scan.

uchar nReadings

The number of readings to calibrate.

uint chanType

The type of channel/board from which the readings to be calibrated are read. This should be setto 1
when calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.

uint chanGain

The gain setting of the channels to be calibrated.

uint startChan

The channel number of the first channel to be converted.

uint bipolar

Non-zero if the DagBook/DaqgBoard is configured for bipolar readings.

uint noOffset

If non-zero, the offset cal constant will not be used to calibrate the readings.

Returns

DerrzZClnvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqReadCalFile, daqCalConvert, daqCalSetupConvert
Program References None

Used With

daqCalSetup will configure the order and type of datato be calibrated. Thisfunction requires all data
to be calibrated to be from consecutive channels configured for the same gain, polarity, and channel
type. The calibration can be configured to only use the gain calibration constant and not the offset
congtant. This allows the offset to be removed at runtime using the zero compensation functions.

Programmer’'s Manual

5-29

Dag* Command Reference (Standard API)

Chapter 5

dagCalSetupConvert

DLL Function

dagCalSetupConvert(uint nscan, uint readingsPos, uint nReadings, uint
chanType, uint chanGain, uint startChan, uint bipolar, uint noOffset, uint
*counts, uint scans);

C dagCalSetupConvert(uintnscan, uint readingsPos, uint nReadings, uintchanType,
uintchanGain, uint startChan, uintbipolar, uintnoOffset, uint *counts, uint
scans)

QuickBASIC QBdagCalSetupConvert®%(scan%, readingsPos%, nReadings%, chanType%, chanGain%,

startChan, bipolar%, noOffset%, counts%, scans%)

Turbo Pascal

dagCalSetupConvert(nscan:readingsPos:nReadings:chanType:chanGain:startChan:bi
polar:noOffset:counts:scans):integer;

Parameters

uint nscan

The number of readings in a single scan.

uchar readingsPos

The position of the readings to be calibrated within the scan.

uchar nReadings

The number of readings to calibrate.

uint chanType The type of channel/board from which the readings to be calibrated are read. This should be set to 1
when calibrating a CJC channel of a DBK14 or DBK19, and 0 when reading any other channel.
uint chanGain The gain setting of the channels to be calibrated.
uint startChan The channel number of the first channel to be converted.
uint bipolar Non-zero if the DagBook/DagBoard is configured for bipolar readings.
uint noOffset If non-zero, the offset cal constant will not be used to calibrate the readings.
uint *counts The raw data from one or more scans.
uint scans The number of scans of raw data in the counts array.
Returns DerrzZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagReadCalFile, daqCalSetup, daqCalConvert

Program References

None

Used With

For convenience, both the setup and convert steps can be performed with one call to
dagCalSetupConvert. Thisis useful when the calibration needs to be performed multiple times
because data was read from non-consecutive channels or at different gains.

dagClose

DLL Function dagClose(void)

Cc dagClose(void)

QuickBASIC QBdaqClose%(void%)

Turbo Pascal dagClose():integer;

Parameters None

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagInit

Program References | INIT, ADC1, ADC2, ADC3, ADC4, ADC5,CTR1, CTR2, DAC1, DAC2, DIG1 (All Languages)

Used With

dagClose isused to end communications with the DagBook/DagBoard. If dagClose iscalled,
dagInit must be called before calling any other function.

5-30

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqCtrGetBackStat

DLL Function

dagCtrGetBackStat(uchar *active, ulong *count);

C dagCtrGetBackStat(int *active, uint *count)

QuickBASIC QBdagCtrGetBackStat®%(active%, count%)

Turbo Pascal daqCtrGetBackStat (active:ByteP; count:LongP) :integer;
Parameters

uchar *active

A flag which will be returned non-zero if a background transfer is in progress, or 0 if not

ulong *count

The number of scans acquired by the last or current background transfer

Returns DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrRdNBack, daqCtrStopBack

Program References

CTR2 (All Languages)

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

dagCtrGetBackStat reads the status of the last or current background operation initiated by the
dagCtrRdNBack function.

dagCtrGetHold

DLL Function

daqCtrGetHold(uchar ctrNum, uint *ctrVval);

C daqCtrGetHold(uchar ctrNum, uint *ctrVval)
QuickBASIC QBdaqCtrGetHold%(ctrNum%, ctrVal%)

Turbo Pascal daqCtrGetHold(ctrNum:byte; ctrVal:DataP):integer;
Parameters

uchar ctrNum

The counter number
Valid values: 1 - 5

uint *ctrVal The value read from the hold register of the selected counter is placed in this variable
Valid values: 0 - 65535
Returns DerrInvCtrNum - Invalid counter
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrSetCtrMode
Program References | (None)

Used With

Only applies to DagBook/100/200 and DaqBoard/100A/200A

daqgCtrGetHold readsthe hold register of the specified counter. Thisregister isused in event-

counting applications to store accumulated counter values. The hold register can be read while the

count process is running without interrupting the process.

Programmer’'s Manual

5-31

Dag* Command Reference (Standard API)

Chapter 5

dagCtrMultCtrl

DLL Function

daqCtrMultCtril(uchar ctrCommand, uchar ctrl, uchar ctr2, uchar ctr3, uchar
ctr4, uchar ctr5);

C daqgCtrMultCtri(int ctrCommand, int ctrll, int ctr2, int ctr3, int ctr4, int
ctr5)
QuickBASIC QBdagCtrMultCtri%(ctrCommand%, ctrl %, ctr2 %, ctr3%, ctrd%, ctr5%)

Turbo Pascal

daqCtrMultCtri(ctrCmd:byte; ctril:byte; ctr2:byte; ctr3:byte; ctr4:byte;
ctr5:byte):integer;

Parameters

uchar ctrCommand | The counter command (see below)

uchar ctril A flag that if non-zero enables the counter command to be executed on counter 1, or if 0 do nothing to
counter 1

uchar ctr2 A flag that if non-zero enables the counter command to be executed on counter 2, or if 0 do nothing to
counter 2

uchar ctr3 A flag that if non-zero enables the counter command to be executed on counter 3, or if 0 do nothing to
counter 3

uchar ctr4 A flag that if non-zero enables the counter command to be executed on counter 4, or if 0 do nothing to
counter 4

uchar ctr5 A flag that if non-zero enables the counter command to be executed on counter 5, or if 0 do nothing to
counter 5

Multiple Counter Commands:

Description Value

DmccArm 20h

DmcclLoad 40h

DmccLoadArm 60h

DmccDisarmSave 80h

DmccSave AOh

DmccDisarm COh

Returns DerriInvCtrCmd - Invalid counter command

DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrSetCtrMode, daqCtrSetMasterMode

Program References

CTR1, CTR2 (All Languages)

Used With

Only applies to DaqBook/100/200 and DaqBoard/100A/200A

dagCtrMultCtrl performs a command including loading, latching, saving, enabling, and disabling
on multiple counters simultaneously.

DmccLoad - Theinitial counter value can be transferred from the load or hold register with the
load command.

DmccArm - The arm command will enable the counter to begin counting.

DmccDisarm - The disarm command will disable the counter.

DmccSave - The save command will transfer the current counter value to the hold register
where it can be read without disturbing the counters.

5-32

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqCtrRdFreq

DLL Function

dagCtrRdFreq(uint interval, uchar cntSource, uint *count);

C daqgCtrRdFreq(int interval, int source, int count)

QuickBASIC QBdaqgCtrRdFreg%(interval%, source%, count%)

Turbo Pascal dagCtrRdFreq(interval :word; cntSource:byte; count:DataP) :integer;
Parameters

uint interval

The gate interval in milliseconds
Valid values: 1 -32767

uchar cntSource

The count source (see below)

uint *count

A variable to hold the number of counts accumulated in the gating interval
Valid values: 0 - 65535

Count Source Definitions:

Description Value Description
DcsSrcl 01lh Counter 1 input (pin 36 of P3)
DcsSrc2 02h Counter 2 input (pin 19 of P3)
DcsSrc3 03h Counter 3 input (pin 17 of P3)
DcsSrc4 04h Counter 4 input (pin 15 of P3)
DcsSrch 05h Counter 5 input (pin 13 of P3)
DcsGatel 06h Counter 1 gate (pin 37 of P3)
DcsGate2 07h Counter 2 gate (pin 18 of P3)
DcsGate3 08h Counter 3 gate (pin 16 of P3)
DcsGate4 09h Counter 4 gate (pin 14 of P3)
Returns DerriInvinterval - Invalid interval
DerrInvCntSource - Invalid source
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also

Program References

None

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

daqgCtrRdFreq isused to read the frequency of one of 9 external inputs. The 9 available inputs
include the 5 counter inputs (P3 pins 36, 19, 17, 15, or 13) and the gates of counters 1 to 4 (P3 pins 37,
18, 16, and 14). This function counts the number of pulses on the specified input within a specified
time interval, thereby providing the frequency of the signal. This frequency can be obtained by
dividing the number of pulses by the interval (freq in kHz = count/interval).

Note: The counter 4 output (P3 pin 32) must be externally connected to the counter 5 gate (P3 pin 12).
This function will reconfigure counters 4 and 5.

Programmer’'s Manual

5-33

Dag* Command Reference (Standard API) Chapter 5

daqCtrRdNBack
DLL Function daqCtrRdNBack(uint *ctrl1Buf, uint *ctr2Buf, uint *ctr3Buf, uint *ctr4Buf, uint
*ctr5Buf, uint count, uchar cycle);
C daqCtrRdNBack(int *ctrlBuf, int *ctr2Buf, int *ctr3Buf, int *ctr4Buf, int
*ctr5Buf, int count, int cycle)
QuickBASIC QBdagCtrRdNBack%(ctriBuf%(), ctr2Buf%(), ctr3Buf®(), ctr4Buf®u(), ctr5Buf®(),
count%, startlP0%, cycle%)
Turbo Pascal daqCtrRdNBack(ctrlBuf:DataP; ctr2Buf:DataP; ctr3Buf:DataP; ctr4Buf:DataP;
ctr5Buf:DataP;count:word; cycle:byte):integer;
Parameters
uint *ctriBuf An array to hold count values from counter 1 or 0 if counter 1 is not to be read
Valid values: 0 - 65535
uint* ctr2Buf An array to hold count values from counter 2 or 0 if counter 2 is not to be read
Valid values: 0 - 65535
uint*ctr3Buf An array to hold count values from counter 3 or 0 if counter 3 is not to be read
Valid values: 0 - 65535
uint *ctr4Buf An array to hold count values from counter 4 or 0 if counter 4 is not to be read
Valid values: 0 - 65535
uint *ctr5Buf An array to hold count values from counter 5 or 0 if counter 5 is not to be read
Valid values: 0 - 65535
uint count The number of scans to be taken
Valid values: 1 - 32767
uchar cycle A flag that if non-zero will enable continuous operation, or if 0 will disable it
Returns DerrMultBackXfer - Background task already started
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrStopBack, daqCtrGetBackStat
Program References | None
Used With Only applies to DagBook/100/200 and DagBoard/100A/200A

daqgCtrRdNBack reads the values of the specified countersin the background using interrupts. An
interrupt will occur on the rising edge of the interrupt input (P3 pin 1) if the interrupt enable line (P3
pin 2) is pulled low. When an interrupt occurs, the save command (see daqCtrMul tCtrl) will be
sent to the selected counters and the hold register of the selected counters will be read (see
daqgCtrGetHold) and placed into the user’ s buffer. This function will return control back to the
user’s program after initiating the background process. The user can then monitor the status of the
background transfer with the daqCtrGetBackStat function or stop the transfer with the
dagCtrBackStop function. The user can perform other tasks in the foreground.

If the cycle flag is true, the background transfer will run continuously looping back to the beginning of
the user’s buffers after count readings have been read. This allows the user to read large amounts of
data without calling daqCtrRdNBack multiple times. This background transfer can run indefinitely
as long as the user monitors the status of the counter buffers and processes the data before it gets
overwritten. In this mode, the user should get the total number of readings written into the buffer using
dagCtrGetBackStat and keep track of the total number of scans processed in avariable. The
difference between these two totals is the number of unprocessed valid readings the user can process.

5-34 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqCtrRdNFore

DLL Function

daqCtrRdNFore(uint *ctrl1Buf, uint *ctr2Buf, uint *ctr3Buf, uint *ctr4Buf, uint
*ctr5Buf, uint count);

C daqCtrRdNFore(int *ctrlBuf, int *ctr2Buf, int *ctr3Buf, int *ctr4Buf, int
*ctr5Buf, int count)
QuickBASIC QBdaqCtrRdNFore%(ctriBuf%(), ctr2Buf%(), ctr3Buf%(), ctr4Buf%(), ctr5Buf%(),

count%, startlP0%)

Turbo Pascal

daqCtrRdNFore(ctrlBuf:DataP; ctr2Buf:DataP; ctr3Buf:DataP; ctr4Buf:DataP;
ctr5Buf:DataP; count:word):integer;

Parameters

uint ctriBuf[]

An array to hold count values from counter 1 or 0 if counter 1 is not to be read
Valid values: 0 - 65535

uint ctr2Buf

An array to hold count values from counter 2 or 0 if counter 2 is not to be read
Valid values: 0 - 65535

uint ctr3Buf[]

An array to hold count values from counter 3 or 0 if counter 3 is not to be read
Valid values: 0 - 65535

uint ctr4Buf[]

An array to hold count values from counter 4 or 0 if counter 4 is not to be read
Valid values: 0 - 65535

uint ctr5Buf

An array to hold count values from counter 5 or 0 if counter 5 is not to be read
Valid values: 0 - 65535

uint count

The number of scans to be taken
Valid values: 0 - 32767

Returns DerrMultBackXfer - Background task already started

DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also

Program References

None

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

daqgCtrRdNFore operatesidentically to dagCtrRdNBack (using interrupts to acquire data) except
that it will not return control to the user’s program until all the counter readings are acquired.

dagCtrSetAlarm

DLL Function

dagCtrSetAlarm(uchar alarmNum, uint alarmval)

C dagCtrSetAlarm(uchar alarmNum, uint alarmval)
QuickBASIC QBdaqgCtrSetAlarm(alarmNumt%, alarmVal%)

Turbo Pascal dagCtrSetAlarm(alarmNum:byte; alarmVal:word):integer;
Parameters

uchar alarmNum

The alarm register number
Valid values: 1 - 2

uint alarmval

The value to write to the selected alarm register
Valid values: 0 - 65535

Returns DerrInvCtrNum - Invalid counter number

DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrSetMasterMode
Program References | None

Used With

Only applies to DaqBook/100/200 and DaqBoard/100A/200A

dagCtrSetAlarm setsthe specified alarm register. This alarm register can be used with the
comparators described in daqCtrSetMasterMode. The alarm register isonly used if the
corresponding comparator has been enabled using the daqCtrSetMasterMode function.

Programmer’'s Manual 5-35

Dag* Command Reference (Standard API)

Chapter 5

dagCtrSetCtrMode

DLL Function

daqCtrSetCtrMode(uchar ctrNum, uchar gateCtrl, uchar cntEdge, uchar cntSource,
uchar specGate, uchar reload, uchar cntRepeat, uchar cntType, uchar cntDir,
uchar outputCtrl);

C daqCtrSetCtrMode(int CtrNum, int gateCtrl, int cntEdge, int cntSource, int
specGate, int reload, int cntRepeat, int cntType, int cntDir, int outputCtrl)
QuickBASIC QBdagCtrSetCtrMode%(ctrNum®%, gateCtrl%, cntEdge%, cntSource%, specGate%,

reload%, cntRepeat%, cntType%, cntDir%, outputCtrl%)

Turbo Pascal

daqCtrSetCtrMode(ctrNum:byte; gateCtrl:byte; cntEdge:byte; cntSource:byte;
specGate: byte;reload:byte;cntRepeat:byte; cntType:byte; cntDir:byte;
outputCtrl:byte):integer;

Parameters

uchar ctrNum The counter number; Valid values: 1 - 5

uchar gateCtrl The gating control mode (see below)

uchar cntEdge A flag that if non-zero will select a positive count edge, or if O will select a negative count edge
uchar cntSource The count source (see below)

uchar specGate A flag that if non-zero will enable the special gate, or if O will disable it

unchar reload

A flag that if non-zero will select reload from load or hold, or if 0 will select reload from load

uchar cntRepeat

A flag that if non-zero will select count repetitively, or if O will select count once

uchar cntType

A flag that if non-zero will select a BCD count, or if O will select a binary count

uchar cntDir

A flag that if non-zero will select count up, or if 0 will select count down

uchar outputCtrl

The output control mode (see below)

Gating Control Definitions:

Definition Value Description

DgcNoGating 00h Gating Disabled

DgcHighTCNM1 20h Active level high of TC-toggled output of previous (N-1) counter

DgcHighLevelGateNP1 | 40h Active level high of gate of next (N+1) counter

DgcHighLevelGateNM1 | 60h Active level high of gate of next (N-1) counter

DgcHighLevelGateN 80h Active level high of gate of selected (N) counter

DgcLowLevelGateN AOh Active level low of gate of selected (N) counter

DgcHighEdgeGateN COh Active rising edge of gate of selected (N) counter

DgcLowEdgeGateN EOh Active falling edge of gate of selected (N) counter

Count Source Definitions:

DcsSTCNM 00h TC toggled output of previous (N-1) counter

DcsSrcl 01h Counter 1 input (pin 36 of P3)

DcsSrc2 02h Counter 2 input (pin 19 of P3)

DcsSrc3 03h Counter 3 input (pin 17 of P3)

DcsSrc4 04h Counter 4 input (pin 15 of P3)

DcsSrch 05h Counter 5 input (pin 13 of P3)

DcsGatel 06h Counter 1 gate (pin 37 of P3)

DcsGate2 07h Counter 2 gate (pin 18 of P3)

DcsGate3 08h Counter 3 gate (pin 16 of P3)

DcsGate4 09h Counter 4 gate (pin 14 of P3)

DcsGateb OAh Counter 5 gate (pin 12 of P3)

DcsF1 0Bh Onboard 1 MHz clock

DcsF2 0Ch Onboard 100 kHz clock

DcsF3 0Dh Onboard 10 kHz clock

DcsF4 OEh Onboard 1 kHz clock

DcsF5 OFh Onboard 100 Hz clock

Output Control Definitions:

DoclnactivelLow 00h Inactive - Always low

DocHighTermCntPulse | Olh High impulse on terminal count

DocTCToggled 02h Toggled on terminal count

DoclnactiveHighlmp 04h Inactive - High impedance

DocLowTermCntPulse 05h Low pulse on terminal count

Returns DerrInvCtrNum - Invalid channe
DerrinvGateCtrl - Invalid gate
DerrlInvCntSource - Invalid source
DerrInvOutputCntrl - Invalid output
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also daqCtrSetLoad, dagCtrSetHold, daqCtrGetHold, daqCtrMultCtrl

Program References | CTR1 (C Only)

Used With Only applies to DagBook/100/200 and DagBoard/100A/200A

5-36

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqgCtrSetCtrMode isused to set the 9513's mode register for a specified counter. Setting this
register defines how the specific counter works, including awide variety of square wave and pulse
generation and event counting. Thisfunction is usually followed by the daqCtrSetLoad or the
daqgCtrSetHold to set theinitia counter values. Finaly thedaqCtrMultCtrl functionis called
to load an arm multiple countersto start. The daqCtrMultCtrl can aso be used when counting
events.

The gate control parameter (gateCtr1) controls how the counter will use its gate input (P3 pins 37,
18, 16, 14 and 12) or another counter’s gate input. |If the gate is disabled using the DgcNoGating
definition, it will be ignored and the counter will run aslong asit isarmed. If alevel gate control is
selected (using the DgcHighLevelGateNPl, DgcHighLevelGateNMI, or
DgcHighLevelGateN definitions), the counter will operate only while counter is armed and the
selected high or low level is applied to the gate. If an edge-sensitive gate control is selected using the
DgcHighEdgeGate or DgcHighEdgeGateN definitions, the counter will operate after arising or
falling edge is detected on the gate input. Most gate control modes select the selected gate (N), but the
gate inputs of the previous (N-1) and next (N+1) counters can be used. For example, counter 3 could
use the gate input of counter 2 by selecting gate N-1 or counter 4 by selecting gate N+1. (Counter 1
and counter 5 are considered adjacent when selecting gate input N+1 or N-1.) The final gate control
mode allows the TC-toggled output (see the output control description) of the previous counter (N-1) to
be the gate. The selected counter will operate only when the previous counter’s TC-toggled output is
high.

Count Edge (cntEdge) selects whether the counter will count when it receives arising or falling edge
on its count source (see the count source description).

Count Source (cntSource) selects the source used as input to the specified counter. The Count Edge
selects whether the rising or falling edge of this source is counted. Count Source can be any one of the
counter inputs, Src1 to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the counter gates, Gatel to
Gate5 (P3 pins 37, 18, 17, 16 or 14), an internal frequency, F1 to F5, or the TC-toggled output (see
the output control description) of the previous counter (N-1). Theinternal frequencies are divide-by-10
divisions of the onboard oscillator which is by default 1 MHz, but can be jumpered to 10 MHz. The
sources F1 through F5 correspond to the frequencies 1 MHz, 100 kHz, 10 kHz, 1 kHz and 100 Hz. The
TC-toggled output of the previous counter can be used as a source allowing counters to be cascaded
without external connections.

Count Direction (cntDir) selects whether the counter will count up or down. The counter is normally
configured for down counting when generating a pulse or square wave. The load register would be set
to a positive value which will decrement to zero, defining the duration or width of the waveform. In
event counting, the counter would initially be set to zero and configured to count up. The hold register
in this case would then contain the number of events received.

Count Type (cntType) selects binary or BCD counting. Binary format accepts a 16-bit number
ranging from 0 - 65,535. BCD (binary coded decimal) accepts four 8-bit numbers representing 0-10,
back in 16-bits, ranging from 0-9999.

Output Control (outputCtrl) controlsthe state of the counter output (P3 pins 35, 34, 33, 32, 31).
There are 2 inactive and 3 active output modes. If the output isinactive, it can either be driven low or
it can be high impedance. The active modes are al associated with the terminal count (TC) which is
the moment in time when the counter reaches 0. This can happen by counting up past 65535 in binary
count mode or 9999 in BCD count mode, or counting down past 1. The output can be driven high
during the TC and low otherwise, low during the TC and high otherwise, or toggle the output every
timeaTC occurs. The TC-toggled mode is used to generate variable duty-cycle sguare waves.

The Count Repeat (cntRepeat), Reload (reload) and Special Gate (specGate) parameters have
complex relationships that define the operation of the counter. The count repeat flag enables/disables
rearming the counter after TC occurs. Applications such as software-retriggerable 1-shots would
disable the repeat flag so the 1-shot occurs only after the counter arm command is sent. Other
applications such as rate generators, square waves and hardware-retriggerable 1-shots, would enable
the count repeat so the counter runs until disarmed.

Programmer’'s Manual 5-37

Dag* Command Reference (Standard API)

Chapter 5

The Reload flag programs the counter to use the count value in the load and/or hold registers for
counting. If thereload flag is disabled, the counter will use the contents of the load register only for
counting. Enabling the reload flag will alow the counter to use the contents of either or both registers
depending on the special gate flag. If the reload flag is enabled and the special gate is disabled, the
counter will alternate between registers. This alows a variable duty-cycle output waveform depending
on the relative values of the hold and load registers. If the reload flag is enabled and the special gateis

enabled, the operation will depend on the gate control parameter. In this situation, an active gate
control will allow hardware retriggering on the active-going edge, and an inactive gate control will
configure the counter to use the hold register for counting if the counters gate is high, or the load
register if the gateislow. Refer to the Am95134/AM9513 Technical Manual for further reference.

The table summarizes the operating modes of the counter/timer.

Counter Mode Operating Summary

Counter Mode

H

K

Special Gate (CM7)

Reload Source (CM6)

Repetition (CM5)

Gate Control (CM15-
CM-13); N=no gating;
L=level; E=edge

zlololo|»

rlolo|lo|m

m|olo|lo|la

z|~|olo|lo

riFlojlom

m|~|olo|m

z|o|r|ole

o~ |o

m|o|r|o|—

=] =

r|r~|o

m|~|~|o|rm

z|o|o|+|=

r|lo|lo|r|=z

m|o|o|~|o

e Ll (=] Ll]

r|~|ol~|o

ml~|o|~]|m

Zlo|r|~|n
[l (=1 L L
m|o|r||ec
Zlr|r|r(<
L Ll Ll L

ml|—|—]X

Count to TC once, then
disarm

Count to TC twice, then
disarm

Count to TC repeatedly
without disarming

Gate input does not gate
counter input

Count only during active
gate level

Start count on active
gate edge and stop
count on next TC

Start count on active
gate edge and stop
count on second TC

No hardware retriggering

Reload counter from
Load Register on TC

Reload counter on each
TC, alternating reload
source between Load
and Hold Registers

Transfer Load Register
into counter on each
TC that gate is LOW,
transfer Hold Register
into counter on each
TC that gate is HIGH

On active gate edge
transfer counter into
Hold Register and
then reload counter
from Load Register

On active gate edge
transfer counter into
Hold Register, but
counting continues

5-38

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqCtrSetHold

DLL Function

daqCtrSetHold(uchar ctrNum, uint ctrVval);

C daqCtrSetHold(uchar ctrNum, uint ctrVal)
QuickBASIC QBdagCtrSetHold%(ctrNum%, ctrVal%)

Turbo Pascal daqCtrSetHold(ctrNum:byte; ctrVal:word):integer;
Parameters

uchar ctrNum

The counter number
Valid values: 1-5

uint ctrVval

The value to write to the hold register of the selected counter
Valid values: 0 - 65535

Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagCtrSetMasterMode, daqCtrSetCtrMode

Program References

CTR1, CTR2, (All Languages)

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

daqgCtrSetHold outputs avalue to the hold register of the specified counter. The hold register can
be used to set the counter’ sinitial value using the daqCtrMultCtrl function. The
dagCtrSetMasterMode and dagCtrSetCtrMode functions describe various uses of the hold
register.

dagCtrSetLoad

DLL Function

dagqCtrSetLoad(uchar ctrNum, uint ctrVval);

C daqCtrSetLoad(int ctrNum, uint ctrVval)

QuickBASIC QBdaqCtrSetLoad%(ctrNum®%, ctrVal%)

Turbo Pascal daqCtrSetLoad(ctrNum:byte; ctrVal:word):integer;
Parameters

uchar ctrNum

The counter number
Valid values: 1 -5

uint ctrVval

The value to write to the load register of the selected counter
Valid values: 0 - 65535

Returns DerrInvCtrNum - Invalid channel

DerrNotCapable - No 9513 available

DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrSetMasterMode, dagCtrSetCtrMode

Program References

CTR1, CTR2, (All Languages)

Used With

Only applies to DaqBook/100/200 and DaqBoard/100A/200A

dagCtrSetLoad outputs avalueto the load register of the specified counter. The load register can
be used to set the counter’ sinitial value using the daqCtrMultCtrl function. The
dagCtrSetMasterMode and dagCtrSetCtrMode functions describe various uses of the load
register.

Programmer’'s Manual

5-39

Dag* Command Reference (Standard API)

Chapter 5

dagCtrSetMasterMode

DLL Function

daqCtrSetMasterMode(uchar foutDiv, uchar cntSource, uchar compl, uchar comp2,
uchar tod);

C

daqCtrSetMasterMode(int foutDiv, int foutSource, int compl, int comp2, int tod)

QuickBASIC

QBdagCtrSetMasterMode®%(foutDiv%, foutSource%, compl %, comp2%, tod%)

Turbo Pascal

daqCtrSetMasterMode(foutDiv:byte; cntSource: byte; compl:byte; comp2:byte;
tod:byte):integer;

Parameters

uchar foutDiv

The fout divider. A divider of O selects divide by 16
Valid values: 1-16

uchar cntSource

The fout source (see below)

uchar compl

A flag that if non-zero will enable the compare 1 operation, or if O will disable it

uchar comp2

A flag that if non-zero will enable the compare 2 operation, or if 0 will disable it

uchar tod The time of day mode (see below)

Count Source Definitions:

Description Value Description

DcsFOut Disabled | O0Oh Fout set low

DcsSrcl 01lh Counter 1 input (pin 36 of P3)

DcsSrc2 02h Counter 2 input (pin 19 of P3)

DcsSrc3 03h Counter 3 input (pin 17 of P3)

DcsSrc4 04h Counter 4 input (pin 15 of P3)

DcsSrch 05h Counter 5 input (pin 13 of P3)

DcsGatel 06h Counter 1 gate (pin 37 of P3)

DcsGate2 07h Counter 2 gate (pin 18 of P3)

DcsGate3 08h Counter 3 gate (pin 16 of P3)

DcsGate4 09h Counter 4 gate (pin 14 of P3)

DcsGateb OAh Counter 5 gate (pin 12 of P3)

DcsF1 0Bh Onboard 1 MHz clock

DcsF2 0Ch Onboard 100 kHz clock

DcsF3 0Dh Onboard 10 kHz clock

DcsF4 OEh Onboard 1 kHz clock

DcsF5 OFh Onboard 100 Hz clock

Time-Of-Day Definitions:

Description Value

DtodDisabled 00h

DtodDivideBy5 01h

DtodDivideBy6 02h

DtodDivideBy10 03h

Returns DerriInvCntSource - Invalid source
DerrinvTod - Invalid time of day mode
DerrinvDir - Invalid divisor
DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagCntSetLoad, daqCntMultCtr, daqCntGetHold, dagCntSetCntMode

Program References

CTR1 (C Only)

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

dagCtrSetMasterMode isused to set the counter’s master mode register. Thisregister isused to
configure the fout pin (P3 pin 30), the comparators of counter 1 and 2 and the time-of-day operation of
the 9513 chip. The master mode parameters default to zero after daglnit.

The fout source selects what signal will be output on the fout pin. The fout source can be any one of
the counter inputs, Srcl to Src5 (P3 pins 36, 19, 17, 15 or 13), any one of the counter gates, Gatel
to Gateb (P3 pins 37, 18, 17, 16 or 14) or an internal frequency, F1 to F5, which areinternal 1 MHz,
100 kHz, 10 kHz, 1 kHz and 100 Hz frequencies. The fout divider will divide the selected source by 1
to 16 before outputting the signal on fout.

The 2 comparator flags control the comparators associated with counter 1 and 2. If acomparator is
enabled, the value in the corresponding alarm register, set with the daqCtrSetAlarm function, will
be compared with the value in the counter. The output of the corresponding counter will go true
when the value in the counter reaches the value in the alarm register and remain true until the counter
value changes. The polarity of the output depends on the output control, set with the
dagCtrSetCtrMode function, configuration of counter 1 or 2. When the output control is high,

5-40

Programmer’s Manual

Chapter 5 Dag* Command Reference (Standard API)

terminal count pulsed or terminal count toggled, then the output will be high while the comparator is
true. When the output control islow and terminal count pulsed, then the output will be low while the
comparator istrue.

The time-of-day parameter is used to enable or disable the time-of-day operation. The time-of-day
operation is a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour
time-of-day accumulations. The resolution of the time-of-day operation is 0.1 seconds. A 100 Hz, 60
Hz or 50 Hz signal must be applied to the input of counter 1 (P3 pin 36), while in the divide-by-10,
divide-by-6 and divide-by-5 time-of-day modes respectively. Thiswill produce the 10 Hz clock source
needed to drive the time-of-day clock. The hold registers of counters 1 and 2 will hold the 24-hour

time.

Counter 2

C15‘C14‘C13‘C12 C11 ‘010‘ C9 ‘ c8|Cc7 ‘CG ‘ C5 ‘ c4(cC3 ‘02 ‘ C1 ‘ Co
2) (3) P () 9) .

Hours Minutes

Counter 1

C15‘C14‘C13‘C12 C11 ‘010‘ C9 ‘ Cc8|C7 ‘CS ‘ C5 ‘ C4|C3 ‘CZ ‘ C1 ‘ Cco
(%) 9 < 9) .

Seconds 1/10 Sec. +5, 6, 10

Time-of-Day Configuration

The following steps must be performed to use the time-of-day operation:

1. Set the master mode register as described above.

2. For general-purpose time keeping, configure counter 1 using daqCtrSetCtrMode with the no
gating, count on rising edge, special gating disabled, reload from hold only, count repetitively,
BCD counting and count up. The count source can be any of the available sources. The output
control does not affect time-of-day operation.

3. Set the mode of counter 2 with the same settings as counter 1, except the count source should be
TC toggled of the previous (N-1) counter. Thisallowsinternal concatenation of counter 1 to
counter 2.

4. Set theload registers of counter 1 and 2 to zero using the daqCtrSetLoad function.

5. Initialize the current 24-hour time-of-day by setting the load registers of counters 1 and 2 using
the format shown in the figure above, again using daqCtrSetLoad.

6. Repeat step 4.

Programmer’'s Manual 5-41

Dag* Command Reference (Standard API) Chapter 5

dagCtrStopBack
DLL Function daqCtrStopBack(void);
(% daqCtrStopBack(void)
QuickBASIC QBdaqgCtrStopBack®%()
Turbo Pascal daqCtrStopBack: integer;
Parameters None
Returns DerrNotCapable - No 9513 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqCtrRdNBack, daqCtrGetBackStat
Program References | None
Used With Only applies to DagBook/100/200 and DagBoard/100A/200A

daqCtrStopBack stops a background operation initiated by the dagCtrRdNBack function.

dagDacWt
DLL Function dagDacWt(uchar chan, uint dataval);
C dagDacWt(int chan, int dataval)
QuickBASIC QBdagDacWt%(chan%, dataVal%)
Turbo Pascal dagDacWt(chan:byte; dataVval: word):integer;
Parameters
uchar chan The D/A channel to output to
Valid values: 0 - 1
uint dataval The value to output to the selected D/A channel
Valid values: 0 -4095
Returns DerriInvChan - Invalid channel
DerrinvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDacWtBoth, dagAdcSetTrig
Program References | DAC1 (All Languages)
Used With Does not apply to DagPCMCIA models.

dagDacWt outputs a voltage between 0 and 5 V to the specified 12-bit D/A channel. The voltage has
aresolution of approximately 1.22 mV (5 V/4095).

Note: dagAdcSetTrig will configure the D/A channel 1if an analog trigger is source selected for
the A/D converter.

5-42 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagDacWtBoth

DLL Function

dagDacWtBoth(uint chanOval, uint chanlval);

C dagDacWtBoth(uint chanOval, uint chanlval);

QuickBASIC QBdagDacWtBoth%(chanlVal%, chan2Val%) [note: actually DAC channels 0 and 1]
Turbo Pascal dagDacWtBoth(chanOVval :word; chanlVal:word):integer;

Parameters

uint chanoOval

The value to output to the D/A channel 0
Valid values: 0 -4095

uint chanlval

The value to output to the D/A channel 1
Valid values: 0 -4095

Returns DerrlinvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDacWt, dagAdcSetTrig

Program References

DAC1 (All Languages)

Used With

Does not apply to DagPCMCIA models.

dagDacWtBoth outputs voltages between 0 and 5 V to both 12-bit D/A channels. Each voltage has a
resolution of approximately 1.22 mV (5 V/4095).

Note: dagAdcSetTrig will configure the D/A channel 1if an analog trigger sourceis selected for
the A/D converter.

dagDacWtMany

DLL Function

dagDacWtMany(unsigned int startChan, unsigned int _far *dataVals, unsigned char
count);

C dagDacWtMany(unsigned int startChan, unsigned int _far *dataVals, unsigned char
count);
Quick BASIC QBdagDacWtMany%(startChan%, dataVals%(), count%)
Turbo Pascal dagDacWtMany(startChan:integer; dataVals:WordP; count:integer):integer;
Parameters
deviceTypes Specifies the DAC types
chans Specifies the DAC channels
datavals The value to output to the D/A channel
Valid values: 0 -4095
count
Returns DerrinvDacVal - Invalid data value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDacWt

Program References

DACEXL.C, DAQEX.FRM (VB)

Used With

DagBoard100A, DagBoard112A, DagBoard200A, DagBoard216A

dagDacWtMany outputs voltages between 0 and 5 V to al active 12-bit D/A channels. Each
voltage has a resolution of approximately 1.22 mV (5 V/4095).

Note: dagAdcSetTrig will configure the D/A channel 1 if an analog trigger source is selected
for the A/D converter.

Programmer’'s Manual

5-43

Dag* Command Reference (Standard API)

Chapter 5

dagDigConf

DLL Function dagDigConf(uchar chip, uchar config);

C dagDigConf(int port, int config)

QuickBASIC QBdagDigConf%(port%, configh)

Turbo Pascal dagDigConf(chip:byte; config:byte):integer;
Parameters

uchar chip

The chip to configure (see below)

uchar config

The configuration byte to write to the control register of the specified chip
Valid values: 0 - 255

Digital I/O Chip Definitions:

Description Value Address Select Jumper Location
DdcLocal 13h Local 8255
DdcExpO 63h Address Select Location A
DdcExpl 67h Address Select Location A
DdcExp2 6Bh Address Select Location B
DdcExp3 6Fh Address Select Location B
DdcExp4 73h Address Select Location C
DdcExp5 77h Address Select Location C
DdcExp6 7Bh Address Select Location D
DdcExp7 7Fh Address Select Location D
Returns DerrlInvChip - Invalid chip
DerrNotCapable -No 8255 available
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also daqDigWtByte, dagDigRdByte, dagDigWtBit, dagDigRdBit

Program References

DIG1 (All Languages)

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

dagDigConT configures the operation of the 3 8-hit ports of the selected 8255 digital 1/0 chip. This
chip can be local or on a DBK20/21 digital 1/0 expansion card. dagDigCon¥ configures ports A and
B asinputs or outputs and port C for simple input/output or more complicated handshaking.
dagDigGetConT can be used to generate a configuration byte for the basic input/output mode. This
byte can then be passed to the dagDigConT function. In the basic input/output mode, port A and
port B can be independently configured for input or output. Port C isdivided into 2 4-bit nibbles that
can be independently configured for input or output.

Note: For information on the strobed input/output and bi-directional bus modes of the 8255, reference
the 8255 technical reference manual from Intel.

5-44

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagDigGetConf

DLL Function

dagDigGetConf(uchar portA, uchar
uchar *config)

portB, uchar portCHigh, uchar portCLow,

C dagDigGetConf(uchar portA, uchar portB, uchar portCHigh, uchar portClow, uchar
*config)
QuickBASIC QBdagDigGetConfh(portA%, portB% , portCHigh%, portClow%, config%)

Turbo Pascal

dagDigGetConf(portA:byte; portB:byte; portCHigh:byte; portCLow:byte;
config:DataP) :integer;

Parameters

uchar portA

A flag that if non-zero will configure port A as input, otherwise will configure port A as output.

uchar portB

A flag that if non-zero will configure port B as input, otherwise will configure port B as output.

uchar portCHigh

A flag that if non-zero will configure the most significant 4 bits of port C as input, otherwise will configure
them as output.

uchar portCLow

A flag that if non-zero will configure the least significant 4 bits of port C as input, otherwise will configure
them as output.

uchar *config

A variable that will be returned with the configuration byte

Returns

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagDigConf

Program References

DIG1

Used With

Only applies to DagBook/100/200 and DagBoard/100A/200A

dagDigGetConT isused to generate a configuration byte that can be passed to the dagDigCon¥
function to set the operation of the 3 8-hit ports of an 8255 chip. This byteis derived from 4 flags that
configure port A, port B, the most significant 4-bits of port C and the |east significant 4-bit of port C.
Each of these ports can be independently selected as input or output.

dagDigRdBi1t

DLL Function

dagDigRdBit(uchar port, uchar bitNum, uchar *bitval);

C dagDigRdBit(int port, int bitNum, int *bitval)

QuickBASIC QBdagDigRdBit% (port%, bitNum®b, bitVal%)

Turbo Pascal dagDigRdBit(port:byte; bitNum:byte; bitVal:ByteP) :integer;
Parameters

uchar port The digital I/O port to read from

uchar bitNum

The bit number of the specified digital /O port to read
Valid values:

0 -7 For 8-bit ports

0 -3 For 4-bit ports

uchar *bitval

A variable to hold the value of the specified bit (non-zero if asserted, 0 if unasserted)

Returns

DerrInvBitNum - Invalid bit number
DerrinvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagDigConf, dagDigWtByte, dagDigRdByte, dagDigWtBit

Program References

DIG1 (All Languages)

Used With

dagDigRdBi t reads the state of asingle bit on adigital 1/0 port. The port read from can be the local
8255 chip, an 8255 chip on aDBK20 or DBK 21 digital expansion board, or the P1 digital 1/0 nibble.
When the port is on an 8255 chip, this function can read port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DagBook/112 can only read digital nibblein P1.

Programmer’'s Manual

5-45

Dag* Command Reference (Standard API) Chapter 5

dagDigRdByte
DLL Function dagDigRdByte(uchar port, uchar *byteval);
C dagDigRdByte(int port, int *byteval)
QuickBASIC QBdagDigRdByte%(port%,byteVal%)
Turbo Pascal dagDigRdByte(port:byte; byteVal:DataP):integer;
Parameters
uchar port The digital 1/0 port to read from
uchar *byteVal A variable to hold the value read from the specified port
Valid values:

0 -255 for 8-bit ports
0-15 for 4-bit ports

Returns DerrlInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDigConf, daqDigWtByte, dagDigWtBit, dagDigRdBit
Program References | DIG1 (All Languages)
Used With

dagDigRdByte reads an 8-bit byte or a 4-bit nibble from a digital 1/0 port. The port read from can
be the local 8255 chip, an 8255 chip on a DBK 20 digital expansion board, or the P1 digital I/O nibble.
When the port is on an 8255 chip, this function can read port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DagBook/112 can only read digital nibblein P1.

dagDigWtBit
DLL Function dagDigWtBit(uchar port, uchar bitNum, uchar bitVal);
C dagDigWtBit(int port, int BitNum, int bitval)
QuickBASIC QBdagDigwWtBith(port%, bit Num%, bitVal%)
Turbo Pascal dagDigWtBit(port:byte; bitNum:byte; bitval:byte) :integer;
Parameters
uchar The digital /O port to write to
uchar bitNum The bit number of the specified digital I/O port to assert/unassert
Valid values:

0 -7 For 8-bit ports
0 - 3 For 4-bit ports

uchar bitval A flag that if non-zero will assert the specified bit, if 0 the bit is unasserted
Returns DerrinvBitNum - Invalid bit number
DerrinvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDigConf, dagDigWtByte, dagDigRdByte, dagDigRdBit
Program References | DIG1 (All Languages)
Used With

dagDigWtBit setsor clearsasingle bit on adigital I/0 port. The port written to can be the local
8255 chip, an 8255 chip on aDBK?20 or DBK 21 digital expansion board, or the P1 digital 1/O nibble.
When the port is on an 8255 chip, this function can write to port A, port B, or port C or the most
significant or least significant 4-bit nibble of port C.

Note: The DagBook/112 can only read digital nibble in P1.

5-46 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard

API)

dagDigWtByte

DLL Function

dagDigWtByte(uchar port, uchar byteVal);

C dagDigWtByte(int port, int byteval)

QuickBASIC QBdagDigWtByte%(port%, byteVal%)

Turbo Pascal dagDigWtByte(port:byte; byteVal:byte):integer;
Parameters

uchar port

The digital /O port to write to

uchar byteVal

The value to write to the specified port
Valid values: 0 - 255 for 8-bit ports
0-15 for 4-bit ports

Returns DerrInvPort - Invalid port
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagDigConf, dagDigRdByte, dagDigWtBit, dagDigRdBit

Program References

DIG1 (All Languages)

Used With

dagDigWtByte writesto an 8-bit byte or a4-bit nibble from a digital 1/0 port. The port written to

can be the local 8255 chip, an 8255 chip on aDBK20 or DBK 21 digital expansion board, or the P1

digital 1/0 nibble. When the port is on an 8255 chip, this function can write to port A, port B, or port C
or the most significant or least significant 4-bit nibble of port C.

Note: The DagBook/112 can only read digital nibble in P1.

dagGetProtocol

DLL Function

daqGetProtocol (int *protocol)

[dagGetProtocol (int *protocol)
QuickBASIC QBdagGetProtocol (protocol%)

Turbo Pascal dagGetProtocol (protocol) :integer;
Parameters

protocol | A pointer to a value that will be set to the current protocol chosen from the protocol codes listed below.
Protocol Codes:

Name Description Value
DagProtocol8 8-hit 1/0 1
DagProtocol4 4-bit 1/0 2
DagProtocolFPort Far Point F/Port EPP Interface 10
DagProtocolSL 82360 SL EPP Interface 20
DagProtocol 1SA ISA Bus Interface (DagBoard Only) | 100
DagProtocolEPPBIOS | EPP BIOS (Draft Revision 3) 40
DagProtocolSMC666 Quatech SMC666 EPP Interface 30

Note: Additional EPP implementation codes may be described in the README file

Returns

An error number, or 0 is no error (also, refer to AP/ Error Codes on page 5-68)

See Also

daqlnit, dagSetProtocol

Program References

None

Used With

dagGetProtocol returnsthe current parallel port communications protocol. daglnit initially

sets the protocol to either DagProtocol8 or DagProtocol4, indicating either 8-bit or 4-bit
standard parallel port protocol. dagSetProtocol may be used to specify other protocols.

Programmer’'s Manual

5-47

Dag* Command Reference (Standard API)

Chapter 5

daglnit

DLL Function dagInit(uint IptPort, uchar Iptintr);
C dagInit(uint IptPort, uchar intr)
QuickBASIC QBdagInith(IptPort%, intr%)

Turbo Pascal

dagInit(IptPort:integer; Iptintr:byte):integer;

DagBook Parameters

uint IptPort

The LPT port number (see below)

uchar Iptintr

The interrupt level

DagBook LPT Ports:

Description Value
LPT1 00h
LPT2 01h
LPT3 02h
LPT4 03h

DagBoard Parameters

uint IptPort

The ISA bus address (see below)

uchar Iptintr

The lower nibble (4 least significant bits) contains the interrupt level (10-15). The upper nibble (4 most
significant bits) contains the DMA channel (see below for defined constants) Adding the interrupt level
to the DMA constant will pack these two parameters into one byte. (See sample code.)

DaqgBoard Ports: DagBoard DMA Channels:
Description Value Description Value
PORT_0300 300h DMANone 00h
PORT_0304 304h DMA5S 50h
.- .. DMAB 60h
PORT_031F 31Fh DMA7 70h

Daq PCMCIA Parameters

uint IptPort

The ISA bus address at which the card is configured (see below)

uchar Iptintr

The interrupt level at which the card is configured.

Daq PCMCIA Ports:

Description Value
PORT_0300 300h
PORT_0304 304h
PORT_031F 31Fh

Sample code
(DagBoard Only)

daqInit(PORT_0330, DMA5 + 10)

Returns

DerrNotOnLine - No communication with DagBook/DagBoard
DerrBadChannel - Invalid LPT channel or ISA bus address
DerrNoDagBook - No DagBook/DagBoard detected

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagSelectPort, daqClose

Program References

INIT, ADC1, ADC2, ADC3, ADC4, ADC5, CTR1, CTR2, DAC1, DAC2, DAC3, DIG1 (All Languages)

Used With

daglnitisused to perform multiple functions: initialize subroutine library variables, establish
communications with a Dag*, reset the Dag* hardware to power-on conditions, and select the current

Dag*.

daglnit can becalled to reinitialize the Dag* only after the daqClose command is called to

terminate communications.

daql nit will perform the following tasks:

Note:

Stop any current acquisition

Set the scan group to channel 1 with again of x1

Set the pacer clock to 100 kHz

Enable tagging of A/D data

Set the D/A converter to 0 V (Note: does not apply to Dag PCMCIA)
Configure al digital 1/0 asinputs

Reset the counter/timers

daqglnit must be called before any other dag* function.

5-48

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagLinearConvert

DLL Function

dagLinearConvert(unsigned *counts, unsigned scans, float fValues, unsigned nValues)

Cc

dagLinearConvert(unsigned _far *counts,
unsigned scans, float _far *fValues, unsigned nValues);

QuickBASIC QBdagLinearConvert%(counts®%(), scans%, fValues!(), nValues%)
Turbo Pascal dagLinearConvert(counts:WordP; scans:word; fValues:SingleP; nValues:word) : integer;
Parameters
*counts The acquired ADC readings to be converted.
scans The number of scans to be converted.
*fValues An array to hold the converted readings.
nValues The size of the reading array.
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
Used With

dagL inearConvert converts the ADC readings into floating point numbers using the linear

relationship that was specified with dagL inearSetup. dagLinearConvert may beinvoked

repeatedly to perform multiple conversions, each using the same linear relationship.

dagLinearSetup
DLL Function dagLinearSetup(unsigned nscan,unsigned readingsPos,unsigned nReadings,float
ADmin, float ADmax, float signall, float voltagel, float signal2, float
voltage2, unsigned avg)
[dagLinearSetup(unsigned nscan,
unsigned readingsPos, unsigned nReadings, float ADmin, float ADmax,
float signall, float voltagel, float signal2, float voltage2, unsigned avg);

QuickBASIC QBdagLinearSetup%(nscan%, readingsPos%, nReadings%, ADmin!, ADmax!, signalll,

voltagel!, signal2!, voltage2!, avg%)

Turbo Pascal

dagLinearSetup(nscan:word; readingsPos:word; nReadings:word; ADmin:single;
ADmax:single;
signall:single; voltagel:single; signal2:single; voltage2:single; avg:word) :

integer;
Parameters
nscan The number of readings in a single scan (1 to 512).
readingsPos The position within the scan of the first reading to convert (0 to nscan - 1).
nReadings The number of consecutive ADC readings to convert (1 to nscan - readingPos)

ADmin, ADmax

The input voltages that correspond to the minimum and maximum possible A/D readings.

signall, signal2

The transducer input signals that produce voltagel and voltage?2.

voltagel, voltage2

The transducer output voltages for two different input signals.

avg

The type of averaging to use. 0 = block averaging, 1 = no averaging, 2 or greater = moving average.

“0” specifies block averaging in which all of the scans are averaged together to compute a single value for
each channel.

“1” specifies no averaging. Each scan’s readings are converted into measured signals.

“2" (or more) specifies moving average of the specified number of scans. Each scan’s readings are
averaged with the avg-1 preceding scans’ readings before conversion. The first scan is not averaged
because there is not enough data. For example, if avg is “3”, then the results from the first scan are not
averaged at all; the results from the second scan are averaged with the first scan; the results from the
third and subsequent scans are averaged with the preceding two scans as shown in the next table.

Returns

DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also

dagLinearConvert, dagLinearSetupConvert

Program References

Used With

dagLinearSetup savesthe data

required for daqL inearConvert to Rea'l(':izgs f"l’"‘ Results from Channel
perform conversions. Six parameters are Scan 0 anm: 0 1
used to specify alinear relationship: the 1 1A 2A 1A 2A
A/D input range (minimum and maximum 2 1B 2B (1A+1B)/2 (2A+2B)/2
values), and the transducer input signal i ig gg (ig"ig’fig)g (gg"gg’fgg)g
. f +1C+ +2C+
level and output voltage at 2 pointsin the : = o E1C+1D+1E;/3 E2C+2D+2E;/3
range. 6 1F 2F | (ID+1E+1F)/3 | (2D+2E+2F)/3

Programmer’'s Manual

5-49

Dag* Command Reference (Standard API) Chapter 5

dagLinearSetupConvert

DLL Function

dagLinearSetupConvert(unsigned nscan, unsigned readingsPos, unsigned nReadings,
float ADmin, float ADmax, float signall, float voltagel, float signal2, float
voltage2, unsigned avg, unsigned _far *counts, unsigned scans, float _far
*fValues, unsigned nValues)

C dagLinearSetupConvert(unsigned nscan,
unsigned readingsPos, unsigned nReadings, float ADmin, float ADmax,
float signall, float voltagel, float signal2, float voltage2, unsigned avg,
unsigned _far *counts, unsigned scans, float _far *fValues, unsigned nValues);
QuickBASIC QBdagLinearSetupConvert%(nscan%, readingsPos%, nReadings%, ADmin!, ADmax!,

signall!, voltagel!, signal2!, voltage2!, avg%, counts%(), scans%, fValues!(),
nValues%)

Turbo Pascal

dagLinearSetupConvert(nscan:word; readingsPos:word; nReadings:word; ADmin:single;
ADmax:single;
signall:single; voltagel:single; signal2:single; voltage2:single; avg:word;
counts:WordP; scans:word; fValues:SingleP; nvValues:word) : integer;

Parameters See daqLinearSetup and daqLinearConvert for a description of the parameters.
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
Used With

dagL inearSetupConvert combines the setup and conversion processes into one function.

dagReadCalFile

DLL Function

dagReadCalFile(char *calfile);

C dagReadCalFile(char *calfile)
QuickBASIC QBdagReadCalFile%(calfile%)
Turbo Pascal dagReadCalFile(calfile):integer;
Parameters

char *calfile

The file name with optional path information of the calibration file. If calfile is NULL or empty (*"), the
default calibration file DAQBOOK.CAL will be read.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
DerrinvCalfile - Error occurred while opening or reading calibration file
See Also daqCalSetup, daqCalConvert, daqCalSetupConvert

Program References

None

Used With

dagReadCalFi le istheinitialization function for reading in the calibration constants from the
calibration text file.

This function (usually called once at the beginning of a program) will read all the calibration constants
from the specified file. If calibration constants for a specific channel number and gain setting are not
contained in thefile, ideal calibration constants will be used (essentially performing no calibration for
that channel). If an error occurs while trying to open the calibration file, ideal calibration constants will
be used for al channels and dagReadCalFi le will return a non-zero error code.

5-50

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagRTDConvert

DLL Function

dagRtdConvert (uint *counts, uint scans ,int *temp, uint ntemp);

Cc

dagRtdConvert(unsigned _far *counts, unsigned scans, int _far *temp, unsigned
ntemp) ;

QuickBASIC QBdagRtdConvert% (counts®%(), scans%, temp%(), ntemp%)
Turbo Pascal dagRtdConvert(var counts; scans:word; var temp; ntemp:word) : integer;
Parameters

uint *counts

Raw A/D data from one or more scans

uint scans

Number of scans of raw data in counts

int * temp

Variable array to hold converted temperatures

uint ntemp Size of temperature array (should be number of RTDs specified in setup times the number of scans)
Returns DerrRtdNoSetup - Setup was not called
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
DerrRtdTArraySize - Temperature array is not large enough
See Also DagRtdSetup, DagRtdSetupConvert

Program References

None

Used With

daqRTDConvert takesraw A/D readings from RTDs and converts them to temperature readings in
tenths of degrees Celsius. Note: Total number of conversions (scan* (RTD chans per scan) * 4) must
be less than 32K.

The Dag* measures temperatures sensed by RTDs attached viaa DBK9 RTD expansion card. Upto 8
RTDs can attach to each DBK9. Up to 32 DBK9s may be attached to a single Dag* for a maximum of
256 temperatures. The software currently supports 100-, 500-, and 1000-ohm RTDs.

The RTD measurement functions are designed for simple temperature measurement in which each RTD
channel isread 4 times. These 4 readings must be grouped together in the scan and in order:
Dbk9VoltageA (gain=0), Dbk9VoltageB (gain=1), Dbk9VoltageD (gain=3), Dbk9VoltageD
(gain=3). The RTDs must be of the same type, and the reading groups must follow each other in the
scan sequence.

The temperature conversion functions use input data from one or more Dag* scans. They take 4
voltage readings for each RTD channel, apply the appropriate averaging method, convert the voltages
to aresistance and then, using the appropriate curves for the RTD type, convert the resistance into a
temperature. For example, assume the following readings:

Readings Channel 0 Readings Channel 1
Scan 0 1 2 3 4 5 6 7

1 ChoVva [chovb [chovd [chovd [Chiva [ChiVvb [Chivd | Cchivd

2 Chova [chovb [chovd [chovd [Chiva [Chivb [Chivd | Cchivd

3 Chova [chovb [chovd [chovd [Chiva [ChiVvb [Chivd | Cchivd

4 Chova [chovb [chovd [chovd [Chiva [ChiVvb [Chivd | Cchivd

5 ChoVva [chovb [chovd [chovd [Chiva [ChiVvb [Chivd | Cchivd
The 4 readings for each channel are grouped together in order. If Temperatures
this scan data is passed to dagRtdConvert (through the counts Scan 0 1
parameter) with averaging disabled (avg parameter set to 1), the 1 Ch0°C | Ch1°C
function will return the temp parameters shown in the table. Note: 2 ch0®C | Ch1°*C
Temperatures returned will be in tenths of a degree Celsius. 3 Cho°Cc | chl°C

4 Ccho°C [ch1°C

If the scan datais passed to dagRtdConvert (in the counts 5 Ch0°C | Ch1°C
parameter) with averaging set to block
averaging (avg parameter set to 0) the Temperatureso .
function will return the temp parameters Average of all Temperatres | Gh0°C TR

shown in the table.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement; and Conversion changes raw readings into temperatures. For convenience,
both setup and conversion can be performed at once by dagRtdSetupConvert. All of the
functions return error codes which are defined in DagBook.h.

Programmer’'s Manual

5-51

Dag* Command Reference (Standard API) Chapter 5

dagRtdSetup

DLL Function dagRtdSetup(unsigned nScan, unsigned startPosition, unsigned nRtd, unsigned
rtdvalue, unsigned avg)
C dagRtdSetup(unsigned nScan, unsigned startPosition, unsigned nRtd, unsigned
rtdvalue, unsigned avg);
QuickBASIC QBdagRtdSetup% (nscan%, startPosition%, nRtd%, rtdvValue%, avg%)
Turbo Pascal dagRtdSetup(nScan, startPosition, nRtd, rtdvValue, avg:word) : integer;
Parameters
uint nReadings The total number of readings in a scan.
valid range 1-512
uint Position of the first RTD reading group in the scan.
startPosition Valid range 1-509
int nRtd Number of RTD reading groups in the scan.
Valid range 1- 128
uint rtdvalue Value of RTD being used.

Dbk9RtdTypel00- 100 ohm RTD
Dbk9RtdType500- 500 ohm RTD
Dbk9RtdTypelK- 1000 ohm RTD

uint avg Type of averaging to be used.

0 = block averaging

1 = no averaging

2to (number of scans -1) = moving average

Returns DerrRtdParam - Setup parameter out of range
DerrRtdValue - Invalid RTD type
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also
Program References | None
Used With

dagRtdSetup sets up parameters for subsequent RTD temperature conversions. Refer to discussion
of dagRTDConvert.

5-52 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagRtdSetupConvert

DLL Function

dagRtdSetupConvert(unsigned nScan, unsigned startPositionunsigned nRtdunsigned
rtdvalue, unsigned avg, unsigned _far *counts, unsigned scans, int _far *temp,
unsigned ntemp)

C dagRtdSetupConvert(unsigned nScan, unsigned startPosition, unsigned nRtd,
unsigned rtdValue, unsigned avg, unsigned _far *counts, unsigned scans, int
_far *temp, unsigned ntemp);

QuickBASIC QBdagRtdSetupConvert% (nscan%, startPosition%, nRtd%, rtdvValue%, avg%,

counts%(), scans%, temp%(), ntemp%)

Turbo Pascal

dagRtdSetupConvert(nScan, startPosition, nRtd, rtdvalue, avg:word var counts;
scans:word; var temp; ntemp:word) : integer;

Parameters

uint nReadings

The total number of readings in a scan.
valid range 1-512

uint Position of the first RTD reading group in the scan.
startPosition Valid range 1-509
uint nRtd Number of RTD reading groups in the scan.

Valid range 1-128

uint rtdvalue

Value of RTD being used.

Dbk9RtdTypel00- 100 ohm RTD
Dbk9RtdType500- 500 ohm RTD
Dbk9RtdTypelK- 1000 ohm RTD

uint avg

Type of averaging to be used

0 = block averaging

1 = no averaging

2 to (number of scans -1) = moving average

uint *counts

Raw A/D data readings from one or more scans.

uint scans

Number of scans of raw data in contained in *counts.

int *temp

Array to hold converted temperatures.

uint nTemp

Size of temperature array. Should be the number of RTDs times the number of scans for no averaging and
moving averages or the number of RTDs for block averaging.

Returns DerrRtdParam - Setup parameter out of range

DerrRtdValue - Invalid RTD type

DerrRtdTArraySize - temperature storage array not large enough

DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also
Program References | None

Used With

dagRtdSetupConvert sets up and convertsraw A/D readings from RTDs into temperature
readings. Refer to discussion of dagRTDConvert.

Programmer’'s Manual

5-53

Dag* Command Reference (Standard API)

Chapter 5

daqgSelectPort

DLL Function dagSelectPort(uint IptPort);

C dagSelectPort(uint IptPort)

QuickBASIC QBdaqgSelectPorth(IptPort%)

Turbo Pascal dagSelectPort(lIptPort:integer) :integer;

Parameters

uint IptPort | The LPT port number or ISA bus address (see below)

DagBook LPT Ports:

Description Value

LPT1 00h

LPT2 01h

LPT3 02h

LPT4 03h

DaqgBoard Ports:

Description Value

PORT_0300 300h

PORT_0304 304h

PORT_031F 31Fh

Returns DerrNotOnLine - No communications with DagBook/DagBoard
DerrBadChannel - Invalid LPT channel
DerrNoDagBook - No DagBook/DagBoard detected
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also daglnit

Program References | None

Used With

dagSelectPort sdectsan initiaized Dag*. This function causes any subsequent function calls to
be performed on this Dag*. Because daglInit initializesthen selectsaDag*, dagSelectPort is
only needed when using multiple Dag*s.

Note: daqg I nit must be called with the corresponding LPT port before daqSe lectPort can select

It.

5-54

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagSetErrHandler
DLL Function dagSetErrHandler(dagErrorHandlerFPT dagErrorHandler);
C dagSetErrHandler(dagErrorHandlerFPT dagErrorHandler);
QuickBASIC QBdagSetErrHandler%(errHandler%)
Turbo Pascal dagSetErrHandler(dagErrorHandler:ErrorFuncT):integer;
Parameters
dagErrorHandlerFPT | The routine to call when an error occurs, or null (0) to have nothing called when an error occurs.
daqErrorHandler
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also
Program References | All
Used With

dagSetErrHandler specifiesthe routine to call when an error occurs in any command. The default
routine displays a message, then terminates the program. If thisis not desirable, use this command to
specify your own routine to be called when errors occur. 1f you want no action to occur when a
command error is detected, use this command with anull (0) parameter.

The default error routineis dagDefaul tHandler. Usethat asthe command parameter to restore
default error processing. This command may be called at any time, even beforedaglnit.

Programmer’'s Manual

5-55

Dag* Command Reference (Standard API) Chapter 5

dagSetProtocol

DLL Function

dagSetProtocol(int protocol)

C

dagSetProtocol (int protocol)

QuickBASIC QBdaqgSetProtocol (protocol%)

Turbo Pascal dagSetProtocol (protocol):integer;
Parameter

protocol | One of the predefined protocol codes listed below.
Protocol Codes

Name Description Value
DagProtocol8 8-bit I/0 1
DagProtocol4 4-bit I/O 2
DagProtocolFPort Far Point F/Port EPP Interface 10
DagProtocolSL 82360 SL EPP Interface 20
DaqgProtocol 1SA ISA Bus Interface (DagBoard Only) 100
DagProtocolEPPBIOS | EPP BIOS (Draft Revision 3) 40
DagProtocol SMC666 Quatech SMC666 EPP Interface 30

Additional protocol codes may be described in the README file.

Returns

An error number, or 0 if no error (also, refer to API Error Codes on page 5-68)

Related Functions | daglnit, daqGetProtocol

Used With

Only applies to DagBook; does not apply to DagBoard or DagPCMCIA.

dagSetProtocol specifiesto the DagBook/DagBoard driver the type of parallel-port
implementation and protocol that is available on the computer. The driver then attempts to configure
the computer and the DagBook/DagBoard to communicate using the specified protocol. As
establishing the protocol may affect the settings of the DagBook/DagBoard, daqSetProtocol
should only be invoked immediately after daq I nit has established communications with and reset the
DagBook. Switching protocols during normal operation is not recommended.

Two types of parallel port implementations are supported by the DagBook: standard and enhanced.
Standard parallel ports, using the DagBook’ s proprietary protocols, are capable of receiving data either
4 or 8 bitsat atime. When possible, the faster 8-bit operation is preferred, but not al standard parallel
ports support 8-bit data reception.

Enhanced parallel ports (EPP) include extra hardware that increases the rate of datatransfer to 3to 10
times the rate of a standard parallel port. Unfortunately, not every computer includes EPP capability
and attempting to use EPP on an incompatible computer may cause the driver to access I/O locations
which are not part of the printer port interface. Such accesses may interfere with other operations and
cause the computer to operate incorrectly. For this reason, EPP operation must be explicitly requested
by the program.

When the DagBook isinitiaized by dagInit, itisinitially configured for a standard parallel port
protocol: either 8-hit, if possible, or the slower 4-bit protocol. After daqlnit has completed,
dagSetProtocol may be used to switch to any other supported protocols as listed below.

If dagSetProtocol isunable to establish communications using the specified protocol, then it will
try to establish communications using the standard port protocols, first 8-bit, then the slower 4-hit. In
such an event, dagSetProtocol will not return an error indication unlessit is unable to establish
any protocol.

In any case, daqGetProtocol may be used to check the current operating protocol.

5-56

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqTCConvert

DLL Function

daqTCConvert (uint *counts, uint scans ,int *temp, uint ntemp);

C

daqTCConvert(uint *counts, uint scans, int *temp, uint ntemp)

QuickBASIC QBdagTCConvert%(counts®%(), scans%, temp%(), ntemp%)
Turbo Pascal daqTCConvert(var counts; scans: word; var temp; ntemp: word):integer;
Parameters

uint *counts

An array of one or more scans of raw data as received from the Daq. The ADC data bits are in the 12
most significant bits of the 16-bit integers, and the tag bits (which are discarded) are in the 4 least-
significant bits. Channel tagging must be enabled using the dagAdcSetTag command.

Valid range: Each raw data item may be any 16-bit value.

uint scans

The number of scans of data in counts.
Valid range: 1 to 32768/nscan (counts is limited to 64 Kbytes).

int * temp

Variable array to hold converted temperature results. The integer values are 10 times the temperatures in
°C. For example, 50°C would be represented as 500 and -10°C would be -100.
Valid range: Results range from -2000 (-200°C) to +13720 (+1372°C) depending on the thermocouple type.

uint ntemp

The number of entries in the temperature array. This value is checked by the functions to avoid writing
past the end of the array.
Valid range: If avg is 0, then ntc or greater. If avg is non-zero, then scans * ntc or greater.

Returns DerrTCE_NOSETUP - Setup was not called

DerrTCE_PARAM - Param out of range

DerrNoError -No Error (also, refer to API Error Codes on page 5-68)
See Also DaqTCSetup, DaqTCSetupConvert

Program References | None

Used With

dagTCConvert takesraw A/D readings and converts them to temperature readings in tenths of
degrees Celsius (the total number of conversions (scan * chans/scan) must be less than 32K). The
Dag* measures thermocouple temperatures by way of a DBK 19 or DBK52 that includes a cold-
junction compensation circuit (CJC) attached to channel 0. Channel 1 is shorted for performing auto-
zero compensation. Channels 2 through 15 accept thermocouples for temperature measurement. Up to
16 expansion cards may be attached to a single Dag* to measure a maximum of 224 (16x14)
temperatures. The software supportstype J, K, T, E, N28, N14, S, R and B thermocouples.

Two software techniques (calibration and zero compensation) can be used to increase the accuracy of
the DBK 19 card.
- Software calibration uses gain and offset calibration constants, unique to each card, to
compensate for inherent errors on the card.
Zero compensation is a method by which any offset voltage on the card can be removed at run-
time. Thisis done by measuring a shorted channel at the same gain on the actua input to find the
offset and by subtracting this value from the actual reading.

The thermocouple linearization function has a specia auto-zero compensation feature that will perform
zero compensation on the raw thermocouple data before linearizing when using a DBK19. The auto-
zero feature is enabled by default, but can be disabled using the dagZeroDbk19 function. It isnot
available when using unipolar mode.

The temperature measurement conversion functions are designed for temperature measurement where:
The cold-junction compensation circuit (CJC) channel (channel 0) reading from the T/C card is
immediately followed in the scan sequence by the T/C channel readings, all of which must be
from the same type of T/C (including: J, K, T, E, N28, N14, S, R, or B).

If aDBK19 is used with auto-zeroing enabled, the CJC channel reading described above must be
preceded by areading from the shorted channel (channel 1). This reading must be at the same
gain setting as the CJC reading and a reading from the shorted channel (channel 1) at the same
gain setting as the T/C to be converted.

If software calibration is used with the DBK 19, the calibration constants for the card to be used
should be entered into the calibration file.

The CJC and T/C readings are taken with the optimal gains (as described below).

All non-thermocouple data conversion, if any, must be done by other means.

Programmer’'s Manual 5-57

Dag* Command Reference (Standard API)

Chapter 5

The temperature conversion functions take input data from one or more scans from the Dag*. They
then examine the CJC and thermocouple readings within that scan and, after optional averaging,
convert them to temperatures which are stored as output. For example, see readings in the table.

Thefirst 2 readings of each scan Reading

are non-temperature voltage Scan 0 1 2 3 4 5

readi ngs to Compensate for the 1 V or CJC Zero V or J Zero CJC Jla J1b Jic

CICa it and the shorted 2 V or CJC Zero V or J Zero CJC J2a J2b J2c
cireurt and the snorted 3 | VorCJCZero | VordZero | CIJC | J3a | J3b | Jac

channel 0. Thethird readingis 4 | VorCJCZero | VordZero | CIC | J4a | Jab | Jac

from the CJC, and the remaining
3 readings are from 3 type Jthermocouples. If the auto-zero featureis disabled, the first 2 readings will
beignored. Otherwise, the first 2 readings will be used to remove offset errorsin the CJC and T/C
reading. The CJC and T/C readings are used to produce one temperature result for each T/C reading.
Thus, the 24 original readings are reduced to 12 temperatures.

The conversion process has 2 steps: setup and conversion. Setup describes the characteristics of the
temperature measurement, and Conversion changes the raw readings into temperatures. All of the
functions return error codes which are defined in DagBook.h which also includes the function
prototypes and the definitions of the thermocouple type codes.

To measure temperatures, the scan must be set up so the T/C measurements consecutively follow their
corresponding CJC measurement (the CJC measurement need not be the first element in the scan). If
auto-zeroing is enabled, the CJC measurement must be preceded by both a CJC zero measurement and
a T/C zero measurement.

All of the thermocouples converted with a single invocation of the conversion functions must be of the
sametype: J, K, T, E, N28, N14, S, R, or B. To measure with more than one type of thermocouple,
they must be sorted by type within the scan, and each type must be preceded by the related CJC.

The scan is not restricted to thermocouple measurements. The scan may include other types of signals

such as voltage, current, or GAIN CODES
digital input, but conversion of Type Unipolar Gain Unipolar | Bipolar Gain Code | Bipolar
these readingsis up to you. Code Gain Gain
The temperature conversion cJc gg‘ﬁgg” ! ?JC - 90 Bgﬁgg f?c - 60
) J niType 180 1Type 90
functions cannot handle them. m BbKISUNTTypek T80 DbKIoBiTypeK %
The temperature measurements | T Bgﬁggnqypeg 240 Bg'ﬁgg EP’PGE 180
: E ni e 90 i e 60
must be _made with th_e correct N28 Dbk19UniT§geN28 240 Dbk19B ingest 240
gain seftings. Thegain settings 74| DbkioUniTypeN14 180 | DbK19BiTypeNid 90
for the different thermocouple |5 Dbk19UniTypes 240 | Dbk19BiTypes 240
types depend on the channel R Dbk19Uni TypeR 180 Dbk19Bi TypeR 240
type and the bipolar/unipolar B Dbk19UniTypeB 240 | DbK19BiTypeB 240

setting of the Dag* as specified in thetable. Note: Unipolar operations are not recommended for
thermocouple measurement unless the measured temperatures will be greater than the Dag*
temperature.

When measuring thermocouples using the gains above, the following temperature ranges apply.

Thermocouple mV Outputs For Temperature Ranges Depending on Ambient Temperature
T/IC Measured Temperature Range Measured Temperature Range Measured Temperature Range
Type @ 0°C ambient @ 25°C ambient @ 50°C ambient
Temperature °C [0°C Output (mV) | Temperature®C | 25°C Output (mV) | Temperature°C | 50°C Output (mV)
J -200 to 760 -7.91t042.9 -200 to 760 -9.2t041.6 -200 to 760 -11.8 10 39.0
K -200 to 1372 -5.9t0 54.9 -200 to 1372 -6.9 to 53.9 -200 to 1372 -8.9 10 52.9 (50.0
T -200 to 400 -5.6 t0 20.9 -200 to 400 -6.6 t0 19.9 -200 to 400 -8.7t0 17.7
E -270 to 1000 -9.81076.4 -270 to 1000 -11.3t0 74.9 -270 to 1000 -145t071.7
N28 | -270 to 400 -4.310 13.0 -270 to 400 -5.0t0 12.3 -270 to 400 -6.4 10 10.9
N14] 0to 1300 0.0 to 47.5 0 to 1300 -0.7 10 46.8 0 to 1300 -2.0t0 45.5
S -50 to 1780 -0.2t0 18.8 -50 to 1780 -0.4t0 18.7 -50 to 1780 -0.7 t0 18.4
R -50 to 1780 -0.2t021.3 -50 to 1780 -0.4t021.1 -50 to 1780 -0.7 t0 20.8
B 50 to 1780 0.0t0 13.4 50 to 1780 0.0t0 13.4 50 to 1780 0.0t0 13.4
5-58 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

daqTCSetup

DLL Function

daqTCSetup(uint nscan, uint cjcPosition, uint
bipolar, uint avg);

ntc , uint tcType, uchar

C daqTCSetup(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar bipolar,
unsigned avg)
QuickBASIC QBdagTCSetup%(nscan%, cjcPosition%, ntc%, tcType%, bipolar%, avg%)

Turbo Pascal

daqTCSetup(nscan, cjcPosition, ntc, tcType: word; bipolar: boolean; avg:
word) :integer;

Parameters

uint nscans

The number of readings in a single scan of DagBook/DagBoard data. The daqTC functions can convert
several consecutive scans worth of data in a single invocation.
Valid range: 2 to 512.

uint cjcPosition

The position of the actual cold-junction compensation circuit (CJC) reading within each scan (not the CJC
zero reading, if any). The first reading of the scan is position 0, and the last reading is position -1. Each
scan of temperature data must include a reading of the CJC signal on the expansion board to which the
thermocouples are attached. The CJC readings must be taken with the gain in the section Scan Setup.

Valid range: 0 to nscan-2 with no zero compensation; 2 to nscan-2 with zero compensation.

uint ntc

The number of thermocouple signals that are to be converted to temperature values. The thermocouple
signal readings must immediately follow the CJC reading in the scan data. The first thermocouple
signal is at scan position cjcPosition+1,; the next is at cjcPosition+2,; and so on. Valid range: 1 to
nscan-1-cjcPosition.

uint tcType

The type of thermocouples that generated the measurements. Valid range: One of the pre-defined
values: Dbk19TCTypeJ, Dbk19TCTypeK, Dbk19TCTypeT, Dbk19TCTypeE, Dbk19TCTypeN28,
Dbk19TCTypeN14, Dbk19TCTypeS, Dbk19TCTypeR or Dbk19TCTypeB.

uchar bipolar

Must be set true (non-zero) if the readings were acquired with the Daq set for bipolar operation. Must be
set false (zero) for unipolar operation. The required gain settings for the CJC and thermocouple
channels change depending on the unipolar/bipolar mode. Valid range: O for unipolar or any non-zero
value for bipolar.

uint avg

The type of averaging to be performed. Valid range: any unsigned integer. Since the thermocouple
voltage may be small compared to the ambient electrical noise, averaging may be necessary to yield a
steady temperature output.

0 specifies block averaging in which all of the scans are averaged together to compute a single
temperature measurement for each of the ntemp thermocouples.

1 specifies no averaging. Each scan’s readings are converted into ntemp measured temperatures for a
total of scans*ntemp results.

2 or more specifies moving average of the specified number of scans. Scan readings are averaged with
the avg-1 preceding scans’ readings before conversion. The first avg-1 scans are averaged with all of
the preceding scans because they do not have enough preceding scans. For example, if avg is 3, then
the results from the first scan are not averaged at all, the results from the second scan are averaged
with the first scan, the results from the third and subsequent scans are averaged with the preceding two
scans as shown in the table.

Returns

DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type

DerrNoError - No Error (also, refer to API Error Codes on page 5-68)

See Also

daqTCConvert, daqTCSetupConvert

Program References

None

Used With

dagTCSetup sets up parameters for subsequent temperature conversions. The table shows how

averages are computed.

Scan | Readings Results from Channel

from

Channel

0 1 0 1

1 1A 2A 1A 2A
2 1B 2B (1A+1B)/2 (2A+2B)/2
3 1C 2C (1A+1B+1C)/3 | (2A+2B+2C)/3
4 1D 2D (1B+1C+1D)/3 | (2B+2C+2D)/3
5 1E 2E (1C+1D+1E)/3 | (2C+2D+2E)/3
6 1F 2F (1D+1E+1F)/3 (2D+2E+2F)/3

Programmer’'s Manual

5-59

Dag* Command Reference (Standard API)

Chapter 5

daqTCSetupConvert

DLL Function

daqTCSetupConvert(uint nscan,uint cjcPosition, uint ntc, uint tcType,uchar
bipolar,uint avg, uint *counts, uint scans, int *temp,);

C daqTCSetupConvert(uint nscan, uint cjcPosition, uint ntc, uint tcType, uchar
bipolar, uint avg, uint*counts, uint scans, int*temp, uint ntemp)
QuickBASIC QBdagTCSetupConvert®%(nscan%, cjcPosition%, ntc%, tcType%, bipolar®%, avg%,

counts%(), scans%, temp%(), ntemp%)

Turbo Pascal

daqTCSetupConvert(nscan, cjcPosition, ntc, tcType: word; bipolar: boolean; avg:
word, var counts; scans: word; var temp; ntemp: word):integer;

Parameters

uint nscan

The number of readings in a single scan.
Valid range: 1- 512

uint cjcPosition

The position of the CJC reading within the scan.
Valid range:

0 -(nscan-1)

2 -(nscan-1), if auto-zeroing is used with DBK19.

uint ntc

The number of thermocouple readings that immediately follow the CJC reading within the scan.
Valid range: 1 -(nscan-cjcposition-1)

uint tcType

The type of thermocouples being measured.

uchar bipolar

Non-zero if the DagBook/DagBoard is configured for bipolar readings.

uint avg

The type of averaging to be performed: block, none or moving.

uint *counts

The raw data (with tags) from one or more scans.

uint scans

The number of scans of raw data in counts.

int *temp The converted temperatures in tenths of a degree C.
uint ntemp The number of elements provided in the temp array (for error checking).
Returns DerrTCE_PARAM - Parameter out of range
DerrTCE_TYPE - Invalid thermocouple type
DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also daqTCSetup, daqTCConvert

Program References

None

Used With

dagTCSetupConvert setsup and converts raw A/D readings into temperature readings.

5-60

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagVersion
DLL Function daqVersion(uint *hardware);
C dagVersion(uint *hardware)
QuickBASIC QBdagVersion%(hardware%)
Turbo Pascal daqgVersion(hardware: WordP):integer;
Parameters
hardware Pointer to variable to receive hardware version
100 for DagqBook/100; 112 for DagBook/112; 200 for DagBook/200; 216 for DagBook/216; 1100 for
DagBoard/100A; 1112 for DagBoard/112A,; 1200 for DagBoard/200A; 1116 for DaqBoard/216A
Returns DerrNoError - No Error (also, refer to API Error Codes on page 5-68)
See Also None
Program References | None
Used With

dagVersion returns the hardware version.

dagZeroConvert

DLL Function

dagZeroConvert(uint *counts, uint scans);

C dagZeroConvert(uint *counts, uint scans)
QuickBASIC QBdagZeroConvert%(countst%, scans%)
Turbo Pascal dagZeroConvert(counts:scans):integer;
Parameters

uint *counts

The raw data from one or more scans.

uint scans

The number of scans of raw data in the counts array.

Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagZeroSetup, dagZeroSetupConvert, dagZeroDbk19

Program References

None

Used With

dagZeroConvert compensates one or more scans according the previously called dagZeroSetup
function. Thisfunction will modify the array of data passed toit.

dagZeroDbk19
DLL Function dagZeroDbk19(uint zero);
C dagZeroDbk19(uint zero)
QuickBASIC QBdagZeroDbk19%(zero%)
Turbo Pascal dagZeroDbk19(zero): integer;
Parameters
uint zero If non-zero will enable auto zero compensation in the daqTC... functions
Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagZeroSetup, dagZeroConvert, dagZeroSetupConvert, daqTCSetup, dagTCConvert,
daqTCSetupConvert
Program References | None
Used With

dagZeroDbk19 will configure the thermocouple linearization functions to automatically perform

zero compensation. Thisisthe easiest way to use zero compensation with the DBK19. When enabled,
the thermocouple conversion functions will require a CJC zero reading and a TC zero reading to
precede the actual CJC and TC reading. This can easily be done by configuring the scan group to read
channel 1 using the DBK19 CJC gain code (CJC zero), channel 1 using the gain code of the connected
TC (TC zero), channel 0 using the DBK 19 CJC gain code (CJC) and finally the thermocouple channels
using the gain code of the connected thermocouples.

Note: the offset of the real CJC value should be specified, not the offset of the CIC zero, when calling
the thermocoupl e linearization setup functions.

Programmer’'s Manual

5-61

Dag* Command Reference (Standard API) Chapter 5

dagZeroSetup
DLL Function dagZeroSetup(uint nscan, uint ZeroPosition, uint readingsPosition, uint
nReadings);
C dagZeroSetup(uint nscan, uint ZeroPostition, uint readingsPosition, uint
nReadings)
QuickBASIC QBdagZeroSetup%(nscan%, ZeroPostition%, readingsPosition%, nReadings%)
Turbo Pascal dagZeroSetup(nscan: zero position: readings position: nReadings):integer;
Parameters
uint nscan The number of readings in a single scan.
uint zeroPosition The position of the zero reading within the scan
uint readingsPosition | The position of the readings to be zeroed within the scan.
uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain
as the zero reading.
Returns DerrZClInvParam - Invalid parameter value
DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagZeroConvert, dagZeroSetupConvert, dagZeroDbk19
Program References | None
Used With

dagZeroSetup configures the location of the shorted channel and the channelsto be zeroed within a
scan, the size of the scan and the number of readingsto zero. This function does not do the conversion.
A non-zero return value indicates an invalid parameter error.

dagZeroSetupConvert

DLL Function dagZeroSetupConvert(uint nscan, uint ZeroPosition, uint readingsPosition, uint
nReadings, uint *counts, uint scans);

[dagZeroSetupConvert(uint nscan, uint ZeroPostition, uint readingsPosition,
uint nReadings, uint *counts, uint scans)

QuickBASIC QBdagZeroSetupConvert®(nscan%, ZeroPostition%, readingsPosition%,
nReadings%,counts%, scans%)

Turbo Pascal dagZeroSetupConvert(nscan: zero position: readings position:
nReadings):integer;

Parameters

uint nscan The number of readings in a single scan.

uint zeroPosition The position of the zero reading within the scan

uint readingsPosition The position of the readings to be zeroed within the scan.

uint nReadings The number of readings immediately following the zero reading that are sampled at the same gain

as the zero reading.

uint *counts The raw data from one or more scans.

uint scans The number of scans of raw data in the counts array.

Returns DerrzZClInvParam - Invalid parameter value

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also dagZeroSetup, dagZeroConvert, daqZeroDbk19

Program References None

Used With

For convenience, both the setup and convert steps can be performed with one call to
dagZeroSetupConvert. Thisisuseful when the zero compensation needs to be performed
multiple times because data was read from channels at different gains or from different boards.

5-62 Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

dagq200GetScan

DLL Function

daq200GetScan(uint *chans, uchar *gains, uchar *polarity, uint count);

C

daq200GetScan(uint *chans, uchar *gains, uchar *polarity, uint *count)

QuickBASIC

QBdag200GetScan®(chans%(), gains®%(), polarity®%(), count%)

Turbo Pascal

daq200GetScan(chans: DataP;
WordP) :integer;

gains: ByteP; polarity: ByteP; count:

Parameters

uint *chans

An array to hold up to 512 channel numbers or 0 if the channel information is not desired.

uchar *gains

An array to hold up to 512 gain values or 0 if the channel gain information is not desired.

uchar *polarity

An array to hold up to 512 polarity values or 0 if the polarity information is not desired.

uint count A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)
See Also dagAdcGetScan, dag200SetScan

Program References

None

Used With

Does not apply to DaqBook/100/112/120

dag200GetScan retrieves a scan sequence much like dagAdcGetScan.

dag200SetMode

DLL Function

dag200SetMode(uchar di_se, uchar polarity, uchar comp);

[dag200SetMode(uchar di_se, uchar polarity, uchar comp)
QuickBASIC QBdag200SetMode%(di se%, polarity%, comp%)

Turbo Pascal dag200SetMode(die se: Word; polarity:word ; cop:word):integer;
Parameters

uchar di_se

Zero value causes DaqBook to go to single-ended mode (power-on default). Non-zero value causes
differential mode.

uchar polarity

Zero value causes DagBook to default to Unipolar mode. Non-zero value causes default Bipolar mode. All
ADC conversions except those started with dag200SetScan will use the default polarity.

uchar comp Non-zero value causes DagBook/DagBoard complement all data from Bipolar channels. This makes the
acquired data integer values; negative numbers correspond with negative voltages and positive humbers
correspond with positive voltages.

Returns DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

Program References

None

Used With

Does not apply to DagBook/100/112/120

dag200SetMode is used to program the gain amp for single-ended or differential operation and to
set the default polarity.

Single-ended operation measures the voltage of the selected channel referred to analog ground.
Differential operation measures differences in voltage between the pair of selected channels.

Voltage polarity can be unipolar or bipolar:

Unipolar maximum voltagerangeisOV to +10 V
Bipolar maximum voltage rangeis-10V to +10 V.

Programmer’'s Manual

5-63

Dag* Command Reference (Standard API) Chapter 5

dag200SetScan

DLL Function

dag200SetScan(uint *chans, uchar * gains, uchar *polarity, uint count);

C

dag200SetScan(uint *chans, uchar *gains, uchar *polarity, uint count)

QuickBASIC

QBdag200SetScan%(chans%(), gains®%(), polarity®%(), count%)

Turbo Pascal

dag200SetScan(chans: DataP; gains: ByteP; polarity: ByteP; count:
Word) :integer;

Parameters

uint *chans

An array of up to 512 channel numbers
Valid values:

0-15 For local A/D channels

16-271 For local expansion A/D channels
272 For the high speed digital 1/0O input

uchar *gains

An array of up to 512 gain values

uchar *polarity

An array of up to 512 polarity values.
Zero value causes DagBook/DagBoard to select Unipolar mode.
Non-zero values causes Bipolar mode.

uint count

The number of values in the chans and gain arrays
Valid values: 1-512

Returns

DerriInvCount - Invalid count

DerrInvChan -Invalid channel

DerrlInvGain - Invalid gain

DerrNotCapable - No programmable polarity

DerrNoError - No error (also, refer to API Error Codes on page 5-68)

See Also

dagAdcGetScan, dag200SetMode

Program References

None

Used With

Does not apply to DagBook/100/112/120

dag200SetScan configures a scan sequence much like dagAdcSetScan with the addition of a
polarity mode per channel.

5-64

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

A/D Channel Descriptions

A/D Channel

Source

0to 15

Local channels 0 to 15

16 to 31

Channels 0 to 15 of A/D expansion card 0

32 to 47

Channels 0 to 15 of A/D expansion card 1

48 to 63

Channels 0 to 15 of A/D expansion card 2

64 to 79

Channels 0 to 15 of A/D expansion card 3

80 to 95

Channels 0 to 15 of A/D expansion card 4

96 to 111

Channels 0 to 15 of A/D expansion card 5

112to 127

Channels 0 to 15 of A/D expansion card 6

128 to 143

Channels 0 to 15 of A/D expansion card 7

144 to 159

Channels 0 to 15 of A/D expansion card 8

160 to 175

Channels 0 to 15 of A/D expansion card 9

176 to 191

Channels 0 to 15 of A/D expansion card 10

192 to 207

Channels 0 to 15 of A/D expansion card 11

208 to 223

Channels 0 to 15 of A/D expansion card 12

224 to 239

Channels 0 to 15 of A/D expansion card 13

240 to 255

Channels 0 to 15 of A/D expansion card 14

256 to 271

Channels 0 to 15 of A/D expansion card 15

272

High speed digital I/O (DagBook/100,
DagBook/200, DagBoard/100A or
DagBoard/200A)

Note: In differential mode, only (sub) channels O to 7 are valid.

Thermocouple Types

Description Value Description Value
Dbk14TCTypeJ 0 Dbk14TCTypeK 1
Dbk14TCTypeT 2 Dbk14TCTypeE 3
Dbk14TCTypeN28 | 4 Dbk14TCTypeN14 | 5
Dbk14TCTypeS 6 Dbk14TCTypeR 7
Dbk14TCTypeB 8 Dbk19TCTypeJ 9
Dbk19TCTypeK 10 Dbk19TCTypeT 11
Dbk19TCTypeE 12 Dbk19TCTypeN28 | 13
Dbk19TCTypeN14 | 14 Dbk19TCTypeS 15
Dbk19TCTypeR 16 Dbk19TCTypeB 17

A/D Trigger Source Definitions

Definition Value Trigger

DtsPacerClock 00h 8254 Pacer Clock
DtsSoftware 10h Software

DtsTTLFall 20h External TTL falling edge
DtsTTLRise 30h External TTL rising edge
DtsAnalogFal INeg 40h Falling below a negative setpoint
DtsAnalogRiseNeg 50h Rising above a negative setpoint
DtsAnalogRisePos 60h Rising above a positive setpoint
DtsAnalogFal IPos 70h Falling below positive setpoint

Programmer’'s Manual

5-65

Dag* Command Reference (Standard API) Chapter 5
A/D Gain Definitions
BASE UNIT DBK12 DBK13 DBK14
Description | Value Description | Value Description Value Description Bipolar Unipolar
DgainX1 00h Dbk12X1 00h Dbk13X1 00h Value Value
DgainX2 01h Dbk12X2 01h Dbk13X2 10h Dbk14BiGainCJC | 10h 20h
DgainX4 02h Dbk12X4 02h Dbk13X4 20h Dbk14BiGainJ 02h 12h
DgainX8 03h Dbk12X8 03h Dbk13X8 30h Dbk14BiGainK 31h 12h
Dbk12X16 13h Dbk13X10 01h Dbk14BiGainT 12h 22h
Dbk12X32 23h Dbk13X20 11h Dbk14BiGainE 21h 02h
Dbk12X64 33h Dbk13X40 21h Dbk14BiGainN28 | 22h 32h
Dbk13X80 31h Dbk14BiGainN14 | 02h 12h
Dbk13X100 02h Dbk14BiGainS 12h 22h
Dbk13X200 12h Dbk14BiGainR 12h 22h
Dbk13X400 22h Dbk14BiGainB 22h 32h
Dbk13X800 32h
Dbk13X1000 | 03h
Dbk13X2000 | 13h
Dbk13X4000 | 23h
Dbk13X8000 | 33h
DBK15 DBK16 DBK19
Description Bipolar Unipolar Description Value Description Bipolar Unipolar
Value Value Dbk16ReadBridge 00h Value Value
Dbk15BiX1 00h 02h Dbk16SetOffse 01h Dbk19BiCJC 00h 01h
Dbk15BiX2 01h 03h Dbk16SetlnputGain 02h Dbk19BiTypeJ 01h 02h
Dbk16SetScalingGain | 03h Dbk19BiTypeK 01lh 02h
Dbk19BiTypeT 02h 03h
Dbk19BiTypeE 00h 01h
Dbk19BiTypeN28 | 03h 03h
Dbk19BiTypeN14 | 01h 02h
Dbk19BiTypeS 03h 03h
Dbk19BiTypeR 02h 03h
Dbk19BiTypeB 03h 03h
DBK42 DBK43 DBK44 DBK50
Description | Value Description Value Description | Value Description Value
Dbk42X1 00h Dbk43ReadBridge 00h Dbk44X1 00h Dbk50Rangel 00h
Dbk43SetOffset 01lh Dbk50Rangel0 01lh
Dbk43SetlInputGain 02h Dbk50Range100 02h
Dbk43SetScalingGain | 03h Dbk50Range300 03h

5-66

Programmer’s Manual

Chapter 5

Dag* Command Reference (Standard API)

Digital I/0O Port Connection

Base Unit

Description Value | Address Select Jumper Location
Ddp4Bitl0 83h Connector P1

DdpLocalA 10h Connector P2 Port A

DdpLocalB 11h Connector P2 Port B

DdpLocalC 12h Connector P2 Port C
DdpLocalCHigh B2h Connector P2 Port C High Nibble
DdpLocalCLow 92h Connector P2 Port C Low Nibble

Expansion Unit Address A

Description Value [Address Select Jumper Location / (DBK20 & 21
DdpExpOA 60h Dig Exp Chan 0 Port A/ (P2 A)

DdpExpOB 61h Dig Exp Chan 0 Port B/ (P2 A)

DdpExp0C 62h Dig Exp Chan 0 Port C/ (P2 A)
DdpExpOHigh E2h Dig Exp Chan 0 Port C High Nibble / (P2 A)
DdpExpOLow C2h Dig Exp Chan 0 Port C Low Nibble / (P2 A)
DdpExp1A 64h Dig Exp Chan 1 Port A/ (P3 A)

DdpExp1B 65h Dig Exp Chan 1 Port B/ (P3 A)

DdpExp1C 66h Dig Exp Chan 1 Port C/ (P3 A)
DdpExp1CHigh E6h Dig Exp Chan 1 Port C High Nibble / (P3 A)
DdpExplLow C6h Dig Exp Chan 1 Port C Low Nibble / (P3 A)

Expansion Unit Address B

Description Value [Address Select Jumper Location / (DBK20 & 21)
DdpExp2A 68h Dig Exp Chan 2 Port A/ (P2 B)

DdpExp2B 69h Dig Exp Chan 2 Port B / (P2 B)

DdpExp2C 6Ah Dig Exp Chan 2 Port C / (P2 B)
DdpExp2CHigh EAh Dig Exp Chan 2 Port C High Nibble / (P2 B)
DdpExp2Low CAh Dig Exp Chan 2 Port C Low Nibble / (P2 B)
DdpExp3A 6Ch Dig Exp Chan 3 Port A/ (P3 B)

DdpExp3B 6Dh Dig Exp Chan 3 Port B / (P3 B)

DdpExp3C 6Eh Dig Exp Chan 3 Port C / (P3 B)
DdpExp3CHigh EEh Dig Exp Chan 3 Port C High Nibble / (P3 B)
DdpExp3Low CEh Dig Exp Chan 3 Port C Low Nibble / (P3 B)

Expansion Unit Address C

Description Value [Address Select Jumper Location / (DBK20 & 21)
DdpExp4A 70h Dig Exp Chan 4 Port A/ (P2 C)

DdpExp4B 71h Dig Exp Chan 4 Port B/ (P2 C)

DdpExp4C 72h Dig Exp Chan 4 Port C/ (P2 C)
DdpExp4CHigh F2h Dig Exp Chan 4 Port C High Nibble / (P2 C)
DdpExp4Low D2h Dig Exp Chan 4 Port C Low Nibble / (P2 C)
DdpExp5A 74h Dig Exp Chan 5 Port A/ (P3 C)

DdpExp5B 75h Dig Exp Chan 5 Port B/ (P3 C)

DdpExp5C 76h Dig Exp Chan 5 Port C/ (P3 C)
DdpExp5CHigh Féh Dig Exp Chan 5 Port C High Nibble / (P3 C)
DdpExp5Low D6h Dig Exp Chan 5 Port C Low Nibble / (P3 C)

Expansion Unit Address D

Description Value [Address Select Jumper Location / (DBK20 & 21)
DdpExp6A 78h Dig Exp Chan 6 Port A/ (P2 D)

DdpExp6B 79h Dig Exp Chan 6 Port B / (P2 D)

DdpExp6C 7Ah Dig Exp Chan 6 Port C / (P2 D)
DdpExp6CHigh FAh Dig Exp Chan 6 Port C High Nibble / (P2 D)
DdpExp6Low DAh Dig Exp Chan 6 Port C Low Nibble / (P2 D)
DdpExp7A 7Ch Dig Exp Chan 7 Port A/ (P3 D)

DdpExp7B 7Dh Dig Exp Chan 7 Port B/ (P3 D)

DdpExp7C 7Eh Dig Exp Chan 7 Port C / (P3 D)
DdpExp7CHigh FEh Dig Exp Chan 7 Port C High Nibble / (P3 D)
DdpExp7Low DEh Dig Exp Chan 7 Port C Low Nibble / (P3 D)

Programmer’'s Manual

5-67

Dag* Command Reference (Standard API) Chapter 5

API Error Codes

Error Code #

Name hex - dec Description
DerrNoError 00h - 0 No error
DerrBadChannel 0lh -1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested DagBook is not online
DerrNoDagbook 03h - 3 DagBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrInvChan 10h - 16 | Invalid analog input channel
DerrinvCount 11h - 17 | Invalid count parameter
DerrinvTrigSource 12h - 18 | Invalid trigger source parameter
DerrinviLevel 13h - 19 | Invalid trigger level parameter
DerrlInvGain 14h - 20 | Invalid channel gain parameter
DerrlInvDacVal 15h - 21 | Invalid DAC output parameter
DerrInvExpCard 16h - 22 | Invalid expansion card parameter
DerriInvPort 17h - 23 | Invalid port parameter
DerrlInvChip 18h - 24 | Invalid chip parameter
DerrinvDigVal 19h - 25 | Invalid digital output parameter
DerrInvBitNum 1Ah - 26 | Invalid bit number parameter
DerrinvClock 1Bh - 27 | Invalid clock parameter
DerrinvTod 1Ch - 28 | Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 | Invalid counter number
DerrlnvCntSource 1Eh - 30 | Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 | Invalid counter command parameter
DerrinvGateCtrl 20h - 32 | Invalid gate control parameter
DerrinvOutputCtrl 21h - 33 | Invalid output control parameter
Derrinvinterval 22h - 34 | Invalid interval parameter
DerrTypeConflict 23h - 35 | Aninteger was passed to a function requiring a character
DerrMultBackXfer 24h - 36 | A second background transfer was requested
DerriInvDiv 25h - 37 | Invalid Fout divisor
DerrTCE_TYPE 26h - 38 | TC type out-of-range
DerrTCE_TRANGE 27h - 39 | Temperature out-of-CJC-range
DerrTCE_VRANGE 28h - 40 | Voltage out-of-TC-range
DerrTCE_PARAM 29h - 41 | Unspecified parameter value error
DerrTCE_NOSETUP 2Ah - 42 | dacTCConvert called before dacTCSetup
DerrNotCapable 2Bh - 43 | DagBook is incapable of function
DerrOverrun 2Ch - 44 | A buffer overrun occurred
DerrNoPreTActive 32h - 50 | No pretrigger configured
DerrlInvDacChan 33h - 51 | DAC channel does not exist
DerrInvDacParam 34h - 52 | DAC parameter is invalid
DerrInvBuf 35h - 53 [Buffer point to NULL or size
DerrMemAlloc 36h - 54 | Could not allocate the needed memory
DerrUpdateRate 37h - 55 | Could not achieve the specified update rate
DerrInvDacWave 38h - 56 | Could not start waveforms because of missing or invalid parameters
DerrInvBackDac 39h - 57 | Could not start waveforms with background transfers
DerrInvPredWave 3Ah - 58 | Predefined waveform not supported
DerrRtdValue 3Bh - 59 | rtdvalue out-of-range
DerrRtdNoSetup 3Ch - 60 | rtdConvert called before rtdSetup
DerrRtdArraySize 3Dh - 61 | Temperature array not large enough
DerrRtdParam 3Eh - 62 | Incorrect RTD parameter
DerrlInvBankType 3Fh - 63 | Invalid bank type specified
DerrBankBoundary 40h - 64 | Simultaneous writes to DBK cards in different banks not allowed
DerrinvFreq 41h - 65 | Invalid scan frequency specified
DerrNoDaq 42h - 66 | No Daql12B/216B installed
DerriInvOptionType 43h - 67 | Invalid option type parameter
DerrInvOptionValue 44h - 68 | Invalid option value parameter
DerrlInvParam 45h - 69 | Invalid parameter
DerrNoSetup 46h - 70 | A ...convert function was called before ...setup
DerrArraySize 47h - 71 | The array size is too small to hold converted data

5-68 Programmer’s Manual

Visual Basic VBX Support 6

Overview

Five VBX files provide accessto all Dag* hardware functions including: analog input, analog output,
digital 1/0, counter/timers, and communications. Each VBX tool has its own icon.

To use the VBX tools, add the DBK.VBX tool to your project by selecting Add File... from theFile
iteminthe VB menu. A file selection box will allow you to select the VBX tool, then click OK. In the
same way, add as many of the other VBX tools as you need. For example, if your application requires
analog input only, just add the ADC.VBX (must also include dbk.bas). The following table describes
the fiveincluded VBXs and related drivers.

VBX Filename Description
DBK dbk.vbx Performs Dag* configuration and opening and closing the driver;
must be included
ADC adc.vbx Performs A/D functions, selectable
CTR ctr.vbx Performs Counter/Timer Functions, selectable
DAC dac.vbx Performs D/A functions, selectable
DIO dio.vbx Performs Digital I/O Functions, selectable
dagbook.dll | DagBook driver V1.7 or greater
dbk.bas Must be included if adc.vbx or ctr.vbx are used

To usethe Dag* VB controls, place the DBK control on one of your forms with any or all of the
controls. Selecting a control on your application form will display its design-time properties in the
Properties window.

This chapter has 6 sections: one for each VBX and one of example programs.

DBK VBX

The following table lists general configuration properties of the VBXSs.

The “R/W” in the column heading stands for Read/Write. An*“R” in this column means that the
property can be Read or assigned to avariable as follows: processStatus = ADC1.Active. A
“W” in this column means that the property can be Written to or assigned a value as follows:
ADCI1.Arm = True. A “R/W” in this column means that the property possesses both read and
write characteristics.

The“Access’ column signifies whether the property is accessible in the Properties window.
“Run” in this column means the property can only be accessed in code at run-time (it is not
visiblein the Properties window). If “Design” isin this column, the property is visible and
accessiblein the Properties window at Design-time.

Programmer’'s Manual 6-1

Visual Basic VBX Support

Chapter 6

VBX General Configuration Properties

Property | Description R/IW Access Valid Settings
IntLevel Specifies the LPT interrupt level prior to assigning | R/W Design/Run 0 - 7 (DagBook)
the Open property 10-15 (DagBoard)
LptPort Specifies the LPT port number prior to assigning R/W Design/Run (DagBook Only:)
the Open property 0-LPT1
1-LPT2
2-LPT3
3-LPT4
Open After the LptPort, IntLevel, and Protocol w Run True to open
properties have been set, this method, if set to False to close
True, initializes the driver and establishes
communication with the Dag*. If set to False,
this method performs a close function
Protocol Specifies which type of parallel-port R/W Design/Run (DagBook Only:)
implementation and protocol is available to the 0-8hitl/O
computer 1- 4bitl/O
2-Far Point F/Port EPP
Interface
3 - 82360SL EPP Interface
Version Return the hardware version number of the Dag* R Run 100 - DagBook/100
being used 112 -DagBook/112
200-DagBook/200
216-DagBook/216
1100-DagBoard/100
1112-DagBoard/112
1200-DagBoard/200
1216-DagBoard/216
Type Specifies the type of hardware prior to assigning R/W Design/Run 0 -DagBook
the Open Property 1 - DagBoard
ISA Specifies the address of the base port for a R/W Design/Run 0 -Port_0300
Addres DaqgBoard prior to assigning the open property 1 - Port_0304
S 2 -Port_0308...
15 -Port_033C
DM Specified the DMA channel for the DagBoard R/W Design/Run 0 -DMA None
Chann prior to assigning the Open Property 1-DMAS
el 2-DMA6
3-DMA Y

Event Routines- DBK:
None

DBK Properties

IntLevel

Access: Read and write

Valid settings: 0 - 7 for DagBook; 10 - 15 for DagBoard

Syntax: Dbk1l.IntLevel = 7
Dbk1.LptPort =0
Dbk1.Protocol = 0

Dbk1.0Open = True 'This line usually appears in the Form_Load subroutineDbk1.
Open = False Closing the driver usually takes place in the Form_Unload subroutine

Specifiesthe LPT or DagBoard interrupt level prior to assigning the Open property. The default

interrupt level is7.

6-2

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

LptPort (DaqBook Only)

Access: Read and write
Valid settings: | 0-LPT1; 1-LPT2; 2-LPT3; 3-LPT4
Syntax: Dbk1.IntLevel =7

Dbk1.LptPort =0

Dbk1.Protocol = 0

Dbk1.0Open = True 'This line usually appears in the Form_Load subroutine

Dbk1.0Open = False 'Closing the driver usually takes place in the Form_Unload subroutine

Specifies the LPT port number prior to assigning the Open property. The default LPT portis1. If you
only have one LPT port in the system, it isvery likely LPT1.

Open
Access: Write only
Valid settings: | True to open; False to close
Syntax: Dbk1.IntLevel =7

Dbk1.LptPort =0

Dbk1.Protocol = 0

Dbk1.0Open = True 'This line usually appears in the Form_Load subroutine

Dbk1.0Open = False 'Closing the driver usually takes place in the Form_Unload subroutine

After the LptPort or ISA Bus Address, IntLevel, and Protocol properties have been set, this method, if
set to True, initializes the driver and establishes communication with the Dag*. If set to False, this
method performs a close function.

Protocol (DaqBook Only)

Access: Read and write
Valid settings: | 0- 8 bit I/O
1- 4bitl/O

2 - Far Point F/Port EPP Interface
3 - 82360 SL EPP Interface

4 - Quatech SMC666 EPP Interface
5 - EPP Bios (Draft Revision 3)

Syntax: Dbk1.IntLevel =7

Dbk1.LptPort =0

Dbk1.Protocol = 0 ’'Set to 8-bit protocol

Dbk1.0Open = True 'This line usually appears in the Form_Load subroutine

Dbk1.0Open = False 'Closing the driver usually takes place in the Form_Unload subroutine

Specifies which type of parallel-port implementation and protocol is available to the computer. EPP
(Enhanced Parallel Port) will allow the fastest data transfer, if it is supported by your LPT port. 8-bit
operation is 2nd fastest, while 4-bit is the slowest, but compatible with virtually all LPT ports.

Version

Access: Read only

Syntax: Dbk1.IntLevel =7

Dbk1.LptPort =0

Dbk1.Protocol = 0 ’'Set to 8-bit protocol

Dbk1.0Open = True 'This line usually appears in the Form_Load subroutine ersionNumber =

DBK1.Version.Dbk1.0Open = False 'Closing the driver usually takes place in the Form_Unload
subroutine

Returns the hardware version of the Dag DAS Family being used, allowing the user to properly
interpret data and issue commands.

Programmer’'s Manual 6-3

Visual Basic VBX Support Chapter 6

Type
Valid Settings: | 0 - DagBook; 1 - DagBoard
Syntax: Dbk1.Type = 0 'for a DagBook product

Dbkl.IntLevel =7
Dbk1.LptPort =0
Dbk1.Protocol = 0
Dbk1.0Open = TRUE

Specifies the type of hardware to being attached to prior to assigning the Open property. Some of the
DBK VBX’s properties are only relevant for one hardware type or the other. The default valueisO -
DagBook.

ISA Address
Valid Settings: | O - Port_0300
1 - Port_0304
2 - Port_0308...
15 - Port_033C
Syntax: Dbk1.Type = 1 *for a DagBoard product

Dbk1.IntLevel = 8’ for interrupt 10
Dbk1.IsaAddress = PORT_0300
Dbk1.DmaChannel = DMA5
Dbk1.0Open = TRUE

Specifies the address of the base port for a DagBoard product prior to assigning the Open property.
The base port address are set on hardware switches. The addresses start at & H300 and are spaced
every 4 addresses from there. e.g. &H300, & H304, & H308 & H30C, The default is PORT_0300.

DMA Channel
Valid Settings: | 0 - DMA None
1-DMAS
2-DMA6
3-DMA7
Syntax: Dbk1.Type = 1 *for a DagBoard product

Dbk1.IntLevel = 8’ for interrupt 10
Dbk1.lsaAddress = PORT_0300
Dbk1.DmaChannel = DMA5

Dbk1.0Open = TRUE

Specifies the DMA channel to be used for a DagBoard product prior to assigning the Open property.
The default is DMANONE (no DMA used).

6-4

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

ADC VBX

ADC VBX Property Summary
Property Description R/ Access | Valid Settings
w
Active A status flag showing if the acquisition is active R Run True or False
Arm After all of the acquisition parameters are set, this property arms W Run True to Arm
the acquisition False to Disarm
BipolarArray When UseChanAtrray is true, BipolarArray holds the pole W Run An integer array of
configuration values for the associated channel in the elements assigned
ChanArray. (DagBook/200 and DagBoards only) to either True or
False.
Buffer Points to the user buffer for the incoming data. All data is W Run The 0th element of a
collected directly into a VB integer buffer in the background user-dimensioned
integer array.
Buffered Represents how many scans have been collected and placed in R Run 0-4000000
the buffer.
BufferLength Represents the usable length of the user-allocated integer array. R/ Design/ | 1to 32767
W Run
BufferOverrun Indicates whether or not a buffer overrun condition exists. R Run True or False
ChanArray When UseChanArray is true, ChanArray holds the array of W Run An integer array of
channels used in the scan channel numbers,
each with a value of
0to272.
EndChan When UseChanArray is false, StartChan represents the first R/ Design/ | 0-272
channel in a channel range that ends with EndChan W Run See channel table.
Frequency Sets the scan rate for acquisitions containing more than one scan | R/ Design/ | 100000.0 to 0.0002
W Run
GainArray When UseChanAtrray is true, GainArray holds the gain values for W Run An integer array of
the associated channels in the ChanArray gain values.
See gain table.
GlobalGain When UseChanAtrray is false, GlobalGain represents the gain to R/ Design/ | See gain table.
be used on all of the channels specified in the channel range W Run
StartChan to EndChan
GlobalBipolar When UseChanAtrray is false, specifies the bipolar or unipolar R/ Design/ | True or False
inputs for all channels in the scan range specified by StartChan w Run
through EndChan. (DagBook/200 only
NumChannels When UseChanAtrray is true, NumChannels holds an integer R/ Design/ | 1-512
representing the number of channels in the channel array W Run
NumScans The number of scans to collect R/ Design/ | 1 - 32767,
W Run or -1 for infinite cycle
OneShot If true enables one-shot trigger mode R/ Design/ | True or False
W Run
GlobalSE Specifies Single Ended or Differential inputs (DagBook/200 only R/ Design/ | True or False
W Run
SoftTrig If trigger source is Software, provides the trigger condition W Run True to trigger
StartChan When UseChanArray is false, StartChan represents the first R/ Design/ | 0-272
channel in a channel range that ends with EndChan W Run See channel table in
chapter 11.
TrigLevel The analog trigger setpoint R/ Design/ | -10.0 to +10.0 volts
W Run
TrigRefVoltage If analog trigger is the source, this represents the external R/ Design/ | -10.0 to 0.0 volts
reference voltage of D/A channel 1 W Run
TrigSource The source of the trigger R/ Design/ | O - Software
w Run 1-TTL
2 - Analog
TrigSourceRising Specifies a rising or a falling trigger (TTL and Analog only R/ Design/ | True or False
W Run
UseChanArray Specifies use of StartChan/EndChan or ChanArray to specify the R/ Design/ | True or False
desired channels in the scans. W Run

Programmer’'s Manual

6-5

Visual Basic VBX Support Chapter 6

Event Routines- ADC

When the ADC.VBX toal is placed on an application form, 2 subroutine stubs are automatically
created. They are;

Sub ADC1 Triggered()

Sub ADC1_AcquisitionComplete()

When the system trigger has been satisfied by either an internal or external event, the subroutine
ADCL1 Triggered isautomatically called. Code required to post status or begin the data transfer
process can be located in this routine.

The trigger event is monitored in the hardware and passed on the custom control in the background
during the transfer of the first block of datathat has been buffered in the external hardware. If the
sample frequency is dow, the external buffer may take afew seconds to fill, delaying the notification of
the custom control that the trigger has been satisfied.

When the acquisition is completely finished, the Active property will become false and the subroutine
ADC1_AcquisitionComplete will automatically be called.

ADC.VBX Note

When using the analog input control, the file DBK.BAS must be added to your application. Thisfile
contains the function declaration addressof which gets the address of a VB integer array. The Buffer
property accepts this pointer.

Example:
Dim MyData(1000)As Integer
"The Following line would typically be placed in the Form_Load subroutine.
ADCL1.Buffer = addressof (MyData(0))

ADC VBX Properties

The gain definitions are shown in the table.

VBX Gain Entry Table

0 - Base Unit X1 20 - Dbk13 x200 40 - Dbk16 Set Offset
1 - Base Unit x2 21 - Dbk13 x400 41 - Dbk16 Input Gain
2 - Base Unit x4 22 - Dbk13 x800 42 - Dbk16 Scaling Gain
3 - Base Unit x8 23 - Dbk13 %1000 43 - 00 Hex (reserved)
4 - Dbk12 x1 24 - Dbk13 x2000 44 - 01 Hex (reserved)
5 - Dbk12 x2 25 - Dbk13 %4000 45 - 02 Hex (reserved)
6 - Dbk12 x4 26 - Dbk13 x8000 46 - 03 Hex (reserved)
7 - Dbk12 x8 27 - Dbk14 Bipolar CJC 47 - 10 Hex (reserved)
8 - Dbk12 x16 28 - Dbk14 Bipolar Type J 48 - 11 Hex (reserved)
9 - Dbk12 %32 29 - Dbk14 Bipolar Type K 49 - 12 Hex (reserved)
10 - Dbk12 x64 30 - Dbk14 Bipolar Type T 50 - 13 Hex (reserved)
11 - Dbk13 x1 31 - Dbk14 Unipolar CJC 51 - 20 Hex (reserved)
12 - Dbk13 x2 32 - Dbk14 Unipolar Type J | 52 - 21 Hex (reserved)
13 - Dbk13 x4 33 - Dbk14 Unipolar Type K | 53 - 22 Hex (reserved)
14 - Dbk13 x8 34 - Dbk14 Unipolar TypeT | 54 - 23 Hex (reserved)
15 - Dbk13 x10 35 - Dbk15 Bipolar x1 55 - 30 Hex (reserved)
16 - Dbk13 x20 36 - Dbk15 Bipolar x2 56 - 31 Hex (reserved)
17 - Dbk13 x40 37 - Dbk15 Unipolar x1 57 - 32 Hex (reserved)
18 - Dbk13 x80 38 - Dbk15 Unipolar x2 58 - 33 Hex (reserved)
19 - Dbk13 %100 39 - Dbk16 Read Bridge

6-6

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

Active
Access: Read only
Valid setting: | True or False
Syntax: If ADC1.Active = False then MsgBox “The acquisition is inactive”

The Active property serves as a status flag to show the state of the armed acquisition. At run-time the
Active property returns True to signify that the acquisition is still active, and false if inactive. This
property isuseful when the state of the acquisitionisin question. Upon completion of any acquisition,
the Acquisition_Complete routine is automatically called. If polling the acquisition is preferred, use

the Active property.
Arm
Access: Write Only
Valid settings: | True to Arm, False to Disarm
Syntax: Adcl.Arm = True 'Start the acquisition
Adcl.Arm = False 'Stop the acquisition

After al of the acquisition parameters are set, this property arms the acquisition. Setting this property
to True arms the acquisition, setting it to False stops data collection and disarms the acquisition.

The ADC VBX “ARM” code only uses “Bipolar Array” or “GlobalBipolar” when utilizing the
following components: DagBook/200, DagBoard/100/200.

The“ARM” code uses “Global SE” (single-ended) only if “UseChanArray” is true, when using the
above components.

The “BopolarArray” & “GlobalBipolar” properties have no effect with the following components:
DagBook/216, DagBoard/112/216

BipolarArray (DagBook/200 & DagBoards Only)

Access: Write only

Valid settings: | True for Bipolar and False for Unipolar

Syntax: Adcl.UseChanArray = True
Fori=0to 15

Adcl.chanArray(i) = i

Adcl.gainArray(i) = 0

Adcl.BipolarArray(i) = TRUE 'Set all chans in scan to bipolar
Next i
Adcl.NumChannels = 16

When UseChanArray istrue, BipolarArray holds the pole configuration values for the associated
channel in the ChanArray. Up to 512 array elements can be assigned avalue of True or False. The
NumChannels property is used to tell the custom control which element in the ChanArray holds the last
valid channel.

Programmer’'s Manual 6-7

Visual Basic VBX Support Chapter 6

Buffer
Access: Write only
Valid settings: | A pointer to the Oth element of a user-dimensioned integer array.
Syntax: Dim arrayBuffer(1000) as integer
Adcl.Buffer = addressof(arrayBuffer(0))
Adcl.BufferLength = 1000

The ADC VBX collects al readingsin the background under interrupt control. Asthe datais acquired,
it is placed directly into a user-dimensioned VB integer array. Assign the Buffer property the value of
the pointer to the integer array. Once dimensioned, the pointer to the integer array is yielded from the
function call “addressof”, supplied in the file DBK.BAS. The datain the integer array can be accessed
concurrently with the acquisition. The number of valid scansin the integer array can be queried using
the Buffered property.

Before any analog input operations are performed, the Buffer property must be assigned a pointer to a
valid, dimensioned integer array. The dimensioned array must remain valid during the entire
background acquisition. If the array is dimensioned within a subroutine using the ReDim command,
this array will be de-allocated as the program leaves the subroutine. If the acquisition is still active, the
acquisition will write over an undefined area of memory. For thisreason, it is recommended that the
array be dimensioned as a Global variable. The assignment of the buffer pointer to the Buffer property
istypicaly donein the Form_L oad subroutine.

Buffered
Access: Read only
Valid settings: | 0 - 4000000
Syntax: Static ScansProcessed as Long

If ScansProcessed Adcl.Buffered then
Call moveNewScan
End if

During the acquisition, the buffer isfilled with incoming scans. The Buffered property holds the
number of buffered scans that are presently valid in the integer array. For applications that need to act
on the dataasit is coming in, the Buffered property provides the number of valid scansin the buffer.
To calculate the array index for any one sample, the number of the scan should be multiplied by the
number of channelsin the scan. For example, if there are 4 channels in the scan, and the Buffered
property show 100 scans, the number of valid valuesin the integer array is 400.

If the NumScans property is set to -1, the Dag DAS Family isin Cycle mode, collecting an infinite
number of scans. In this mode, the integer array will be modeled as a circular buffer, starting at the
beginning as the end isreached. The program is responsible for moving the datato a new location, to
disk for example, before old data is overwritten. When in Cycle mode, the Buffered property can
exceed the size of the buffer by many times since it is keeping track of the total number of scans that
have been collected, not just the number that are presently in the buffer. Y our program should keep
track of the number of scans processed and compare that number with the value of the Buffered
property to seeif new datais present.

BufferLength
Access: Read and Write
Valid settings: | 1to 32767
Syntax: Dim arrayBuffer(1000) as integer
Adcl.Buffer = addressof(arrayBuffer(0))
Adcl.BufferLength = 1000

Represents the usable length of the user-allocated integer array that was assigned to the Buffer
property. Assigning the correct value to BufferLength keeps the acquisition from accidently
overrunning the end of the dimensioned array. When the NumScans property is set to -1 (infinite cycle
mode), the BufferLength property is used by the control to know when to wrap to the beginning of the
buffer.

6-8

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

BufferOverrun
Access: Read only
Valid setting: | True or False
Syntax: If Adc1.BufferOverrun = True then MsgBox “The FIFO has overrun, data may be missing”

The Dag* hasaFIFO (first in first out) buffer on the A/D converter. The ADC.VBX control monitors
the amount of datain the FIFO and automatically transfersit into the VB integer array in the
background. If the speed of the acquisition is greater than the speed at which the computer is able to
upload the data, the FIFO will eventually overrun, setting the BufferOverrun property to True.

ChanArray

Access:

Write only

Valid settings:

Each element can be assigned a channel number from 0 to 272.

Syntax:

Adcl.UseChanArray = True
Fori=0to 15
Adcl.chanArray(i) = i : Adcl.gainArray(i) = 0
Next i
Adcl.NumChannels = 16

When UseChanArray is true, ChanArray holds the array of channels used in the scan. Up to 512 array

elements can be

loaded with any channel number in any order. The sample datain the buffer will bein

the same order as the channelsin the ChanArray. The NumChannels property is used with the
ChanArray property to tell the custom control which element in the ChanArray holds the last valid

channel.

EndChan

Access:

Read and write.

Valid settings:

0 - 272. StartChan must be less than or equal to EndChan.

Syntax:

Adcl.StartChan =0
Adcl.EndChan =3
Adcl.GlobalGain = 0

When UseChanArray is false, StartChan represents the first channel in a channel range that ends with
EndChan. When StartChan and EndChan are used, it is not possible to assign individual gainsto the
channels, the GlobalGain property is used to assign again to al channelsin the scan.

Frequency
Access: Read and write
Valid settings: | 100000.0 to 0.0002
Syntax: Adcl.Frequency = 1000 'Set scan rate to 1kHz

Setsthe scan rate, in hertz, for acquisitions containing more than one scan.

GainArray
Access: Write only
Valid settings: | Any valid gain value.
Syntax: Adcl.UseChanArray = True
Fori=0to 15
Adcl.chanArray(i) =i : Adcl.gainArray(i) = 0
Next i

Adcl.NumChannels = 16

When UseChanArray is true, GainArray holds the gain values for the associated channelsin the
ChanArray. A scan can consist of as many as 512 channels, in any order. The property NumChannels
is used to tell the custom control which element in the ChanArray holds the last valid channel number.

Programmer’'s Manual 6-9

Visual Basic VBX Support

Chapter 6

GlobalGain

Access:

Read and write

Valid settings:

Any valid gain value.

Syntax:

Adcl.StartChan =0
Adcl.EndChan =3
Adcl.GlobalGain = 0

When UseChanArray is false, Global Gain represents the gain to be used on al of the channels specified
in the channel range StartChan to EndChan. When StartChan and EndChan are used, it is not possible
to assign individual gains to the channels; the Global Gain property is used to assign again to all
channelsin the scan.

GlobalBipolar (DagBook/200 & DagBoards Only)

Access:

Read and write

Valid settings:

True for bipolar, False for unipolar

Syntax:

Adcl.StartChan =0

Adcl.EndChan =3
Adcl.GlobalGain = 0
Adcl.GlobalBipolar = True 'Set all channels in scan to Bipolar

When UseChanArray is false, specifies the bipolar or unipolar inputs for all channelsin the scan range
specified by StartChan through EndChan. When StartChan and EndChan are used, it is not possible to
assign individual pole values to the channels; the Global Bipolar property is used to assign bipolar or
unipolar to al channelsin the scan.

NumChannels

Access: Read and write

Valid settings: | 1-512

Syntax: Adcl.UseChanArray = True
Fori=0to 15

Adcl.chanArray(i) = i : Adcl.gainArray(i) = 0

Next i
Adcl.NumChannels = 16

When UseChanArray is true, NumChannels holds an integer representing the number of channelsin the
ChanArray properties. The NumChannels property is used in conjunction with the ChanArray property
to tell the custom control which element in the ChanArray holds the last valid channel.

NumScans
Access: Read and write
Valid settings: | 1- 32767, or -1 for infinite cycle
Syntax: Adcl.NumScans = 1000 ‘collect 1000 scans.

The number of scansto collect. If NumScansis set to -1, the acquisition will continue until it is
disarmed by setting the Arm property to false. When the BufferLength is reached, the buffer will wrap
around to the beginning, overwriting the oldest scans. In this case, your application should monitor the
Buffered property and move the data to other destinations before it is overwritten.

OneShot

Access:

Read and write

Valid settings:

True to enable one-shot trigger mode
False to disable one-shot trigger mode.

Syntax:

Adcl.0neShot = True 'Take a scan every trigger event.

When set to true, this property enables one-shot trigger mode, taking one scan on every occurrence of
the specified trigger event. When in this mode, the Frequency and NumScans properties are ignored.
One-shot trigger mode is useful for synchronizing scans with external events rather than atimebase.

6-10

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

GlobalSE (DagBook/200 & DagBoards Only)

Access:

Read and write

Valid settings:

True for SE
False for DIFF

Syntax:

Adcl.GlobalSE = True 'Set input configuration to SE

The DagBook/200 provides programmable control of the single-ended/differential input circuitry. This
property sets the system-wide input configuration.

SoftTrig

Access:

Write

Valid settings:

True to trigger

Syntax:

Adcl.TrigSource =0 ’'Set source to Software
Adcl.Arm = True "Arm the acquisition
Adcl.SoftTrig = True 'Trigger the acquisition

When TrigSource is set to Software, and Arm is set to True, set this property to Trueto initiate the
acquisition trigger. If TrigSourceis not set to Software when SoftTrig is set to True, the message
“Software Trigger Source Not Selected” appears. No acquisition can be triggered unless the
acquisition isfirst armed by setting the Arm property to True.

StartChan

Access:

Read and write.

Valid settings:

0 - 272. StartChan must be less than or equal to EndChan.

Syntax:

Adcl.StartChan =0
Adcl.EndChan =3
Adcl.GlobalGain = 0

When UseChanArray is false, StartChan represents the first channel in a channel range that ends with
EndChan. When StartChan and EndChan are used, it is not possible to assign individua gains to the
channels; instead the Global Gain property is used to assign again to al channelsin the scan.

TrigLevel

Access:

Read and write

Valid settings:

-10.0 to +10.0 volts

Syntax:

Adcl.TrigLevel = 2.0 'Trigger on 2 volts
Adcl.TrigSourceRising = True 'Trigger on rising edge
Adcl.TrigRefVoltage = -5.0 'Set to default value
Adcl.Arm = True 'Arm the acquisition

When the TrigSource is set to Analog, this property provides the voltage level at which the acquisition

will be triggered.

To trigger as the voltage rises through the setpoint, set the TrigSourceRising

property to true, set it to false to trigger on afalling edge. DACL1 isused to provide the analog
comparator voltage for the analog trigger source. When the analog trigger sourceis used, DAC1
becomes unavailable for other purposes.

TrigRefVoltage

Access:

Read and write

Valid settings:

-10.0 to 0.0 volts

Syntax:

Adcl.TrigSource = 2 ’'Set the trigger source to Analog
Adcl.TrigLevel = 2.0 'Trigger on 2 volts
Adcl.TrigSourceRising = True 'Trigger on rising edge
Adcl.TrigRefVoltage = -5.0 'Set to default value
Adcl.Arm = True 'Arm the acquisition

DAC1 isused as the analog trigger comparator input. When the TrigSource property is set to Analog,
the value of DAC1 is set by the TrigLevel property in volts. To calculate the binary value required by

the 12-hit DAC, the DAC reference voltage must be known. The factory default, internal referenceis -
5 volts; but when set to External, voltages from 0 to -10 can be applied.

Programmer’'s Manual 6-11

Visual Basic VBX Support Chapter 6

TrigSource
Access: Read and write
Valid settings: | 0 - Software, 1 - TTL , 2 - Analog
Syntax: Adcl.TrigSource = 2 'Set the trigger source to Analog

Adcl.TrigLevel = 2.0 'Trigger on 2 volts
Adcl.TrigSourceRising = True 'Trigger on rising edge
Adcl.TrigRefVoltage = -5.0 ’'Set to default value
Adcl.Arm = True 'Arm the acquisitionor
Adcl.TrigSource =1 ’'Set the trigger source to TTL
Adcl.TrigSourceRising = False 'Trigger on falling edge
Adcl.Arm = True 'Arm the acquisitionor
Adcl.TrigSource = 0 'Set the trigger source to Software
Adcl.Arm = True 'Arm the acquisition

Adcl.SoftTrig = True 'Trigger the acquisition

The TrigSource property specifies the source of the trigger event. When the trigger source is Software,
the property SoftTrig must be set to true to trigger the acquisition. When set to TTL or Analog,
external events are required to trigger the acquisition. Setting the SoftTrig property to True without
having set the TrigSource property to Software Trigger will generate the message “ Software Trigger
Source Not Selected.”

The property TrigSourceRising should be used in conjunction with the TTL and Analog source to
select which edge of the external signal should trigger the system. The properties TrigLevel and
TrigRefV oltage should be set when using the Analog trigger source to select the level of the analog
input voltage on which to trigger.

TrigSourceRising
Access: Read and write
Valid settings: | True for rising, False for falling
Syntax: Adcl.TrigSource = 1 'Set the trigger source to TTL
Adcl.TrigSourceRising = False 'Trigger on falling edge
Adcl.Arm = True 'Arm the acquisition

When the TrigSource property isset to TTL or Analog, the TrigSourceRising property specifies which
edge of the external trigger signal will cause the trigger.

UseChanArray

Access: Read and write

Valid settings: | True to use ChanArray
False to use StartChan and EndChan

Syntax: Adcl.UseChanArray = True
Fori=0to 15
Adcl.chanArray(i) =i : Adcl.gainArray(i) = 0
Next i

Adcl.NumChannels = 16

or

Adcl.UseChanArray = False
Adcl.StartChan =0
Adcl.EndChan =3
Adcl.GlobalGain = 0

When UseChanArray is true, ChanArray holds the array of channels used in the scan. When
UseChanArray is false, the channels in the scan are defined by the StartChan and EndChan properties.
If your application requires a channel scan of non-consecutive channels, or channels repeated in a scan,
or if you need to set individual channelsto different gains, the ChanArray property should be used
instead of the StartChan and EndChan properties.

Up to 512 array elements can be loaded with any channel number in any order. The sample datain the
buffer will be in the same order as the channelsin the ChanArray. The NumChannels property is used
in conjunction with the ChanArray property to tell the custom control which element in the ChanArray
holds the last valid channel.

6-12

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR VBX

Counter/Timer Properties
Property Description RIW Access Valid Settings
Active A status flag showing if the acquisition is R Run True or False
active.
Alarm1l Writes a value to the alarm register #1 W Run 0 - 65535
Alarm2 Writes a value to the alarm register #2 W Run 0 - 65535
Arm Arm the enabled counters to start w Run True to Arm
counting.
Buffered Represents how many scans have been R Run 0 -4000000
collected and placed in the buffer.
BufferLength Represents the usable length of the user- R/W Design/Run | 1 to 32767
allocated arrays.
ComplEnable Enables/Disables Comparator #1 R/W Design/Run [True or False
Comp2Enable Enables/Disables Comparator #2 R/W Design/Run | True or False
Disarm Disable the enabled counters from w Run True to disarm
counting
DisarmSave Disable the enabled counters and move w Run True to disarm and save
their current values to their respective
hold registers
FoutDivider Selects the divider of the selected source R/W Design/Run | 0 -Divide by 16
before outputting the signal on fout 1 -Divide by 1
2-Divide by 2
3-Divide by 3
4-Divide by 4
5-Divide by 5
6-Divide by 6
7-Divide by 7
8-Divide by 8
9-Divide by 9
10-Divide by 10
11-Divide by 11
12-Divide by 12
13-Divide by 13
14-Divide by 14
15-Divide by 15
FoutSource Specifies the frequency output source R/W Design/Run | 0 - Fout Disabled
1-Counter 1 Input
2-Counter 2 Input
3-Counter 3 Input
4-Counter 4 Input
5-Counter 5 Input
6-Counter 1 Gate
7-Counter 2 Gate
8-Counter 3 Gate
9-Counter 4 Gate
10-Counter 5 Gate
11-1 MHz CIk
12-100 kHz Clk
13-10 kHz Clk
14-1 kHz Clk
15 -100 Hz Clk
FregCnt Specifies the number of counts R Run 0 - 65535
accumulated in the gating interval
FregCntSource Specifies which external input to read R/W Design/Run | 1-Counter 1 Input
frequency from 2-Counter 2 Input
3-Counter 3 Input
4-Counter 4 Input
5-Counter 5 Input
6-Counter 1 Gate
7-Counter 2 Gate
8-Counter 3 Gate
9 -Counter 4 Gate
Freqlnterval Specifies the gating interval in which to R/W Design/Run | 1 - 32767
compute frequency milliseconds
Load Load the initial counter values of the w Run True to activate
enabled counters with their respective
load or hold registers
LoadArm Load the initial counter values of the W Run True to activate
enabled counters with their respective

Programmer’'s Manual

6-13

Visual Basic VBX Support

Chapter 6

Counter/Timer Properties

Property Description R/IW Access Valid Settings
load or hold registers and enable the
counters to start counting.
NumScans The number of scans to collect R/W Design/Run | 1 - 32767, or -1 for infinite
cycle
ReadCounters Initiate reading of the values of the W Run True to initiate
specified counters in the background False to stop
using interrupts or stop the current
background reading.
Save Transfer the current counter values of the W Run True to activate
enabled counters to their respective hold
registers.
SetMasterMode Set the counters master mode register with | W Run True to activate
the values previously specified in the
master mode properties
SetCounterMode | Set the 9513's Mode register for the W Run 1-5 signifying the counter
specified counter with values previously number.
specified in the set counter properties
TimeOfDay Enables or Disables the time of day R/W Design/Run | 0 - Disabled
operation 1 - Divide by 5
2 - Divide by 6
3 - Divide by 10
CxBuffer Points to the user buffer for the incoming W Run The 0th element of a user-
x = 1-5 for data from ctr #x or O if ctr #x is not to be dimensioned integer array
counters 1-5 read or0
CxCntDir Selects whether ctr #x will count up or R/W Design/Run | 0 - down
x = 1-5 for down 1-up
counters 1-5
CxCntEdge Selects whether ctr #x will count when it R/W Design/Run | 0 - neg. count edge
x = 1-5 for receives a rising or falling edge on its 1- pos. count edge
counters 1-5 count source
CxCntRepeat Enables/Disables rearming ctr #x after R/W Design/Run | True or False
x = 1-5 for terminal count occurs
counters 1-5
CxCntSource Selects the source used as input to ctr #x R/W Design/Run | 0 - TC toggled output of last
x = 1-5 for ctr
counters 1-5 1 - Counter 1 Input
2 - Counter 2 Input
3 - Counter 3 Input
4 - Counter 4 Input
5 -Counter 5 Input
6 - Counter 1 Gate
7 - Counter 2 Gate
8 - Counter 3 Gate
9 - Counter 4 Gate
10 -Counter 5 Gate
11 - 1 MHz CIk
12 - 100 kHz Clk
13- 10 kHz Clk
14 - 1 kHz Clk
15 - 100 Hz Clk
CxCntType Select binary or BCD counting for ctr #x R/W Design/Run | 0 - Binary
x = 1-5 for 1-BCD
counters 1-5
CxEnable Enables/Disables ctr #x to respond to the R/W Design/Run | True or False
x = 1-5 for Arm, Disarm, DisarmSave, Load,
counters 1-5 LoadArm and Save properties
CxGateCitrl Selects how ctr #x will use its gate input or | R/W Design/Run | 0 - Gating Disabled
x = 1-5 for another counter’s gate input 1 - Level Hi of TC toggled
counters 1-5 output of last ctr
2 - Level Hi of gate of next ctr
3 -Level Hi of gate of last ctr
4 - Level Hi of gate of this ctr
5 - Level Lo of gate of this ctr
6 - Rising edge of gate of this
ctr
7 - Falling edge of gate of
this ctr
CxHold Reads the value of or writes a value to the | R/W Run 0 - 65535
x = 1-5 for hold register of ctr #x

counters 1-5

6-14

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

Counter/Timer Properties

counters 1-5

Property Description R/IW Access Valid Settings
CxLoad Writes a value to the load register of ctr #x | W Run 0 - 65535
x = 1-5 for
counters 1-5
CxOutput Specifies the state of ctr #x’s output R/W Design/Run | O - Inactive, always low
x = 1-5 for 1 - High pulse on terminal
counters 1-5 count
2 - Toggled on terminal count
3 - Inactive, High impedance
4 - Low pulse on terminal
count
CxReload Programs ctr #x to reload from its load R/W Design/Run | 0 - Reload from Load
x = 1-5 for register or reload from either its hold 1 - Reload from Load or Hold
counters 1-5 register or load register
CxSpecialGate Enables/Disables the special gate for ctr R/W Design/Run | True or False
x = 1-5 for #X

Event Routines - CTR

When the CTR.VBX tool is placed on an application form, 2 subroutine stubs are automatically
created. They are;

Sub CTR1 Triggered()

Sub CTR1_AcquisitionComplete()

When the system trigger has been satisfied by either an internal or external event, the subroutine
CTRL1 Triggered isautomatically called. Code required to post status or begin the data transfer
process can be located in this routine.

The trigger event is monitored in the hardware. It isthen passed to the custom control (in the
background) during the transfer of the first block of data which has been buffered in the external

hardware.

When the acquisition is completely finished, the Active property will become false and the subroutine
CTRL1_AcquisitionComplete will automatically be called.

CTR.VBX Note

When using the counter/timer control, the file DBK.BAS must be added to your application. Thisfile
contains the function declaration, “addressof”, which gets the address of aVVB integer array. The
Buffer property accepts this pointer.

Example:

Dim MyData(1000)As Integer
"The Following line would typically be placed in the Form_L oad subroutine.
Ctrl.C1Buffer = addressof(MyData(0))

Programmer’'s Manual

6-15

Visual Basic VBX Support Chapter 6

CTR VBX Properties
Active
Access: Read only
Valid setting: | True or False
Syntax: If Ctrl.Active = False then MsgBox “The acquisition is inactive”

The Active property serves as a status flag to show the state of the armed acquisition. At run-time the
Active property returns True to signify that the acquisition is still active, and falseisinactive. This
property is useful when the state of the acquisition isin question. Upon completion of any acquisition,
the Acquisition_Complete routine is automatically called. If polling the acquisition is preferred, use
the Active property.

Alarml, Alarm2
Access: Write only
Valid setting: | 0 - 65535
Syntax: Ctrl.ComplEnable = True ’ Enable comparator #1
Ctrl.Alarm1 = 1000 ' Set the Alarm register #1 to 1000
Ctrl.SetMasterMode = True

Specifies the value to write to the alarm registers 1 or 2, respectively. These alarm registers are only
used if the corresponding comparators are enabled with the Comp1Enable and Comp2Enable
properties. The operation of these registers is described under the SetMasterM ode property.

Arm
Access: Write only
Valid setting: | True to arm, False does nothing
Syntax: Ctrl.C1Enable = True
Ctr1.C3Enable = True
Ctrl.Arm = True ' Arm counters 1 and 3

Arm enables one or more counters to start counting. Setting this property to true will simultaneously
start al counters that have the CnEnable (n=1 to 5) property set to true. Thisis usually done after all
the other properties of the corresponding counters have been set. Setting this property to false does
nothing.

Buffered
Access: Read only
Valid settings: | 0-4000000
Syntax: Static ScansProcessed as Long

If ScansProcessed Ctrl.Buffered then
Call moveNewScan

End if

During an acquisition, the buffer specified by the CxBuffer (x=1to 5) property isfilled with incoming
data. The Buffered property holds the number of buffered scans that are presently valid in the integer
array. A scan of the counters consists of one reading from each of the counters configured with a non-
zero CxBuffer property.

If the NumScans property is set to -1, the acquisition isin Cycle mode, collecting an infinite number of
scans. In this mode, the integer array will be modeled as a circular buffer, starting at the beginning as
the end isreached. The program is responsible for moving the data to a new location, to disk for
example, before old datais overwritten. When in Cycle mode, the Buffered property can exceed the
size of the buffer by many times since it is keeping track of the total number of scans that have been
collected, not just the number that are presently in the buffer. Y our program should keep track of the
number of scans processed and compare that number with the value of the Buffered property to see if
new datais present.

6-16

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

BufferLength
Access: Read and Write
Valid setting: | 1to 32767
Syntax: Dim arrayBuffer(1000) as integer
Ctrl.C1Buffer = addressOf(arrayBuffer(0))
Ctrl.BufferLength = 1000

Represents the usable length of the user-allocated integer array that was assigned to the CxBuffer (x=1
to 5) property. Assigning the correct value to BufferLength keeps the acquisition from accidently
overrunning the end of the dimensioned array. If more than one buffer has been defined by the
CxBuffer property and the buffers are not dimensioned to be the same size, the BufferLength should be
set to the size of the smallest buffer. When the NumScans property is set to -1 (infinite cycle mode),
the BufferLength property is used by the control to know when to wrap to the beginning of the buffer.

ComplEnable, Comp2Enable

Access: Read and Write
Valid setting: | True or False
Syntax: Ctrl.ComplEnable = True ' Enable comparator #1

Ctrl.Alarm1 = 1000 '’ Set the Alarm register #1 to 1000
Ctrl.SetMasterMode = True

Enables/disables the use of comparators 1 or 2, respectively. The operation of the comparatorsis
described under the SetM asterM ode property.

Disarm
Access: Write only
Valid setting: True to disarm, False does nothing
Syntax: Ctrl.C1Enable = True
Ctrl.C3Enable = True
Ctrl.Disarm = True ' Disarm counters 1 and 3

Disarm stops one or more counters from counting. Setting this property to true will simultaneously
stop al counters that have the CxEnable (x=1to 5) property set to true. Setting this property to false

does nothing.

DisarmSave
Access: Write only
Valid setting: | True to disarm and save, False does nothing
Syntax: Ctrl.C1Enable = True

Ctrl.C3Enable = True
Ctrl.DisarmSave = True ' Disarm and save counters 1 and 3
count% = Ctrl.C1Hold ' Read the saved value from counter 1

Disarm stops one or more counters from counting and saves the count values of the counters in the hold
register. Setting this property to true will ssimultaneously stop all counters that have the CxEnable (x=1
to 5) property set to true. This property also saves the count values of those counters to the hold
register which can be read using the Hold property. Setting this property to false does nothing.

Programmer’'s Manual 6-17

Visual Basic VBX Support Chapter 6
FoutDivider
Access: Read and Write
Valid setting: | O- Divide by 16 4- Divide by 4 8- Divide by 8 12- Divide by 12
1- Divide by 1 5- Divide by 5 9- Divide by 9 13- Divide by 13
2- Divide by 2 6- Divide by 6 10- Divide by 10 14- Divide by 14
3- Divide by 3 7- Divide by 7 11- Divide by 11 15- Divide by 15
Syntax: Ctrl.FoutSource = 15 ’ Select 100Hz internal clock as the Fout source
Ctrl.FoutDivider = 5 ’ Select a divider of 5 for a 20Hz Fout signal
Ctrl.SetMasterMode = True ' Configure the master mode register

The FoutDivider property selects adivider of the FoutSource property. The source defined by the
FoutSource will be divided by this value before outputting the signal on the FOUT line (pin 30 of P3).

FoutSource

Access: Read and Write

Valid setting: | Value Source P3 Pin
0 Fout Disabled N/A
1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14
10 Counter 5 Gate 12
11 1 MHz Clk Internal
12 100 kHz Clk Internal
13 10 kHz CIk Internal
14 1 kHz Clk Internal
15 100 Hz Clk Internal

Syntax: Ctrl.FoutSource = 15 ' Select 100 Hz internal clock as the Fout source
Ctrl.FoutDivider = 5 ’ Select a divider of 5 for a 20 Hz Fout signal
Ctrl.SetMasterMode = True ' Configure the master mode register

The FoutSource property selects the source of the FOUT line (pin 30 of P3). This source will then be
divided by the value set by the FoutDivider property and output onto the FOUT line. Setting this
property to O will disable the FOUT signal. The possible inputs include each of the 5 counter input or
gate lines or one of 5 internal clock frequencies. See the following table for a complete listing of
sources and pin numbers.

FreqCnt
Access: Read only
Valid setting: | 0 - 65535
Syntax: Ctrl.FreqSource = 1 ’ Select counter 1 input as the frequency source

Ctrl.Freqginterval = 100 ’ Set the frequency interval to 100ms
count% = Ctrl.FreqCnt ' Read the number of counts during this interval
freq! = count% * 1000 / Ctrl.Freqginterval ’ Calculate the frequency

Contains the number of counts accumulated from the frequency source during the gating interval. The
frequency source is specified by the FreqCntSource property and the gating interval is specified in
milliseconds by the Freginterval property. The actual frequency can be calculated by multiplying 1000
times the value of FreqCnt and dividing by the gating interval in milliseconds. Nete: The counter 4
output (pin 32 of P3) must be externally connected to the counter 5 gate (pin 12 of P3). Reading this
property will reconfigure counters 4 and 5.

6-18 Programmer’s Manual

Visual Basic VBX Support

FreqCntSource
Access: Read and Write
Valid setting: | Value Source P3 Pin
1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14
Syntax: Ctrl.FreqSource = 1 ’ Select counter 1 input as the frequency source

Ctrl.Freqginterval = 100 ’ Set the frequency interval to 100ms
count% = Ctrl.FreqCnt ' Read the number of counts during this interval
freq! = count% * 1000 / Ctrl.Freqginterval ’ Calculate the frequency

Specifies which external input will be used when the FreqCnt property isread. See the FreqCnt
property for a complete description of reading frequencies using the FreqCntSource property.

FreqlInterval
Access: Read and Write
Valid setting: | 1 - 32767 milliseconds
Syntax: Ctrl.FreqSource = 1 ’ Select counter 1 input as the frequency source

Ctrl.Freqginterval = 100 ’ Set the frequency interval to 100ms
count% = Ctrl.FreqCnt ' Read the number of counts during this interval
freq! = count% * 1000 / Ctrl.Freqginterval ’ Calculate the frequency

Specifies the gating interval in milliseconds that will be used when the FreqCnt property isread. See
the FreqCnt property for a complete description of reading frequencies using the Freqinterval property.

Load
Access: Write only
Valid setting: | True to arm, False does nothing
Syntax: Ctrl.C1Enable = True

Ctrl.C3Enable = True
Ctrl.Load = True ' Load the count values of counters 1 and 3

Load initializes the count value of one or more counters. Setting this property to true will
simultaneously load theinitial count of all counters that have the CxEnable (x=1 to 5) property set to
true. Thisinitial count valueis set using the CxLoad property. Setting this property to false does

nothing.

LoadArm
Access: Write only
Valid setting: | True to arm, False does nothing
Syntax: Ctrl.C1Enable = True

Ctrl.C3Enable = True
Ctrl.LoadArm = True ' Load and arm counters 1 and 3

LoadArm initializes the count value of one or more counters and enables them to start counting.

Setting this property to true will simultaneoudly initialize the count values and start all counters that
have the CxEnable (x=1 to 5) property set to true. Theinitial count valueis set using the CxLoad
property. This property is usually used after all the other properties of the corresponding counters have
been set. Setting this property to false does nothing.

Programmer’'s Manual

6-19

Visual Basic VBX Support Chapter 6
NumScans
Access: Read and Write
Valid setting: 1-32767
-1 for infinite cycle
Syntax: Ctrl.NumScans = 1000 ' collect 1000 scans

The number of scansto collect when the ReadCounters property is set to true. If NumScansis set to -1,
the acquisition will continue until it is disarmed by setting the ReadCounters property to false. When
the BufferLength is reached, the buffer will wrap around to the beginning, overwriting the oldest scans.

In this case, your application should monitor the Buffered property and move the data to other
destinations before it is overwritten.

ReadCounters
Access: Write only
Valid setting: True to start reading the counters
False to stop reading the counters
Syntax: Ctrl.ReadCounters = True ’ Start the acquisition
Ctrl.ReadCounters = False ' Stop the acquisition

ReadCounters enabl es/disables reading the values of one or more countersin the background using
interrupts. Setting this property to true will enable the background acquisition on interrupts. An
interrupts will occur on arising transition on the interrupt input (pin 1 of P3) if the interrupt enable line
(pin 2 of P3) is pulled low. When an interrupt occurs the count value of all counters that have a data
buffer configured using the CxBuffer (x=1 to 5) property will be stored in the next available location of
the data buffer.

This acquisition uses the NumScans and BufferL ength properties to define the size of the data buffer
and the CxBuffer to define the location of the data buffer and which counter to read from. The
Buffered and Active properties can be used to monitor the state of the acquisition. The

CTR1 _Triggered subroutine will be called after the first scan is read from the counters and the
CTR1_AcquisitionComplete subroutine will be called when the acquisition is finished.

Save
Access: Write only
Valid setting: | True to save, False does nothing
Syntax: Ctr1.C1Enable = TrueCtrl.C3Enable = TrueCtrl.Save = True ' Save counters 1 and 3count% =
Ctrl.C1Hold ’ Read the saved value from counter 1

Save transfers the count values of one of more counters to their corresponding hold registers. Setting
this property to true will smultaneously save the count value to the hold register for all counters that
have the CxEnable (x=1 to 5) property set to true. The hold register which can be read using the
CxHold property. Setting this property to false does nothing.

SetMasterMode
Access: Write only
Valid setting: | True to set the master mode register, False does nothing

Ctrl.FoutSource = 15 ’ Select 100 Hz internal clock as the Fout source
Ctrl.FoutDivider = 5 ’ Select a divider of 5 for a 20 Hz Fout signal
Ctrl.SetMasterMode = True ' Configure the master mode register

Syntax:

Set the master mode register with the values previously set by the FoutDivider, FoutSource,
ComplEnable, Comp2Enable and TimeOfDay properties.

6-20 Programmer’s Manual

Chapter 6 Visual Basic VBX Support

SetCounterMode
Access: Write only
Valid setting: 1-5 signifying the counter number.
Syntax: Ctrl.SetCounterMode = 1 ’ Set counter 1 mode register

Set the specified counter’s mode register with values previously set by the CxCntDir (x=1t0 5),
CxCntEdge, CxCntRepeat, CxCntSource, CxCntType, CxGateCtrl, CxOutput, CxReload, and

CxSpecialGate properties.
TimeOfDay
Access: Read/Write
Valid setting: | Value Description
0 Disabled
1 Divide by 5
2 Divide by 6
3 Divide by 10
Syntax: Ctrl.TimeOfDay = 3 ’ Select divide by 10
Ctrl.SetMasterMode = True ' Configure master mode register

The TimeOfDay property enables/disables the time of day operation of the counters. This operation is
a special mode which causes counters 1 and 2 to turn over at counts that generate 24-hour time-of-day
accumulations. (See figure below.) The resolution of the time-of-day operation is 0.1 seconds. To use
the time-of-day mode, counter 1 must be configured for a 100Hz, 60Hz or 50Hz source (internal or
external) and the TimeOfDay property must be set to Divide by 10, 6 or 5 respectively. Thiswill
produce the 10Hz clock source needed to drive the time-of-day clock. The hold registers of counters 1
and 2 will hold the 24-hour time.

Counter 2

cis|cia|cidafciz|ciafcio] co [ca | cr|ce]cs [ca]ceca[ca]ci]co

2 (€] ®) ()

Hours Minutes

Counter 1

cis|cia|cidafciz|cuafcio] co [ca | cr|ce]cs [ca]ceca[ca]ci]co

®) © ©)

Hours 1/10 second +5,6,10

The following steps must be performed to use the time-of-day mode:

1. Setthe TimeOfDay property to Divide by 5, 6 or 10.

2. Set the SetMasterM ode property to true to configure the master mode register with the properties
setinstep 1.

3. Set C1GateCtrl=0 (no gating), C1CntEdge=1 (rising edge), C1Special Gate=False, C1Reload=0

(reload from load), C1CntRepeat=True (count repetitively), C1CntType=1 (BCD), C1CntDir=1

(count up).

Set the SetCounterMode to 1 to configure counter 1 with the properties set in step 3.

Set up counter 2 the same as counter 1 except that C2CntSource=0 (TC output of last counter).

Set the SetCounterMode to 2 to configure counter 2 with the properties set in step 5.

Set ClLoad and C2Load to O

Initialize the current 24-hour time-of-day setting according to the figure above by setting C1L oad

and C2Load again.

9. Load and arm counters 1 and 2 using the C1Enabled, C2Enabled and L oadArm properties.

© N UM

Programmer’'s Manual 6-21

Visual Basic VBX Support Chapter 6

C1Buffer, C2Buffer, C3Buffer, C4Buffer, C5Buffer

Access: Write only

Valid settings: | A pointer to the Oth element of a user-dimensioned integer array to read from the counter or O
to disable reading from the counter.

Syntax: Dim arrayBuffer(1000) as integer
Ctrl.C1Buffer = addressOf(arrayBuffer(0)) ' Read from counter 1 into arrayBuffer
Ctr1.C2Buffer = 0 ' Do not read from counter 2

The CTR VBX collects all readings in the background under interrupt control. Acquired datais placed
directly into a user-dimensioned VB integer array. For each counter to be read in the background, the
CxBuffer property should be assigned the value of the pointer to the integer array. For other counters
which will not be read from, the CxBuffer property should be set to 0. Once dimensioned, the pointer
to the integer array isyielded from the function call “addressOf”, supplied in the file DBK.BAS.

The datain the integer array can be accessed concurrently with the acquisition. The number of valid
scans in the integer array can be queried using the Buffered property.

Before the ReadCounters property is enabled, the CxBuffer properties must be assigned pointersto a
valid, dimensioned integer array. The dimensioned array must remain valid during the entire
background acquisition. If the array is dimensioned within a subroutine using the ReDim command,
this array will be deallocated as the program leaves the subroutine. If the acquisition is still active, the
acquisition will write over an undefined area of memory. For this reason, the array should be
dimensioned as a Global variable.

The dimensioned size of the array should be configured using the BufferLength property.

C1CntDir, C2CntDir, C3CntDir, C4CntDir, C5CntDir

Access: Read and Write

Valid setting: | 0 for counting down, 1 for counting up

Syntax: Ctr1.C1CntDir = 1 ' Configure counter 1 to count up
Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxCntDir (x=1to 5) property selects whether the counter will count up or down. The counter is
normally configured for down counting when generating a pulse or square wave. The CxLoad property
would be set to a positive value which will decrement to zero, defining the duration or width of the
waveform. In event counting, the counter would initially be set to 0 and configured to count up. The
CxHold property in this case would then contain the number of eventsreceived. The SetCounterMode
property must be used after setting CxCntDir to configure the desired counters in the mode register.

C1CntEdge, C2CntEdge, C3CntEdge, C4CntEdge, C5CntEdge

Access: Read and Write

Valid setting: | O for counting on a falling edge
1 for counting on a rising edge

Syntax: Ctrl.SetCounterMode =1 ’ Program counter 1 mode

The CxCntEdge (x=1 to 5) property selects whether the desired counter will count when it receives a
rising or falling edge on the source specified by CxCntSource. The SetCounterM ode property must be
used after setting CxCntEdge to configure the desired countersin the mode register.

6-22 Programmer’s Manual

Chapter 6 Visual Basic VBX Support

C1CntRepeat, C2CntRepeat, C3CntRepeat, C4CntRepeat, C5CntRepeat

Access: Read and Write

Valid setting: True enables repetitive counting
False disables repetitive counting

Syntax: Ctrl.C1CntRepeat = True ' Enable repetitive counting
Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxCntRepeat (x=1 to 5) property enables/disables rearming the specified counter after aterminal
count (TC) occurs. A terminal count occurs when adown counter reaches 0 or an up counter counts
past 65535 in binary count mode or 9999 in BCD count mode. When this TC occurs, the counter can
reset the value of the counter to the value contained in the load or hold register and start counting
again, or it can disarm itself. Applications such as software retriggerable one-shots would set
CxCntRepeat to false so that the one-shot pulse only occurs once after the Arm property is set. Other
applications such as rate generators, hardware retriggerable one-shots and square waves would set
CxCntRepeat to true so that the counter runs until it is disarmed. The SetCounterMode property must
be used after setting CxCntRepeat to configure the desired counters in the mode register.

C1CntSource, C2CntSource, C3CntSource, C4CntSource, C5CntSource

Access: Read and Write
Valid setting: | Value Source P3 Pin #
0 TC output of last counter N/A
1 Counter 1 Input 36
2 Counter 2 Input 19
3 Counter 3 Input 17
4 Counter 4 Input 15
5 Counter 5 Input 13
6 Counter 1 Gate 37
7 Counter 2 Gate 18
8 Counter 3 Gate 16
9 Counter 4 Gate 14
10 Counter 5 Gate 12
11 1 MHz CIk Internal
12 100 kHz Clk Internal
13 10 kHz Clk Internal
14 1 kHz Clk Internal
15 100 Hz CIk Internal
Syntax: Ctr1.C1CntSource = 15 ' Select the 100Hz internal clock sourceCtrl.SetCounterMode = 1 ’
Program counter 1 mode

The CxCntSource (x=1 to 5) selects the source which the specified counter will count. This source can
be any one of the counter input or gate pins or one of five internal clocksincluding 1IMHz, 100kHz,
10kHz, 1kHz and 100Hz. The source can aso be configured to be the terminal count (TC) of the
previous counter. Theinput or gate pins are commonly used for counting events from an external
source. Theinternal clock can be used to generate square wave and rate generators. The TC of the
previous counter occurs when the previous counter reaches 0 (down counting), 65535 (binary up
counting) or 9999 (BCD up counting). This allows counters to be concatenated internally rather than
externally. For example, counter 1 could be configured to count an external input and counter 2 could
be configured to count counter 1. Thiswould make the combination of counters 1 and 2 appear to be a
single 32-bit counter without any external connection. Counter 5 in this mode is adjacent to counter 1.

The SetCounterM ode property must be used after setting CxCntSource to configure the desired
counters the mode register.

Programmer’'s Manual 6-23

Visual Basic VBX Support Chapter 6

C1CntType, C2CntType, C3CntType, C4CntType, C5CntType

Access: Read and Write

Valid setting: | O for binary counting
1 for BCD counting

Syntax: Ctrl.C1CntType = 1 ' Configure binary counting
Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxCntType selects binary or BCD counting for the specified counter. Binary counting uses a
single 16-bit integer ranging from 0 to 65535. BCD (binary coded decimal) counting uses four 4-bit
numbers each of which ranges from 0 to 9, so that the wholel6-bit integer will have arange of 0 to
9999. The SetCounterMode property must be used after setting CxCntType to configure the desired
counters the mode register.

C1Enable, C2Enable, C3Enable, C4Enable, CSEnable

Access: Read and Write
Valid setting: | True or False
Syntax: Ctrl.C1Enable = True

Ctr2.C2Enable = False

Ctrl.C3Enable = True

Ctr2.C4Enable = False

Ctr2.C5Enable = False

Ctrl.Arm = True ' Arm counters 1 and 3

The CxEnable (x=1to 5) enables/disables the specified counter to respond to the Arm, Disarm,
DisarmSave, Load, LoadArm and Save properties.

C1GateCtrl, C2GateCtrl, C3GateCtrl, C4GateCtrl, C5GateCtrl

Access: Read/Write

Valid setting: | Value Gate Control

Gating Disabled

Level Hi of TC toggled output of last ctr
Level Hi of gate of next ctr

Level Hi of gate of last ctr

Level Hi of gate of this ctr

Level Lo of gate of this ctr

Rising edge of gate of this ctr

Falling edge of gate of this ctr

~NoO O~ WNEFO

Syntax: Ctrl.C1GateCtrl = 0 ' Disable gating

Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxGateCltrl (x=1to 5) property selects how the specified counter uses its gate pin or the gate pin of
the previous or next counter. If gating is disabled, the counter will count when armed regardless of the
state of the gate pins. If alevel gate is selected, the counter will only count while it is armed and the
desired level is applied to the proper gate pin. These settings include alevel high on the specified
counter, the next counter or the previous counter, or alevel low on specified counter. If afaling or
rising edge on this counter is selected, the counter will not operate until it receives the desired transition
on its corresponding gate pin while it isarmed. The final gate control islevel high on TC toggled
output of last counter. In this mode the current counter will run only when the TC toggled output of the
previous counter is high. See the CxOutput property for a complete description of TC toggled output.
Counter 1 is adjacent to counter 5 when using the previous or next counter.

The SetCounterM ode property must be used after setting CxCntGateCtrl to configure the desired
countersin the mode register.

6-24

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

C1Hold, C2Hold, C3Hold, C4Hold, C5Hold

Access: Read and Write
Valid setting: 0 - 65535
Syntax: Ctr1.C1Enabled = True

Ctrl.Save = True ' Save count value to the hold register
count% = Ctrl.C1Hold ' Read the hold register of counter 1
Ctrl.C1Hold = 1000 ’ Set the hold register of counter 1 to 1000

The CxHold (x=1to 5) reads or sets the value of the hold register of the specified counter. When event
counting, this register can be used to view the current count value of the counter without disturbing the
counting in progress. Thisis done using the Save or DisarmSave property. This register can also be
used to initialize the value of the counter when the CxReload property is set to reload from load or
hold. Seethe CxReload for a complete description of when this register is used.

ClLoad, C2Load, C3Load, C4Load, C5Load

Access: Write only
Valid setting: 0 - 65535
Syntax: Ctrl.C1Hold = 1000 ’ Set the hold register of counter 1 to 1000

The CxLoad (x=1 to 5) sets the value of the load register of the specified counter. Thisregister is used
to initialize the value of the counter when the Load or LoadArm property is set to true. It isalso used
when the CxCntRepeat property is set for repetitive counting and the counter reaches its terminal count.

C1Output, C20utput, C30utput, C40utput, C50Output

Access: Read and Write
Valid setting: | Value Output
0 Inactivealways low
1 High pulse on terminal count
2 Toggled on terminal count
3 Inactive, High impedance
4 Low pulse on terminal count
Syntax: Ctr1.C10utput = 2 ’ Select the output to be TC toggled
Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxOutput (x=1to 5) property controls the output line of the specified counter. The output line of
each counter can be disabled and either forced low or put into a high impedance state. It can also be
configured to go high or low during aterminal count (TC). A terminal count occurs when a counter
reaches 0 by counting down past 1 or up counts past 65535 in binary count mode or 9999 in BCD
count mode. Finally, the output can be configured to toggle after a TC. This mode is used to generate
variable duty cycle square waves.

The SetCounterM ode property must be used after setting CxOutput to configure the desired countersin
the mode register.

Programmer’'s Manual 6-25

Visual Basic VBX Support Chapter 6

C1Reload, C2Reload, C3Reload, C4Reload, C5Reload

Access: Read and Write

Valid setting: | O for Reload from Load
1 for Reload from Load or Hold

Syntax: Ctrl.C1Reload = 0 ' Reload from load only
Ctrl.SetCounterMode = 1 ' Program counter 1 mode

The CxReload (x=1 to 5) property selects whether the specified counter rel oads its count value from
just the load register or from either the load or hold register. The actual reloading of the counter is
related to the values of the CxSpecia Gate and CxGateCtrl properties. |If the reload property is set to
reload from load, the counter will always use the load register when it needs to reload the counter. This
usually occurs when the counter is configured for repetitive counting and it reaches a count of 0. If the
reload property is set to reload from load or hold, the counter will sometimes use the load register and
sometimes the hold register for reloading depending on the CxSpecial Gate setting. Seethe

CxSpecial Gate setting for a description of this.

The SetCounterM ode property must be used after setting CxReload to configure the desired countersin
the mode register.

C1SpecialGate, C2SpecialGate, C3SpecialGate, C4SpecialGate, C5SpecialGate

Access: Read and Write

Valid setting: | True or False

Syntax: Ctrl.SpecialGate = 0 ’ Disable the special gate
Ctrl.SetCounterMode = 1’ Program counter 1 mode

The CxSpecialGate (x=1to 5) property enables/disables the special gating operation of the specified
counter. If the special gateis disabled and the CxReload is set to reload from load, the counter will
reload itself from the load register. If the CxReload is set to reload from load and hold, the counter will
toggle between reloading from the load and hold registers. If the special gate is enabled and the
CxReload property is set to reload from load, an active edge on the gate will cause the counter to save
the count value in the hold register and rel oad the counter with the load register. 1f the CxReload
property is set to reload from load or hold, the gate will control which register isused. If the gateis
low during aterminal count the load register will be used to reload the counter, and if the gateis high
the hold register will be used.

The SetCounterM ode property must be used after setting CxSpecial Gate to configure the desired
countersin the mode register.

6-26

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

DAC VBX
D/A PROPERTIES
Property Description R/IW Access Valid Settings
ChVoltage(0 Specifies the voltage value to W Run 0 -4095
output to D/A channel 0 (0 - 5 Volts
ChVoltage(1 Specifies the voltage value to W Run 0 -4095
output to D/A channel 1. (0 - 5 Volts

Event Routines - DAC
None.

DAC Properties

ChVoltage(i)
Access: Write only
Valid settings: | O - 4095, representing O - 5 Volts when the reference is set to -5.
Syntax: Dacl.ChVoltage(0) = 2000
Dacl.ChVoltage(1) = 1000

Specifies the voltage value to output to D/A channel i. Theinteger value from 0 to 4095 is used to vary
the output voltage of the 12-bit D/As. The voltage varies from 0 to 5 volts when the on-board jumper
is set to Internal Reference. The following equation converts volts to counts.

counts = (4095 / (-voltageRef)) * desiredVoltage

For example, if the internal voltage reference of -5 voltsis used and 3 voltsis required on the output,
the count value to assign to the property would be calculated per the following equation:

counts = (4095 / (-(-5))) * 3
Dacl.ChVoltage(0) = counts

Programmer’'s Manual 6-27

Visual Basic VBX Support Chapter 6

DIO VBX
DIGITAL I/O PROPERTIES
Property Description RIW Access Valid Settings
Local Specifies whether the local chip is available. (not R/W | Design/Run True = local
available means expansion chips are available) False = expansion
LocalxSetAsInput Specifies whether local port x is to be configured as | R/W | Design/Run True = input
x=AorB input or output False = output
LocalxByte Set or read the byte on local port x R/W | Design/Run 0-255
Xx=AorB
LocalxBit(i) Set or read one of the 8 bits on local port x R/W | Run 0 or non-0
x=AorB
i=0to7
LocalCHiSetAsInput Specifies whether local port C - High nibble is to be R/W | Design/Run True = input
configured as input or output False = output
LocalCHiNibble Set or read the 4 bits on local port C, high nibble R/W | Design/Run 0-15
LocalCHiBit(i) Set or read one of the 4 bits on local port C, high R/W | Run 0 or non-0
i=0to3 nibble
LocalCLoSetAsInput | Specifies whether local port C - Low nibble is to be R/W | Design/Run True = input
configured as input or output False = output
LocalCLoNibble Set or read the 4 bits on local port C, low nibble R/W | Design/Run 0-15
LocalCLoBit(l) Set or read one of the 4 bits on local port C, low R/W | Run 0 ornon 0
I=0to3 nibble
ExpASetAsinput(i) Specifies whether expansion port A(i) is to be R/W | Run True = input
i=0to 7 configured as input or output False = output
ExpAByte(i) Set or read the byte on expansion port A(i R/W | Run 0 -255
i=0to7
ExpBSetAsInput(i) Specifies whether expansion port B(i) is to be R/W | Run True = input
i=0to 7 configured as input or output False = output
ExpBByte(i) Set or read the byte on expansion port B(i R/W | Run 0 -255
i=0to7
ExpCHiSetAsInput(i) | Specifies whether expansion port C(i) - High nibble R/W | Run True = input
i=0to 7 is to be configured as input or output False = output
ExpCHiNibble(i) Set or read the 4 bits on expansion port C(i), high R/W | Run 0-15
i=0to7 nibble
ExpCLoSetAslnput(i) | Specifies whether expansion port C(i) - Low nibble is | R/W | Run True = input
i=0to 7 to be configured as input or output False = output
ExpCLoNibble(i) Set or read the 4 bits on expansion port C(i), low R/W | Run 0-15
i=0to7 nibble
InitLocalPorts Configures the local 1/0 ports then outputs the W Run True to activate
values specified in the properties window to their
corresponding output ports. Note that this is only
necessary if the local output ports are expected to
be valid when switching from design to run mode.

Event Routines - DIO

None.

DIO Properties

Local

Access: Read and write

True = local
False = expansion

Valid settings:

Syntax: Diol.Local = True 'The local ports on P2 are being used.

Specifies whether the local ports or expansion ports are being used. 1f aDBK?20 or 21 is being used,
set this property to false and use the Exp___ propertiesto control the ports. If the local ports are being
used (no DBK 20 or 21s), then set this property to true and use the Local___ properties to control the
ports.

6-28 Programmer’s Manual

Chapter 6 Visual Basic VBX Support

LocalASetAsInput, LocalBSetAsInput, Local CHiSetAsInput, LocalCLoSetAsInput

Access: Read or write

Valid settings: True = input False = output

Syntax: Diol.LocalASetAsInput = True 'Configure local port A as input
theValue = Diol.LocalAByte 'Get the byte value from input port A

Specifies whether the specified local port isto be configured as input or output. The setting of any of
these properties automatically sets the output value of all of the portsto zero. These properties should
only be used when the local ports are being exercised. If expansion cards DBK20 or DBK 21 are being
used, the property Local should be set to False, and the Exp___ properties should be used.

LocalAByte, LocalBByte, Local CHiNibble, LocalCLoNibble

Access: Read or write

Valid settings: 0 to 255 for byte properties
0 to 15 for nibble properties.

Syntax: Diol.LocalASetAsInput = True 'Configure local port A as input
Diol.LocalBSetAsInput = False 'Configure local port B as output
theValue = Diol.LocalAByte 'Get the byte value from input port A
Diol.LocalBByte = 255 'Set all bits high on port B

These properties set or read the bytes on the local digital 1/0 on P2. The C port is configured as 2
independent 4-hit nibbles. Each nibble can be independently set as an input or output. The byte values
set or read should be between 0 and 255, the nibble values can be between 0 and 15. Bits above the 8th
for byte values and bits above the 4th for nibble values will be ignored when assigning values to these
properties. These properties should only be used when the local ports are being exercised. |If
expansion cards DBK 20 or DBK 21 are being used, the property Local should be set to False, and the
Exp___ properties should be used.

LocalABit(i), LocalBBit(i), Local CHiBit(i), LocalCLoBit(i)

Access: Read or write

Valid settings: 0 for TTL low
non-zero for TTL high

Syntax: Diol.LocalASetAsInput = True 'Configure local port A as input
Diol.LocalBSetAsInput = False 'Configure local port B as output
theBit = Diol.LocalABit(0) 'Get the bit value of bit 0 on port A
Diol.LocalBBit(0) = 1 'Set bit O on port B to low
Diol.LocalBBit(1) = 0 'Set bit 1 on port B to high

These properties set or read the bits on the local digital I/0 on P2. The C port is configured as 2
independent 4-hit nibbles. Each nibble can be independently set as an input or output. The bit values
set or read are zero or non-zero. Thei index which ranges from 0 to 7 (or 0 to 3) indicates what bit of
the port isto be read or set. These properties should only be used when the local ports are being
exercised. If expansion cards DBK 20 or DBK 21 are being used, the property Local should be set to
False, and the Exp___ properties should be used.

Programmer’'s Manual 6-29

Visual Basic VBX Support Chapter 6
ExpASetAsInput(i), ExpBSetAsInput(i), ExpCHiSetAsInput(i), ExpCLoSetAsInput(i)
Access: Read and write
Valid settings: | True = input, False = output
Syntax: Diol.ExpASetAsinput(0) = True
"Configure port A on 1st connector of DBK20 at address A as input
Diol.ExpBSetAsInput(2) = False
"Configure port B on 1st connector of DBK20 at address B as output
Diol.ExpASetAsinput(5) = False
"Configure port A on 2nd connector of DBK20 at address C as output
theValue = Diol.ExpAByte(0)
'Get the value from port A on 1st connector of DBK20 at address A
Diol.ExpBSetAsInput(2) = 255
'Set all bits high on port B on 1st connector of DBK20 at address B
Diol.ExpASetAsinput(5) = 0
'Set all bits low on port A on 2nd connector of DBK20 at address C
Specifies whether the specified expansion port isto be configured as i
input or output. The setting of any of these properties automatically i '"g'ex Acf'f' Aﬁe"tetd
sets the output value of all of the portsto zero. Thei index, set from 0 T T
to 7, specifies the expansion section on the DBK 20 and 21s connected. > B 1st connector
As many as 4 cards can be connected, each with 2 connectors. The 3 B 2nd connector
jumper on the expansion cards marked “A-B-C-D” allows the user to 4 C 1st connector
assign a unigue address to each card as follows. S C 2nd connector
6 D 1st connector
These properties should only be used when DBK 20 or DBK 21 digital 7 D 2nd connector

expansion cards are used and the Local property is set to false. If no expansion cards used, the
property Local should be set to True, and the Local __ properties should be used.

ExpAByte(i), ExpBByte(i), ExpCHiNibble(i), ExpCLoNibble(i)

Access:

Read and write

Valid settings:

0 to 255 for byte properties, 0 to 15 for nibble properties.

Syntax:

Diol.ExpASetAsinput(0) = True

"Configure port A on 1st connector of DBK20 at address A as input
Diol.ExpBSetAslnput(2) = False

"Configure port B on 1st connector of DBK20 at address B as output
Diol.ExpASetAsinput(5) = False

"Configure port A on 2nd connector of DBK20 at address C as output
theValue = Diol.ExpAByte(0)

‘Get the value from port A on 1st connector of DBK20 at address A
Diol.ExpBSetAsInput(2) = 255

'Set all bits high on port B on 1st connector of DBK20 at address B
Diol.ExpASetAsinput(5) = 0

'Set all bits low on port A on 2nd connector of DBK20 at address C

These properties set or read the bytes on the expansion digital 1/0 from the DBK20 and 21s. TheC
ports on each card are configured as 2 independent 4-bit nibbles. Each nibble can be independently set
asan input or output. The byte values set or read should be between 0 and 255, the nibble values can
be between 0 and 15. Bits above the 8th for byte values and bits above the 4th for nibble values will be
ignored when assigning values to these properties. Thei index, set from 0 to 7, specifies the expansion
section on the DBK 20 and 21s connected. As many as 4 cards can be connected, each with 2
connectors. The jumper on the expansion cards marked “ A-B-C-D” allows the user to assign a unique
addressto each card as follows.

i IndexCard AffectedOA 1st connector1A 2nd connector2B 1st connector3B 2nd connector4C
1st connector5C 2nd connector6D 1st connector7D 2nd connector

These properties should only be used when DBK20 or DBK 21 digital expansion cards are used and the
Local property isset to false. If no expansion cards are used, the property Local should be set to True,
and the Local___ properties should be used.

6-30

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

InitLocalPorts

Access:

Write only

Valid settings:

True to activate

Syntax:

Diol.lnitLocalPorts = True

This property configures the local 1/0 ports then outputs the values specified in the properties window
to their corresponding output ports. Note that thisis only necessary if the local output ports are
expected to be valid when switching from design to run mode. If the Local byte propertiesare set in
the properties window, these values will not automatically appear on the output ports until the property
InitLocalPortsis set to true. Thisisunnecessary if the local byte properties are assigned in code.

Programming Examples

These programming examples the proper use of custom VBX properties. The user interface and
elegance are minimized for the sake of clarity. Each exampleis preceded by a graphic of the
application form and listing of the design-time properties of the controls set in the Properties window.

Example Summary

Example Description Controls Featured Properties Page #
Used
ADC1 Analog input of one scan using start | DBK, ADC | Arm Buffer 9-33
and end channel parameters BufferedLength EndChan
GlobalGain Open
SoftTrig StartChan
ADC2 Analog input of multiple scans using | DBK, ADC | Active Arm 9-35
start and end channel, and trigger Buffer Buffered BufferedLength
parameters EndChan Frequency
GlobalGain NumScans
Open SoftTrig
StartChan TrigLevel TrigRefVoltage
TrigSource TrigSourceRising
ADC3 Analog input of multiple scans using | DBK, ADC | Arm BipolarArray 9-39
ChanArray and trigger Buffer Buffered
parameters BufferLength ChanArray
Frequency GainArray
NumChannels NumScans
Open SoftTrig
UseChanArray
ADC4 Analog input direct-to-disk program DBK, ADC | Arm Buffer 9-42
that uses the input buffer in a Buffered BufferLength
continuous circular fashion BufferOverrun EndChan
Frequency GlobalGain
NumsScans (as infinite) Open
SoftTrig StartChan
TrigLevel TrigSourceRising
TrigSource
ADC5 Analog input using expansion DBK, ADC | Active Arm 9-47
cards. Converts counts to volts Buffer BufferLength
EndChan GlobalGain
Open SoftTrig
StartChan
DAC1 Analog output. Controls both DBK, DAC | ChVoltage Open 9-51
DACs.
DIO1 Digital I/0O. Provides byte-wise I/O DBK, DIO | ExpAByte ExpASetAsinput 9-52
to local and expansion ports ExpBByte ExpBSetAsinput
ExpCHiNibble ExpCHiSetAsInput
ExpCLoNibble ExpCLoSetAsInput
Local LocalAbyte
LocalASetAsInput LocalBbyte
LocalBSetAsInput LocalCHiNibble
LocalCHiSetAsInput LocalCLoNibble
LocalCLoSetAsInput Open
DIO2 Digital I/0O. Provides bit-wise 1/O for | DBK, DIO Local LocalABit 9-54
local ports. LocalASetAsInput LocalBBit
LocalBSetAsInput LocalCHiBit
LocalCHiSetAsInput LocalCLoBit
LocalCLoSetAsInput ~ Open
Programmer’'s Manual 6-31

Visual Basic VBX Support Chapter 6
Example Description Controls Featured Properties Page #
Used
CTR1 Counter/Timer. Output variable DBK, CTR | CxCntDir CxCntEdge 9-59
duty-cycle waveforms. CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCtrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate,
Disarm LoadArm
Open SetCounterMode
CTR2 Counter/Timer. Totalize events on | DBK, CTR | CxCntDir CxCntEdge 9-62
the counter inputs. CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCitrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate
Disarm LoadArm
Load Open
Save SetCounterMode
CTR3 Counter/Timer. Read the frequency | DBK, CTR | CxCntDir CxCntEdge 9-66
of each counter input using low- CxCntRepeat CxCntSource
level counter properties. CxCntType CxEnable
CxGateCitrl CxHold
CxLoad CxOutputCtrl
CxReload CxSpecialGate
Disarm LoadArm
Open Save
SetCounterMode
CTR4 Counter/Timer. Configure the DBK, CTR | FoutDivider FoutSource 9-68
source and divider of the Fout Open SetMasterMode
pin.
CTR5 Counter/Timer. Display the DBK, CTR | CxCntDir CxCntEdge 9-70
elapsed time from the start if the CxCntRepeat CxCntSource
program using the time-of-day CxCntType CxEnable
operation of the counter. CxGateCitrl CxOutputCtrl
CxReload CxSpecialGate
CxLoad CxHold
Disarm LoadArm
Open Save
SetCounterModeRSet MasterMode
TimeOfDay
CTR6 Counter/Timer. Read the frequency | DBK, CTR | FreqCnt FreqCntSource 9-72
of each counter using the built-in Freginterval Open
frequency properties.
CTR7 Counter/Timer. Totalize events on DBK, CTR | Active Buffered 9-75
the counter inputs using a BufferLength CxBuffer
background transfer and write CxCntDir CxCntEdge
totalized values to disk. CxCntRepeat CxCntSource
CxCntType CxEnable
CxGateCitrl CxLoad
CxOutputCtrl CxReload
CxSpecialGate Disarm
LoadArm NumScans
Open ReadCounters
SetCounterMode

6-32

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

ADC1

£l
Chan(0) »[2] 1]
: <+— ADCA1
" End Chan ™ \Chech
Chan(1) 'EE < dataText
r Gain
GetVal T Get a scan Y
ADCI Form
Begin ADC Adcl
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 'False
GlobalGain = 0 "0 - Base Unit X1
GlobalSE = 0 'False
Left = 30
NumChannels = 1
NumScans = 1
OneShot = 0 'False
StartChan = 0
Top = 165
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 'Software
TrigSourceRising = -1 True
UseChanArray = 0 'False
End
Begin DBK Dbk1
IntLevel = 7
Left = 30
LptPort = 0 'LPT1
Protocol = 1 '4 Bit 110
Top = 810
End

Const MAXBUF = 100
Const STARTCH =0
Const ENDCH =1
Dim NL As String

'The size of my data buffer

'Mnemonic to identify the index of the control array
'Mnemonic to identify the index of the control array
'Used to separate the channels in the text box

Dim dataBuffer(MAXBUF) As Integer
'This is the data buffer for all of the analog input data
Sub Adcl_AcquisitionComplete ()
Dim i As Integer
Dim NumberOfChannels As Integer

'At this point, the scan is already in the array dataBuffer.
"The following code extracts the data from the integer array,
‘dataBuffer, and places into the TextBox dataText. So that each
‘channel value occupies one line in the TextBox, a Newline (NL)
'is placed between each reading.
NumberOfChannels = chan(ENDCH).Listindex - chan(STARTCH).Listindex
dataText. Text = Format$(dataBuffer(0))
For i =1 To NumberOfChannels
dataText.Text = dataText.Text + NL + Format$(dataBuffer(i))
Next i
End Sub

Sub Chan_Click (Index As Integer)
'Adjust the StartChan and EndChan properties using the

Programmer’'s Manual

6-33

Visual Basic VBX Support

Chapter 6

End Sub

‘Listindex property of the combobox.
If Index = STARTCH Then

adcl.StartChan = chan(STARTCH).ListIndex
Else

adcl.EndChan = chan(ENDCH).ListIndex
End If

Sub Form_Load ()

End Sub

Dim i As Integer

'Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

'Open DagBook driver and allocate a data buffer

dbk1.0Open = True

adcl.Buffer = addressOf(dataBuffer(0)) 'dataBuffer is has global scope
adcl.BufferLength = MAXBUF

'Put channel choices in combos
Fori=0To 15
chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)
Next i
chan(STARTCH).Listindex = 0
chan(ENDCH).ListIndex = 0

'Put gain choices in combo
gain.AddItem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Listindex =0

Sub Form_Unload (Cancel As Integer)

End Sub

dbk1.0Open = False
End

Sub gain_Click ()

End Sub

'Use the combo’s lisindex property to set the GlobalGain.
‘GlobalGain will be used on all the channels in the scan. To
"assign independent gains to each channel, use the ChanArray
‘property rather than StartChan and EndChan.
adcl.GlobalGain = gain.ListIndex

Sub GetVal_Click ()

End Sub

'Start the acquisition
adcl.Arm = True

'Since the trigger source is Software, issue the software
‘trigger command. If the trigger source is external, this
‘command should not be issued.

adcl.SoftTrig = True

6-34

Programmer’s Manual

Visual Basic VBX Support

Chan(0)

B

 Chaseel lange

DBK1

Chan(1)

s

FreqText

(CE|
p [t [He

I~ Frequanoy
B ol Gooss 7| T GEn T |

gain
numScansText

oy]

LT TR T —

riseFall(0)

trigSourceCombo—p

'ﬁ' Himing
Frrvediate G Fakling

[Teigger Lewgd ™

trigLeveScroll

trigLevelLabel

getVal——————

dataText

A

 Shahes

bufferedLabel

< statusLabel

ADC2 Form

Begin ADC Adcl
BufferLength
EndChan
Frequency
GlobalBipolar
GlobalGain
GlobalSE
Left
NumcChannels
NumScans
OneShot
StartChan
Top
TrigLevel
TrigRefVoltage
TrigSource
TrigSourceRising
UseChanArray

10000

'False

"0 - Base Unit X1
'False

o

'False

OgOOI—‘I—‘OOOO

©

'Software
True
'False

'
-

o

End

Begin DBK Dbkl
IntLevel
Left
LptPort
Protocol
Top

7
45
0

1
540

'LPT1
'4 Bit1/0

End

Const MAXBUF = 32000
Const STARTCH =0
Const ENDCH =1
Const IMMEDIATE =0
Const TTL=1

Const ANALOG =2

'Set the analog input buffer length

'Mnemonic to identify the index in the control array
'Mnemonic to identify the index in the control array
'Mnemonic to identify trigger source from combo listindex
'Mnemonic to identify trigger source from combo listindex
'Mnemonic to identify trigger source from combo listindex

Dim NL As String '(Newline) used to separate the channels in the text box

Dim dataBuffer(MAXBUF) As Integer 'The data buffer for all analog input operations

Dim bigString As String ‘Intermediate string for the data destined for the text box. It's
‘faster to manipulate the string data in a string variable
‘than in a textbox.

Sub Adcl_AcquisitionComplete ()
"At this point, the collected data is in the integer array, dataBuffer.
"This subroutine organizes the data in rows and columns for printing
'in the textbox.

Programmer’s Manual

6-35

Visual Basic VBX Support

Chapter 6

End Sub

Dim i As Integer

Dim scan As Integer
Dim chans As Integer
Dim unsigned As Long

"All of the string manipulation takes place in bigString, then
'bigString is transferred in to the textbox. This is much faster
‘than manipulating the string directly in the textbox.

'Put the channel labels across the top

bigString = Chr$(9)

For i = chan(STARTCH).ListIndex To chan(ENDCH).ListIndex
bigString = bigString + “CH” + Format$(i) + Chr$(9)

Next i

bigString = bigString + NL

'Put each scan in a single row, separating the channels with a tab
‘character. Separate each scan with a newline.
chans = chan(ENDCH).ListIndex -chan(STARTCH).ListIndex + 1
For scan = 0 To adcl.Buffered - 1
bigString = bigString + Format$(scan + 1) + Chr$(9)
Fori=0Tochans-1
'Since the A/D converter is a full 16 bits, VB's integer type
'incorrectly interprets the MSB as a sign bit. The next
‘two lines create an unsigned value from 0 to 65535.
unsigned = dataBuffer(i + scan * chans)
If unsigned 0 Then unsigned = unsigned + 65536
bigString = bigString + Format$(unsigned) + Chr$(9)
Next i
bigString = bigString + NL
Next scan
dataText.Text = bigString

'Update status textbox
statusLabel.Caption = “Idle”

Sub Adcl_Triggered ()

End Sub

'Update the status textbox
statusLabel.Caption = “Triggered”

Sub Chan_Click (Index As Integer)

End Sub

'Update the startChan and endChan properties of ADC1.

'Keep the startChan from being higher that endChan.
If chan(STARTCH).Listindex chan(ENDCH).Listindex Then
MsgBox “End channel must be greater than Start channel”
chan(STARTCH).Listindex = 0
chan(ENDCH).ListIndex = 0
Exit Sub
End If
'Start and End combos are indices 0 and 1 in a control array. Depending
‘on the index argument, update the ADC1 property.
If Index = STARTCH Then
adcl.StartChan = chan(STARTCH).ListIndex
Else
adcl.EndChan = chan(ENDCH).ListIndex
End If

Sub Form_Load ()

Dim i As Integer

'Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

'Open DagBook driver and allocate a data buffer
dbk1.0Open = True
adcl.Buffer = addressOf(dataBuffer(0))

'Set bufferLength so the ADC VBX can perform boundary checking
adcl.BufferLength = MAXBUF

6-36

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

'Set the default frequency and number of scans
numScansText. Text = “10"
freqText = “100"

'Put channel choices in combos
Fori=0To 15
chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)
Next i
chan(ENDCH).ListIndex = 0
chan(STARTCH).Listindex = 0

'Put gain choices in combo
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Listindex =0

'Put trigger source choices in combo
trigSourceCombo.AddItem “Immediate”
trigSourceCombo.Addltem “TTL”
trigSourceCombo.Addltem “Analog”
trigSourceCombo.Listindex = 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False
End

End Sub

Sub FreqText_Change ()
'Set the frequency property of ADC1
If freqText.Text “” Then
adcl.Frequency = Int(Val(freqText. Text))
End If
End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

End Sub

Sub gain_Click ()
'Set the GlobalGain of ADC1. To set the gain of each channel independently,
‘'use the ChanArray property rather than the startChan and endChan properties.
adcl.GlobalGain = gain.Listindex

End Sub

Sub GetVal_Click ()
'Start the acquisition.

If getVal.Caption = “Acquire” Then
"Turn the button into a Disarm button for the duration of the acquisition
getVal.Caption = “Disarm”

‘Update the status textbox
statusLabel.Caption = “Waiting for trigger”
statusLabel.Refresh

"Arm the system
adcl.Arm = True

'If the trigger source in Software, issue the software trigger.
If trigSourceCombo.Listindex = 0 Then adcl1.SoftTrig = True

'Enable a timer to read the number of scans that have been collected.
statusTimer.Enabled = True

Else
'Disarm the acquisition. The statusTimer will sense that the acquisition

Programmer’'s Manual

6-37

Visual Basic VBX Support

Chapter 6

'has been disabled and will set the caption of the button back to “Acquire”.
adcl.Arm = False
End If
End Sub

Sub NumScansText_Change ()
'Set the numberScans property of ADC1.
If numScansText.Text “” Then
adcl.NumScans = Int(Val(numScansText))
End If
End Sub

Sub NumScansText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

End Sub

Sub RiseFall_Click (Index As Integer)
'Set the trigger edge to rising or falling.

If riseFall(0).Value = True Then
adcl.TrigSourceRising = True
Else
adcl.TrigSourceRising = False
End If
End Sub

Sub StatusTimer_Timer ()
'Post the number of scans that have been collected.

'If the acquisition is no longer active, disable this timer.
If adcl.Active = 0 Then
statusTimer.Enabled = False
getVal.Caption = “Acquire”
statusLabel.Caption = “Idle”
End If

'Use the ADC1's Buffered property to get the number of buffered scans,
‘then post the number in the label.
BufferedLabel.Caption = Str$(adcl.Buffered)

End Sub

Sub TrigLevelScroll_Change ()
'The DagBook trigger level can range from -5 to +5 volts.
"The scrollbar min and max are -50 to +50.
'Dividing the scroll bar value by 10 allows the user 0.1 volt resolution
'in setting the trigger value.

'As the scrollbar is operated, post the value in the label below.
trigLevelLabel.Caption = Format$(trigLevelScroll.Value / 10) + “V”

'Set the trigLevel property.
adcl.TrigLevel = trigLevelScroll.Value / 10
End Sub

Sub TrigLevelScroll_Scroll ()
Call TrigLevelScroll_Change
End Sub

Sub TrigSourceCombo_Click ()
'Set the trigSource property.
adcl.TrigSource = trigSourceCombo.ListIndex

'If the trigger source is analog, enable the trigger level scrollbar.
If trigSourceCombo.Listindex = IMMEDIATE Then
trigLevelScroll.Enabled = False
riseFall(0).Enabled = False
riseFall(1).Enabled = False
Elself trigSourceCombo.Listindex = ANALOG Then
trigLevelScroll.Enabled = True

6-38

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

ADC3

Chan(0)
gain(0)
polar(0)

Chan(15)
gain(15)
polar(15)

riseFall(0).Enabled = True
riseFall(1).Enabled = True

Else
riseFall(0).Enabled = True
riseFall(1).Enabled = True
End If
End Sub
ADEd
L = 1 Dt
THE =
v g i« DBKA -
[l
2 |Bapatn AOE
£ | apalen <—DBK2
A1 [Bopal
& || Bopalan
2] | Bpatas g
&) [Epalan | 4]
A | Bepala
2| [Bipta |]
+| | Fpakw
| < dataText
+|[Fepata:
=t -
&1 | Bapala =]
" Fi £ ol Sran Scans Bullesed 7| oy g
[Tog__]+ il [. ”
| I 4 T
FreqTest NumScansTest GetVal Buffen"edLabeI StatusLabel
ADC3 Form
Begin ADC Adcl
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 'False
GlobalGain = 0 "0 - Base Unit X1
GlobalSE = 0 'False
Left = 3360
NumcChannels = 1
NumScans = 1
OneShot = 0 'False
StartChan = 0
Top = 600
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 'Software
TrigSourceRising = -1 True
UseChanArray = -1 ‘True
End
Begin DBK Dbk1
IntLevel = 7
Left = 3360
LptPort = 0 'LPT1
Protocol = 1 ‘4 Bit 1/10
Top = 1080
End

Const MAXBUF = 32000 'The analog input buffer size
Dim NL As String '(Newline), used to separate channel readings in textbox
Dim dataBuffer(MAXBUF) As Integer
"The analog input data buffer integer array
Dim bigString As String 'The string destined for the textbox is manipulated in
‘bigString. This is faster than performing character
'manipulation in a textbox.
Sub Adcl1_AcquisitionComplete ()
'At this point, the analog input data is in the buffer, dataBuffer. This subroutine pulls the values
out of the integer array, formats them, then places them into the textbox for viewing. Since

Programmer’s Manual

6-39

Visual Basic VBX Support Chapter 6

the data destination in this program is a string, the number of scans is limited by the
maximum string size of VB.
Dim i As Integer
Dim scan As Integer
Dim chans As Integer
"Put up the hour glass. Moving the data into the string is time-consuming.
mousePointer = 11
DoEvents
'Put tabs between channels and newlines between scans, then put entire
'string into the textbox.
bigString = *”
chans = adc1.NumChannels
For scan = 0 To adcl.Buffered - 1
bigString = bigString + Format$(scan + 1) + Chr$(9)
Fori=0Tochans-1
bigString = bigString + Format$(dataBuffer(i + scan * chans)) + Chr$(9)
Next i
bigString = bigString + NL
Next scan
dataText.Text = bigString
"Update status box
StatusLabel.Caption = “Idle”
'Get rid of the hourglass
mousePointer = 0
End Sub

Sub Adcl_Triggered ()
'Update the status box
StatusLabel.Caption = “Triggered”
End Sub

Sub Chan_Click (Index As Integer)
'Make sure there are no holes in the channel list.
Dim i As Integer
'If a channel combo is set to “none”, then all channels below should be “none” also.
If chan(Index).Listindex = 0 Then
For i = Index To 15
chan(i).Listindex = 0

Next i
Else
For i =Index To O Step -1
If chan(i).Listindex = 0 Then
MsgBox “Fill in empty sequencer locations above first”
chan(Index).Listindex = 0
Exit Sub
End If
Next i
End If

End Sub

Sub Form_Load ()

Dim i As Integer
Dim | As Integer

'Create a NEW LINE string to separate the channels
NL = Chr$(13) + Chr$(10)

'Open DagBook driver and allocate a data buffer
dbk1.0Open = True
adcl.Buffer = addressOf(dataBuffer(0))

'Set bufferLength to all adcl to check buffer boundaries
adcl.BufferLength = MAXBUF

'Set the default frequency and number of scans
numScansText. Text = “10"
freqText = “100"

'Load the combo boxes with channel, gain and pole choices

Forl=0To 15
chan(l).Addltem “None”
Fori=0To 15
chan(l).AddItem Format$(i)
Next i

gain(l).Addltem “X1"
gain(l).Addltem “X2"
gain(l).Addltem “X4"
gain(l).Addltem “X8"
polar(l).Addltem “Bipolar”

6-40 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

polar(l).Addltem “Unipolar”
Next |
‘Initialize the combos
Forl=0To 15
chan(l).Listindex = + 1
gain(l).Listindex =0
polar(l).Listindex = 0
Next |
End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False
End Sub

Sub FreqText_Change ()
'Set the frequency property of ADCL1.
If freqText.Text “” Then
adcl.Frequency = Int(Val(freqText. Text))
End If
End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii
Case &H30 To &H39 'All numbers

Case &H8 'Back space
Case Else
keyascii =0 'Reject all other characters
End Select

End Sub

Sub GetVal_Click ()
"Arm the system
Dim i As Integer
If getVal.Caption = “Acquire” Then
'Set the button caption to “Disarm” for the duration of the acquisition.
getVal.Caption = “Disarm”
'Set the chanArray, gainArray, and BipolarArray properties of ADC1.
Fori=0To 15
'Find out how many channels are configured (not set to NONE).
If chan(i).Listindex = 0 Then
If i = 0 Then Exit Sub
'If the 1st channel combo is set to NONE, exit
Exit For
End If
adcl.ChanArray(i) = chan(i).Listindex - 1
adcl.GainArray(i) = gain(i).Listindex
adcl.BipolarArray(i) = polar(i).Listindex
Next i
adcl.NumChannels =i
'When NONE is detected, set the NumChannels property
'Update the status box
StatusLabel.Caption = “Waiting for trigger”
StatusLabel.Refresh

"Arm the acquisition
adcl.Arm = True

'Send the software trigger.
adcl.SoftTrig = True

'Enable the timer that checks how many scans have been collected.
statusTimer.Enabled = True

Else
‘Disarm the acquisition. The status timer will detect the disarm and set the button caption back
to “Acquire”
adcl.Arm = False
End If

End Sub

Sub NumScansText_Change ()
'Set the numScans property.
If numScansText.Text “” Then
adcl.NumScans = Int(Val(numScansText))
End If
End Sub

Programmer’'s Manual

6-41

Visual Basic VBX Support

Chapter 6

Sub NumScansText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

End Sub

Sub StatusTimer_Timer ()
If adc1.Active = 0 Then
statusTimer.Enabled = False
getVal.Caption = “Acquire”

End If
BufferedLabel.Caption = Str$(adcl.Buffered)
End Sub
ADC4
Begin ADC Adcl
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 'False
GlobalGain = 0 "0 - Base Unit X1
GlobalSE = 0 'False
Left = 2580
NumChannels = 1
NumScans = -1
OneShot = 0 'False
StartChan = 0
Top = 2520
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 'Software
TrigSourceRising = -1 ‘True
UseChanArray = 0 'False
Channel Range™ | [Trigger Source 7| .
- o _ @i riseFall(0)
Chan(0) Start End Fallirg trigSourceCombo
Chan(1) [| !I - [Trigger Level .
7 = trigLevelScroll
Frequency — | < trig LevellLabel
FreqText » (100 Hz
gain |’ﬂ of Scans _J'iain_ Acquire <« GetVal
M1
NumScansText — -
[Scans buffered Status
BufferedLabel > 0 —‘ ’V||dle <+ statusLabel
ADC T
Citexh _
DBK1 ADC1 Timer1
ADC4 Form
End
Begin DBK Dbk1
IntLevel = 7
Left = 3060
LptPort = 0 'LPT1
Protocol = 1 '4 Bit 110
Top = 2520
End
6-42 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

Const MAXBUF = 16000 'Maximum buffer size

Const STARTCH =0 ‘Index of start channel in control array
Const ENDCH =1 ‘Index of end channel in control array
Const IMMEDIATE =0 'Trigger source mnemonic

Const TTL=1 "Trigger source mnemonic

Const ANALOG =2 "Trigger source mnemonic

Dim dataBuffer(MAXBUF) As Integer 'The data buffer for all incoming data
Dim scansProcessed As Long’keeps track of how many scans in dataBuffer have been sent to disk
Dim scanSize As Integer ‘the number of bytes in a scan
Dim MaxBuflndex As Integer 'the max scan index in the buffer
Dim readindex As Integer ‘the array index from which to read the next value
Dim fHandle As Integer ‘the file handle of the data destination file
Dim er As Integer ‘error return variable
'fWrite is a Windows API function that allows us to write an integer array to disk quickly

Declare Function fWrite Lib “kernel” Alias “_lwrite” (ByVal hFile As Integer, IpBuff As Any, ByVal wBytes As Integer) As Integer

Sub Adcl_Triggered ()
‘Update the status box.
statusLabel.Caption = “Triggered”
'Enable the timer that checks for new data and stores it away.
collectDataTimer.Enabled = True
End Sub

Sub Chan_Click (Index As Integer)
'Set the startChan and endChan properties of ADC1.
If chan(STARTCH).Listindex chan(ENDCH).Listindex Then
MsgBox “End channel must be greater than Start channel”
chan(STARTCH).Listindex = 0
chan(ENDCH).ListIndex = 0
Exit Sub
End If
If Index = STARTCH Then
adcl.StartChan = chan(STARTCH).ListIndex
Else
adcl.EndChan = chan(ENDCH).ListIndex
End If
End Sub

Sub CollectDataTimer_Timer ()
'If there is new data, append it to the disk file.
Dim cnt As Long
Dim unprocessed As Long
Dim ints As Long
Dim firstBufSize As Long
Dim secondBufSize As Long
"Check for buffer overrun
If adc1.BufferOverrun Then
disarmAcq
MsgBox “DaqBook FIFO buffer overrun”
Exit Sub
End If
'Get the number of scans collected
cnt = adcl.Buffered
'If more scans collected than processed, process the new scans.
If cnt scansProcessed Then
unprocessed = cnt - scansProcessed
'Calculate the number of unprocessed scans
'Calculate the number of integers are unprocessed
ints = unprocessed * scanSize

'Check to see if integer array has overflowed
If ints = MAXBUF Then
disarmAcq
MsgBox “Internal buffer overrun”
Exit Sub
End If
I ints + readIindex MaxBuflndex, the buffer has wrapped around and we have to
process the data in two chunks ¥ from the present readindex to the end of the
buffer, and from the beginning of the buffer until all of the unprocessed scans are
processed. The readindex keeps track of our read pointer in the data buffer.
If ints + readindex MaxBuflndex Then
"The buffer has wrapped around, so 2 buffers must be transferred.

Programmer’'s Manual

6-43

Visual Basic VBX Support

Chapter 6

End Sub

'Calculate the size of the 1st chunk.

firstBufSize = MaxBuflndex -readindex + 1

"Write the chunk to disk

er = fWrite(fHandle, dataBuffer(readindex), firstBufSize * 2)
‘Init the readIndex to the beginning.

readindex =1

'Calculate the size of the 2nd chunk.

secondBufSize = ints -firstBufSize

"Write the chunk to disk

er = fWrite(fHandle, dataBuffer(readindex), secondBufSize * 2)
'Set the new readindex

readindex = readIndex + secondBufSize

Else
"The buffer has not wrapped around, so only one buffer must be transferred.
"Write the buffer to disk.
er = fWrite(fHandle, dataBuffer(readindex), ints * 2)
'Set the new readindex
readindex = readindex + ints
End If

End If
'Record the new number of scans processed.
scansProcessed = cnt
'If we’'ve processed more scans that specifed by the user, then quit.
If scansProcessed = Val(numScansText.text) Then
disarmAcq
End If
'Post the number of processed scans.
BufferedLabel.Caption = Str$(cnt)

Sub disarmAcq ()
'Disarm the acquisition

End Sub

adcl.Arm = False 'Stop sampling
statusLabel.Caption = “idle” ’'Update the status box

Close #1 "Close the output file
getVal.Caption = “Acquire” 'Update the caption of the button
collectDataTimer.Enabled = False 'Disable the data collection timer

Sub Form_Load ()

End Sub

Dim i As Integer
'Open DagBook driver and allocate a data buffer
dbk1.0Open = True
adcl.Buffer = addressOf(dataBuffer(0))
'Set bufferLength to all adcl to check buffer boundaries
adcl.BufferLength = MAXBUF
'Set the default frequency and number of scans
numScansText.text = “10"
freqText.text = “100"
'Put channel choices in combos
Fori=0To 15
chan(STARTCH).AddItem Format$(i)
chan(ENDCH).AddItem Format$(i)
Next i
chan(ENDCH).ListIndex = 0
chan(STARTCH).Listindex = 0
'Put gain choices in combo
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Listindex =0
"Put trigger source choices in combo
trigSourceCombo.Addltem “Immediate”
trigSourceCombo.AddItem “TTL”
trigSourceCombo.AddItem “Analog”
trigSourceCombo.Listindex = 0

Sub Form_Unload (Cancel As Integer)

End Sub

dbk1.0Open = False
End

6-44

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

Sub FreqText_Change ()
'Set the frequency property of ADC1
If Val(freqText.text) 0 And Val(freqText.text) 100000 Then
adcl.Frequency = Int(Val(freqText.text))
End If
End Sub

Sub FreqText_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 'Back space
Case Else
keyascii =0 'Reject all other characters
End Select

End Sub

Sub gain_Click ()
'Set the globalGain property of ADC1. To set independent gains for each channel, use the
ChanArray property rather than the startChan and endChan properties.
adcl.GlobalGain = gain.ListIndex
End Sub

Sub GetVal_Click ()
'Arm the system
Dim MaxScansInBuf As Integer
Dim bytesInFile As Long
Dim i As Long
‘Disarm the acquisition if the button is labeled “Abort”
If getVal.Caption = “Abort” Then
disarmAcq
Exit Sub
End If
'Update the status box
statusLabel.Caption = “Waiting for trigger”
statusLabel.Refresh
‘Initialize the acquisition variables
scansProcessed = 0
getVal.Caption = “Abort”
readindex =1
scanSize = adcl.EndChan - adcl.StartChan + 1
MaxScansInBuf = Int(MAXBUF / scanSize)
MaxBuflndex = MaxScansInBuf * scanSize
'Open the data destination file, and get its handle
Open “c:\ADCDATA.BIN” For Output As #1
fHandle = FileAttr(1, 2)
"Pre-write the file so that all of the required disk blocks
"are allocated before the acquisition begins. This allows the
file output to be performed faster.
bytesInFile = (scanSize * 2) * Val(numScansText.text)
For i =1 To bytesiInFile / 256 + 1
er = fWrite(fHandle, dataBuffer(0), 256)
Next i
Seek 1,1 ’Set the file pointer back to the beginning
'Start the acquisition
adcl.Arm = True
'If the trigger source is Software, send the software trigger.
If trigSourceCombo.Listindex = 0 Then adcl1.SoftTrig = True
End Sub

Sub NumScansText_KeyPress (keyascii As Integer)
'Filter non-numeric keystrokes.
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

End Sub

Sub RiseFall_Click (Index As Integer)
'Set the trigger edge to rising or falling.
If riseFall(0).Value = True Then
adcl.TrigSourceRising = True
Else

Programmer’'s Manual

6-45

Visual Basic VBX Support

Chapter 6

adcl.TrigSourceRising = False
End If
End Sub

Sub TrigLevelScroll_Change ()
'Set the trigger level for analog triggering. The DagBook allows a trigger value of -5 to +5. The
scrollbar has a min and max of -50 to +50 to allow for 0.1 volt resolution when divided by 10.
trigLevelLabel.Caption = Format$(trigLevelScroll.Value / 10) + “V”
adcl.TrigLevel = trigLevelScroll.Value / 10
End Sub

Sub TrigLevelScroll_Scroll ()
Call TrigLevelScroll_Change
End Sub

Sub TrigSourceCombo_Click ()

'Set the trigSource property of ADC1.

adcl.TrigSource = trigSourceCombo.ListIndex

If trigSourceCombo.Listindex = IMMEDIATE Then
trigLevelScroll.Enabled = False
riseFall(0).Enabled = False
riseFall(1).Enabled = False

Elself trigSourceCombo.Listindex = ANALOG Then
trigLevelScroll.Enabled = True
riseFall(0).Enabled = True
riseFall(1).Enabled = True

Else
trigLevelScroll.Enabled = False
riseFall(0).Enabled = True
riseFall(1).Enabled = True

End If

End Sub

6-46

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

ADCS

expBoard

boardType gain chan

GetVal stopper dataText voltsText
ADCS Form

Begin ADC Adcl
BufferLength = 1
EndChan = 0
Frequency = 10000
GlobalBipolar = 0 'False
GlobalGain = 0 "0 - Base Unit X1
GlobalSE = 0 'False
Left = 30
NumChannels = 1
NumScans = 1
OneShot = 0 'False
StartChan = 0
Top = 165
TrigLevel = 0
TrigRefVoltage = -5
TrigSource = 0 'Software
TrigSourceRising = -1 ‘True
UseChanArray = 0 'False

End

Begin DBK Dbk1
IntLevel = 7
Left = 30
LptPort = 0 'LPT1
Protocol = 1 '4 Bit 1/0
Top = 810

End

Const MAXBUF =10 'The size of my data buffer

'For code readability, these are used to identify the index of the
‘two dimensional card information arrays below.
Const SETTING =0
Const BITWEIGHT =1
Const BIPOLAROFFSET = 2
'For code readability, these are used to identify the selected expansion card.
Const A_BASEUNIT =0
Const A_DBK12 =1
Const A_DBK13 =2
Const A_DBK14 =3
'This is the data buffer for all of the analog input data
Dim dataBuffer(MAXBUF) As Integer
"These arrays hold expansion card information. See the subroutine, loadGainArrays for more information.
Dim BASEUNIT(3, 10) As Single
Dim DBK12(3, 10) As Single
Dim DBK13(3, 10) As Single
Dim DBK14(3, 10) As Single

Sub boardType_click ()
'Depending of the board type selected, update the gain combo with the available gains.
Select Case boardType.Listindex
Case 0 ‘None
gain.Clear
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
chan.Enabled = False
Case 1 'DKB12

Programmer’s Manual

6-47

Visual Basic VBX Support Chapter 6

gain.Clear
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Addltem “X16"
gain.Addltem “X32"
gain.Addltem “X64"
chan.Enabled = True
Case 2 'DBK13
gain.Clear
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Addltem “X10"
gain.Addltem “X100"
gain.Addltem “X1000"
chan.Enabled = True
Case 3 'DBK14

gain.Clear
gain.Addltem “X1"
gain.Addltem “X2"
gain.Addltem “X4"
gain.Addltem “X8"
gain.Addltem “X10"
gain.Addltem “X100"
gain.Addltem “X1000"
chan.Enabled = True

End Select

gain.Listindex =0

Call chan_click

End Sub

Sub chan_click ()
'Set the startChan and endChan to the desired channel
'If the listindex = 0, no expansion boards are attached
If boardType.Listindex = 0 Then
'Set the channel equal to the base unit channel number
adcl.StartChan = expBoard.Listindex
adcl.EndChan = adcl.StartChan

Else
'Calculate then set the channel number for the expansion board.
adcl.StartChan = (expBoard.ListIndex + 1) * 16 + chan.ListIndex
adcl.EndChan = adcl.StartChan

End If

End Sub

Sub expBoard_Click ()
'When the DagBook base unit channel has changed, set the board type back to NONE.
If boardType.Listindex = 0 Then
Call chan_click
Else
boardType.Listindex = 0
End If
End Sub

Sub Form_Load ()
Dim i As Integer
'Open DagBook driver and allocate a data buffer
dbk1.0Open = True
adcl.Buffer = addressOf(dataBuffer(0)) 'dataBuffer has global scope
adcl.BufferLength = MAXBUF
Call loadGainArrays
'Put channel choices in combos
Fori=0To 15
chan.Addltem Format$(i)
expBoard.Addltem Format$(i)
Next i
'Put DBK boards in combo
boardType.Addltem “None”
boardType.Addltem “DBK12"
boardType.AddItem “DBK13"
boardType.Addltem “DBK14"

6-48 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

stopper.Value = True "Click the Stop button
chan.Listindex =0 ’Set the expansion channel to 0
expBoard.Listindex = 0 'Set the base unit channel to 0

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False
End

End Sub

Sub gain_Click ()
'Use the gain tables to set the gain for the desired expansion board
Select Case boardType.Listindex
Case A_BASEUNIT
adcl.GlobalGain = BASEUNIT(SETTING, gain.Listindex)
Case A_DBK12
adcl.GlobalGain = DBK12(SETTING, gain.Listindex)
Case A_DBK13
adcl.GlobalGain = DBK13(SETTING, gain.Listindex)
Case A_DBK14
adcl.GlobalGain = DBK14(SETTING, gain.Listindex)
End Select
End Sub

Sub GetVal_Click ()
'Enable sampling. Disable all of the controls so parameters can not be adjusted during sampling.
getVal.Enabled = False
boardType.Enabled = False
expBoard.Enabled = False
gain.Enabled = False
chan.Enabled = False
timerl.Enabled = True
stopper.Enabled = True
End Sub

Sub loadGainArrays ()

‘Load the 2-dimensional arrays with gain information for each expansion card. Each card has an array of
available gains. The gain combo listindex identifies the gain chosen. Associated with each listindex is a
SETTING which is assigned to the globalGain property of the ADC1 control, and a BITWEIGHT and a
BIPOLAROFFSET, which is used later to convert the raw binary values to volts.

'The BITWEIGHT and BIPOLAROFFSET are calculated as follows:
" BITWEIGHT = 65536 / inputVoltageRange
BIPOLAROFFSET = bipolarRange
" For example: X2 gain, bipolar mode, yields a range of +/-2.5 volts.
'’ BITWEIGHT = 65536 / 5volts = 13107.2
' BIPOLAROFFSET =25
T X1, X2, X4, X8 available
BASEUNIT(SETTING, 0) = &HO
BASEUNIT(SETTING, 1) = &H1
BASEUNIT(SETTING, 2) = &H2
BASEUNIT(SETTING, 3) = &H3
BASEUNIT(BITWEIGHT, 0) = 6553.6
BASEUNIT(BITWEIGHT, 1) = 13107.2
BASEUNIT(BITWEIGHT, 2) = 26214.4
BASEUNIT(BITWEIGHT, 3) = 52428.8
BASEUNIT(BIPOLAROFFSET, 0) =5
BASEUNIT(BIPOLAROFFSET, 1) =2.5
BASEUNIT(BIPOLAROFFSET, 2) = 1.25
BASEUNIT(BIPOLAROFFSET, 3) = .625
X1, X2, X4, X8, X16, X32, X64 available
DBK12(SETTING, 0) = &HO
DBK12(SETTING, 1) = &H1
DBK12(SETTING, 2) = &H2
DBK12(SETTING, 3) = &H3
DBK12(SETTING, 4) = &H13
DBK12(SETTING, 5) = &H23
DBK12(SETTING, 6) = &H33
DBK12(BITWEIGHT, 0) = 6553.6
DBK12(BITWEIGHT, 1) = 13107.2
DBK12(BITWEIGHT, 2) = 26214.4
DBK12(BITWEIGHT, 3) = 52428.8
DBK12(BITWEIGHT, 4) = 104857.6
DBK12(BITWEIGHT, 5) = 209715.2
DBK12(BITWEIGHT, 6) = 419430.4

Programmer’'s Manual

6-49

Visual Basic VBX Support

Chapter 6

End Sub

DBK12(BIPOLAROFFSET, 0) =5
DBK12(BIPOLAROFFSET, 1) = 2.5
DBK12(BIPOLAROFFSET, 2) = 1.25
DBK12(BIPOLAROFFSET, 3) = .625
DBK12(BIPOLAROFFSET, 4) = .3125
DBK12(BIPOLAROFFSET, 5) = .15625
DBK12(BIPOLAROFFSET, 6) = .078125
X1, X2, X4, X8, X10, X100, X1000 available
DBK13(SETTING, 0) = &H00
DBK13(SETTING, 1) = &H10
DBKI13(SETTING, 2) = &H20
DBK13(SETTING, 3) = &H30
DBK13(SETTING, 4) = &H01
DBK13(SETTING, 5) = &H02
DBK13(SETTING, 6) = &H03
DBK13(BITWEIGHT, 0) = 6553.6
DBK13(BITWEIGHT, 1) = 13107.2
DBK13(BITWEIGHT, 2) = 26214.4
DBK13(BITWEIGHT, 3) = 52428.8
DBK13(BITWEIGHT, 4) = 65536
DBK13(BITWEIGHT, 5) = 655360
DBK13(BITWEIGHT, 6) = 6553600
DBK13(BIPOLAROFFSET, 0) =5
DBK13(BIPOLAROFFSET, 1) = 2.5
DBK13(BIPOLAROFFSET, 2) = 1.25
DBK13(BIPOLAROFFSET, 3) = .625
DBK13(BIPOLAROFFSET, 4) = .5
DBK13(BIPOLAROFFSET, 5) = .05
DBK13(BIPOLAROFFSET, 6) = .005
'X1, X2, X4, X8, X10, X100, X1000 available
DBK14(SETTING, 0) = &HO
DBK14(SETTING, 1) = &H1
DBK14(SETTING, 2) = &H2
DBK14(SETTING, 3) = &H3
DBK14(SETTING, 4) = &H1
DBK14(SETTING, 5) = &H2
DBK14(SETTING, 6) = &H3
DBK14(BITWEIGHT, 0) = 6553.6
DBK14(BITWEIGHT, 1) = 13107.2
DBK14(BITWEIGHT, 2) = 26214.4
DBK14(BITWEIGHT, 3) = 52428.8
DBK14(BITWEIGHT, 4) = 65536
DBK14(BITWEIGHT, 5) = 655360
DBK14(BITWEIGHT, 6) = 6553600
DBK14(BIPOLAROFFSET, 0) =5
DBK14(BIPOLAROFFSET, 1) = 2.5
DBK14(BIPOLAROFFSET, 2) = 1.25
DBK14(BIPOLAROFFSET, 3) = .625
DBK14(BIPOLAROFFSET, 4)
DBK14(BIPOLAROFFSET, 5)
DBK14(BIPOLAROFFSET, 6)

5
.05
.005

Sub Stopper_Click ()
’Enable the acquisition parameter controls, and disable the stop button.

End Sub

getVal.Enabled = True
boardType.Enabled = True
expBoard.Enabled = True
gain.Enabled = True
chan.Enabled = True
timerl.Enabled = False
stopper.Enabled = False

Sub Timerl_Timer ()

'Get a reading and post it in the GUI in raw counts and volts
Dim bitsPerVolt As Single
Dim offset As Single
Dim goodint As Long

'Start the acquisition and wait for one scan to be collected
adcl.Arm = True
adcl.SoftTrig = True
While adcl.Active: Wend

6-50

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

"Convert the 16 bit value in the integer array to a long. VB will interpret the value as a signed humber with
the MSB as the sign bit. In VB's integer format, a O from the A/D converter looks like -32767, and
65535 from the A/D looks like 32766. The following lines convert the signed integer value into a
continuous value ranging from 0 - 65535.

goodint = dataBuffer(0)
If goodint O Then goodint = goodInt + 65536
'Put the raw count into the textbox dataText.
dataText. Text = Format$(goodint)
'Scale the raw data into volts
Select Case boardType.Listindex
Case A_BASEUNIT
bitsPerVolt = BASEUNIT(BITWEIGHT, gain.Listindex)
offset = BASEUNIT(BIPOLAROFFSET, gain.Listindex)
Case A_DBK12
bitsPerVolt = DBK12(BITWEIGHT, gain.Listindex)
offset = DBK12(BIPOLAROFFSET, gain.ListIndex)
Case A_DBK13
bitsPerVolt = DBK13(BITWEIGHT, gain.Listindex)
offset = DBK13(BIPOLAROFFSET, gain.Listindex)
Case A_DBK14
bitsPerVolt = DBK14(BITWEIGHT, gain.Listindex)
offset = DBK14(BIPOLAROFFSET, gain.ListIndex)

End Select
'Put the volts value into the textbox voltsText.
voltsText. Text = Format$(goodint / bitsPerVolt - offset, “0.000000")
End Sub

DAC1
paco [«[| A [+] 0.000«}—— voltsLabel(0)
pac1 = 4 |[*] 0.000€}—— voltsLabel(1)
IChedh] |\CHed dacScroll(0) dacScroll(1)
DBK1 DAC1
DACI Form
Begin DBK Dbk1
IntLevel = 7
Left = 2700
LptPort = 0 LPT1
Protocol = 1 ‘4 Bit 1/0
Top = 180
End
Begin DAC Dacl
Left = 2100
Top = 180
End

Programmer’'s Manual 6-51

Visual Basic VBX Support

Chapter 6

Sub DacScroll_Change (Index As Integer)

End Sub

'Scroll bar max is set to 4096, min to 0 in prop window

dacl.ChVoltage(Index) = dacScroll(Index).Value
voltsLabel(Index).Caption = Format$(dacScroll(Index).Value * .0012207, “0.000")

Sub DacScroll_Scroll (Index As Integer)

End Sub

Call DacScroll_Change(Index)

Sub Form_Load ()

End Sub

'Open DagBook driver
dbk1.0Open = True

Sub Form_Unload (Cancel As Integer)

dbk1.0Open = False

End
End Sub
DIO1
ioText(0)
connectorSelect ~ Connector Selection™] [Pajt A InputRadio(0)
<4 nputRadio
connectorSelect=0 >& i G| Hex @ Tnput
O Hage Unit & Oﬂu[pu[OutputRadlo(O)
) Card A Bank 1 e
i) Card A Bank 2 o
Hex @ Input
> Card B Bank 1 & Dutput
) Card B Bank 2 —
o " Port C High hél)hhle_
Card C Bank 1 Input
F |H P
O Card C Bank 2 O Dutput
 Card D Bank 1 ~Port C Low Nibble —
connectorSelect=8 ») Card D Bank 2 IF___l Hex @' <4nput InputRadio(3)
A utput OutputRadio(3)
I hech ioText(3)
DBK1 DIO1 Timer1
DIOI Form
Begin DIO Diol
Byteln = 0
ByteOut = 0
IndexIn = 0
IndexOut = 0
Left = 2160
Local = -1 "True
LocalAByte = 0
LocalASetAslnput = -1 ‘True
LocalBByte = 0
LocalBSetAslnput = -1 ‘True
LocalCHiNibble = 0
LocalCHiSetAsInput= -1 ‘True
LocalCLoNibble = 0
LocalCLoSetAsInput= -1 ‘True
Top = 660
End
6-52 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

Begin DBK Dbk1

IntLevel = 7
Left = 2160
LptPort = 0
Protocol =

Top = 1140

End
Dim connectorSelect As Integer

Const INPUTMODE = True
Const OUTPUTMODE = False
Const BASEUNIT =0
ConstAl=1

Const A2 =2

ConstB1=3

ConstB2=4

ConstCl1=5

ConstC2=6

ConstD1=7

ConstD2=8

Const PORTA=0

Const PORTB =1

Const PORTCHI =2

Const PORTCLO =3

Sub Connector_Click (index As Integer)
Dim i As Integer
If index = 0 Then
diol.Local = True
Else
diol.Local = False
End If
connectorSelect = index
Fori=0To 3
inputRadio(i).Value = True
Next i
End Sub

Sub Form_Load ()
Dim i As Integer
'Open DagBook driver
dbk1.0Open = True

'Select the base unit connector
connector(0).Value = True

'Set all of the ports as inputs
Fori=0To 3
inputRadio(i).Value = True
Next i
End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False
End

End Sub

Function getByteFromPort (whichPort As Integer) As Integer

Dim theVal As Integer
If connectorSelect = BASEUNIT Then
Select Case whichPort
Case PORTA

theVal = diol.LocalAByte

Case PORTB

theVal = diol.LocalBByte

Case PORTCHI

theVal = diol.LocalCHiNibble

Case PORTCLO

theVal = diol.LocalCLoNibble

End Select
Else
Select Case whichPort
Case PORTA

'LPT1
1 ‘4 Bit I/0

Programmer’'s Manual

6-53

Visual Basic VBX Support

Chapter 6

theVal = diol.ExpAByte(connectorSelect - 1)
Case PORTB
theVal = diol.ExpBByte(connectorSelect - 1)
Case PORTCHI
theVal = diol.ExpCHiNibble(connectorSelect - 1)
Case PORTCLO
theVal = diol.ExpCLoNibble(connectorSelect - 1)
End Select
End If
getByteFromPort = theVal
End Function

Sub GetlnputDataTimer_Timer ()
Dim i As Integer
Fori=0To 3
If inputRadio(i).Value = True Then
ioText(i).text = Hex$(getByteFromPort(i))
End If
Next i
End Sub

Function hexVal (hexString As String) As Integer
Dim hiChar As Integer
Dim loChar As Integer
If Len(hexString) = 0 Then
hexval =0
Exit Function
End If
If Len(hexString) = 2 Then
hiChar = Asc(hexString) - &H30
If hiChar 10 Then hiChar = hiChar -7
End If
loChar = Asc(Mid$(hexString, Len(hexString), 1)) - &H30
If loChar 10 Then loChar = loChar -7
hexVal = hiChar * 16 + loChar
End Function

Sub InputRadio_click (index As Integer)
Call setupPortlo(index, INPUTMODE)
End Sub

Sub ioText_Change (index As Integer)
Dim maxLen As Integer
Dim byteString As String
If index = 0 Or index = 1 Then
maxLen =2
Else
maxLen =1
End If
If Len(ioText(index).text) = maxLen Then
ioText(index).SelStart = 0
ioText(index).SelLength = Len(ioText(index).text)
End If
If outputRadio(index).Value = True Then
byteString = ioText(index).text
Call putByteToPort(index, byteString)
End If
End Sub

Sub ioText_GotFocus (index As Integer)
ioText(index).SelStart = 0
ioText(index).SelLength = Len(ioText(index).text)

End Sub

Sub ioText_KeyPress (index As Integer, keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case &H61 To &H66 ‘Charsatof
keyascii = keyascii - &H20 'make upper
Case &H41 To &H46 ‘Chars Ato F
Case Else
keyascii =0
End Select

6-54

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

End Sub

Sub OutputRadio_Click (index As Integer)
ioText(index).text = “00"
Call setupPortlo(index, OUTPUTMODE)
End Sub

Sub putByteToPort (whichPort As Integer, textVal As String)
Dim outputVal As Integer
outputVal = hexVal(textVal)
If connectorSelect = BASEUNIT Then
Select Case whichPort
Case PORTA
diol.LocalAByte = outputVal
Case PORTB
diol.LocalBByte = outputVal
Case PORTCHI
diol.LocalCHiNibble = outputVal
Case PORTCLO
diol.LocalCLoNibble = outputVal
End Select
Else
Select Case whichPort
Case PORTA
diol.ExpAByte(connectorSelect - 1) = outputVal
Case PORTB
diol.ExpBByte(connectorSelect - 1) = outputVal
Case PORTCHI
diol.ExpCHiNibble(connectorSelect - 1) = outputVal
Case PORTCLO
diol.ExpCLoNibble(connectorSelect - 1) = outputVal
End Select
End If
End Sub

Sub setupPortlo (whichPort As Integer, ioMode As Integer)
If connectorSelect = BASEUNIT Then
Select Case whichPort
Case PORTA
diol.LocalASetAsInput = ioMode
Case PORTB
diol.LocalBSetAsInput = ioMode
Case PORTCHI
diol.LocalCHiSetAsInput = ioMode
Case PORTCLO
diol.LocalCLoSetAsInput = ioMode
End Select
Else
Select Case whichPort
Case PORTA
diol.ExpASetAsinput(connectorSelect - 1) = ioMode
Case PORTB
diol.ExpBSetAsinput(connectorSelect - 1) = ioMode
Case PORTCHI
diol.ExpCHiSetAsInput(connectorSelect - 1) = ioMode
Case PORTCLO
diol.ExpCLoSetAsInput(connectorSelect - 1) = ioMode
End Select
End If
End Sub

Programmer’'s Manual 6-55

Visual Basic VBX Support Chapter 6
DIO2
aBitCheck(7) gt | e inputRadio(0)
aBitCheck(0) 7 0 outputRadio(0)
 Port B
bBitCheck(7) » 1O OFEEFECOEFEE inputRadio(1)
bBitCheck(0) Fi 0 outputRadio(1)
 Port C High Nibble
cHiBitCheck(3) o | o | inputRadio(2)
cHiBitCheck(0) 7 outputRadio(2)
" Port C Low Nibble
cLoBitCheck(3) inputRadio(3)
cLoBitCheck(0) outputRadio(3)
Timer1
DIO?2 Form
Begin DIO Diol
Byteln = 0
ByteOut = 0
Indexin = 0
IndexOut = 0
Left = 60
Local = -1 "True
LocalAByte = 0
LocalASetAsInput = -1 True
LocalBByte = 0
LocalBSetAsInput = -1 True
LocalCHiNibble = 0
LocalCHiSetAsInput= -1 True
LocalCLoNibble = 0
LocalCLoSetAsInput= -1 True
Top = 3120
End
Begin DBK Dbkl
IntLevel = 7
Left = 1020
LptPort = 0 LPT1
Protocol = 1 ‘4 Bit 1/10
Top = 3120
End
Const INPUTMODE = True
Const OUTPUTMODE = False
Const BASEUNIT =0
ConstAl=1
Const A2 =2
ConstB1 =3
ConstB2 =4
ConstC1=5
ConstC2=6
ConstD1=7
ConstD2 =8
Const PORTA =0
Const PORTB =1
Const PORTCHI = 2
6-56 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

Const PORTCLO =3

Sub aBitCheck_Click (Index As Integer)
'If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTA).Value = False Then Exit Sub
theVal = aBitCheck(Index).Value
Call checkChange(PORTA, Index, theVal)
End Sub

Sub bBitCheck_Click (Index As Integer)
'If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTB).Value = False Then Exit Sub
theVal = bBitCheck(Index).Value
Call checkChange(PORTB, Index, theVal)
End Sub

Sub checkChange (port As Integer, bit As Integer, theValue As Integer)
'Change the value of the selected output bit on the selected port to the selected value. Only
change the bit if the port is configured for output
If outputRadio(port).Value = True Then 'Only change the bit if the
Select Case port

Case 0

diol.LocalABit(bit) = theValue
Case 1

diol.LocalBBit(bit) = theValue
Case 2

diol.LocalCHiBit(bit) = theValue
Case 3

diol.LocalCLoBit(bit) = theValue

End Select

End If
End Sub

Sub cHiBitCheck_Click (Index As Integer)
'If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTCHI).Value = False Then Exit Sub
theVal = cHiBitCheck(Index).Value
Call checkChange(PORTCHI, Index, theVal)
End Sub

Sub cLoBitCheck_Click (Index As Integer)
'If the selected port is an output, put the new bit value on the port.
Dim theVal As Integer
If outputRadio(PORTCLO).Value = False Then Exit Sub
theVal = cLoBitCheck(Index).Value
Call checkChange(PORTCLO, Index, theVal)
End Sub

Sub Form_Load ()
Dim i As Integer
'Open DagBook driver and allocate a data buffer
dbk1.0Open = True
'Set all of the ports as inputs
Fori=0To 3
inputRadio(i).Value = True
Next i
End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False
End Sub

Sub GetlnputDataTimer_Timer ()
'Every time the timer ticks, test all of the bits on ports configured
"as inputs and post the results in the associated check boxes.
Dim i As Integer
Fori=0 To 3 ’'Loop through all of the ports
If inputRadio(i).Value = True Then
'If configured as an input, post the bit values for this port
putBitsInCheckBoxes (i)
End If

Programmer’'s Manual

6-57

Visual Basic VBX Support Chapter 6

Next i
End Sub

Sub InputRadio_click (Index As Integer)
'Configure the specified port as an input.
Call setupPortlo(Index, INPUTMODE)
Call resetCheckBoxes
End Sub

Sub OutputRadio_Click (Index As Integer)
'Configure the specified port as an output.

Call setupPortlo(Index, OUTPUTMODE)
Call resetCheckBoxes
End Sub

Sub putBitsInCheckBoxes (whichPort As Integer)
'For the selected port, scan the input bits and place the result of each
'bit test in the associated check box
Dim i As Integer
Dim maxBits As Integer
'Ports A and B have bits 0-7, C hi and C lo have 0-3.
If whichPort 2 Then
maxBits = 7
Else
maxBits = 3
End If
"The DIO property LocalxBits(i) returns a 0 or a -1, the check boxes accept either a 0
or a 1 for their value. That's why the bit test is multiplied by -1.
Select Case whichPort
Case PORTA
For i = 0 To maxBits
aBitCheck(i).Value = diol.LocalABit(i) * -1
Next i
Case PORTB
For i = 0 To maxBits
bBitCheck(i).Value = diol.LocalBBit(i) * -1
Next i
Case PORTCHI
For i = 0 To maxBits
cHiBitCheck(i).Value = diol.LocalCHiBit(i) * -1
Next i
Case PORTCLO
For i = 0 To maxBits
cLoBitCheck(i).Value = diol.LocalCLoBIt(i) * -1
Next i
End Select
End Sub

Sub resetCheckBoxes ()
'Set all of the check boxes back to 0.
Dim i As Integer
Fori=0To7
aBitCheck(i).Value = False
bBitCheck(i).Value = False
Ifi 4 Then
cHiBitCheck(i).Value = False
cLoBitCheck(i).Value = False
End If
Next i
End Sub

Sub setupPortlo (whichPort As Integer, ioMode As Integer)
"Configure the selected port as either an input or an output.
Select Case whichPort
Case PORTA
diol.LocalASetAsInput = ioMode
Case PORTB
diol.LocalBSetAsInput = ioMode
Case PORTCHI
diol.LocalCHiSetAsInput = ioMode
Case PORTCLO
diol.LocalCLoSetAsInput = ioMode
End Select
End Sub

6-58 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR1

Freq(0)

Duty(0)

CTRI

" Pulze Train Generator
Counter 1 Counter 2 Counter 3 Counter 4 Counter 5
Freq. Hz'[1 [0 [| [1 |0y Frea®
Dutp.%,/50 [[50 [[50 [[50 |50 o || e
Execute I
A
'D:':h ? : ExecuteButton
DBK1 CTR1
CTRI Form

Begin CTR Ctrl
BufferLength = 1
C1CntDir = 0 "Count Down
C1CntEdge = 0 'Negative Count Edge
Ci1CntRepeat = 0 'False
Cl1CntSource = 0 0 - TC toggled output of last ctr
CiCntType = 0 'Binary Count
ClEnable = 0 'False
ClGateCtrl = 0 'Gating Disabled
C1OutputCtrl = 0 ‘Inactive -Always low
Cl1Reload = 0 'Reload from Load
ClSpecialGate = 0 'False
C2CntDir = 0 "Count Down
C2CntEdge = 0 'Negative Count Edge
C2CntRepeat = 0 'False
C2CntSource = 0 "0 - TC toggled output of last ctr
C2CntType = 0 ‘Binary Count
C2Enable = 0 'False
C2GateCtrl = 0 'Gating Disabled
C20utputCtrl = 0 ‘Inactive -Always low
C2Reload = 0 'Reload from Load
C2SpecialGate = 0 'False
C3CntDir = 0 "Count Down
C3CntEdge = 0 'Negative Count Edge
C3CntRepeat = 0 'False
C3CntSource = 0 0 - TC toggled output of last ctr
C3CntType = 0 ‘Binary Count
C3Enable = 0 'False
C3GateCtrl = 0 'Gating Disabled
C3OutputCtrl = 0 ‘Inactive -Always low
C3Reload = 0 'Reload from Load
C3SpecialGate = 0 'False
C4CntDir = 0 "Count Down
C4CntEdge = 0 'Negative Count Edge
C4CntRepeat = 0 'False
C4CntSource = 0 0 - TC toggled output of last ctr
C4CntType = 0 ‘Binary Count
C4Enable = 0 'False
C4GateCtrl = 0 'Gating Disabled
C40utputCtrl = 0 ‘Inactive -Always low
C4Reload = 0 'Reload from Load
C4SpecialGate = 0 'False
C5CntDir = 0 "Count Down
C5CntEdge = 0 'Negative Count Edge
C5CntRepeat = 0 'False
C5CntSource = 0 0 - TC toggled output of last ctr
C5CntType = 0 ‘Binary Count
C5Enable = 0 'False
C5GateCtrl = 0 'Gating Disabled
C50utputCtrl = 0 ‘Inactive -Always low
C5Reload = 0 'Reload from Load

Programmer’'s Manual

6-59

Visual Basic VBX Support

Chapter 6

C5SpecialGate = 0 'False
ComplEnable = 0 'False
Comp2Enable = 0 'False
FoutDivider = 0 ' Divide by 16
FoutSource = 0 "0 - Fout Disabled
FregCntSource = 1 ‘Counter 1 Input
Freginterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 'Disabled
Top = 1500

End

Begin DBK Dbk1
IntLevel = 7
Left = 180
LptPort = 0 'LPT1
Protocol = 1 ‘4 Bit 1/0
Top = 1500

End

Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long

' converts a string to a long integer number
" and makes sure that the number is within bounds
If CvtStr =*“” Then
CvtMinMax = min
Else
Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then
CvtVal = Max
Elself CvtvVal min Then
CvtVal = min
End If
CvtMinMax = CvtVal
End If
End Function

Sub Duty_KeyPress (Index As Integer, keyascii As Integer)
Select Case keyascii
Case &H30 To &H39 'All numbers

Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

End Sub

Sub ExecuteButton_Click ()
Dim userduty%, userfreq&, srcfreq&, src%
Dim i As Integer
" Disarm all 5 counters
ctrl.Disarm = True
Fori=1To5
" Read user input
userduty% = CvtMinMax(Duty(i -1).Text, 1, 99)
userfreq& = CvtMinMax(Freq(i -1).Text, 1, 1000000)
" Decide which internal source to use as an input
If userfreq 20 Then
* for faster waveforms, use the 1MHz clock
src% =11
srcfreq& = 1000000

Else
* for slower waveforms, use the 10kHz clock
src% =13
srcfreq& = 10000
End If
' Set hold and load registers and input source
Select Case i
Case 1
ctrl.C1CntSource = src%
ctrl.C1Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreg&)), 1)
ctrl.ClLoad = Max(ClInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)
Case 2

ctrl.C2CntSource = src%
ctrl.C2Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreg&)), 1)
ctrl.C2Load = Max(ClInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)

6-60

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

Case 3

ctrl.C3CntSource = src%

ctrl.C3Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreq&)), 1)

ctrl.C3Load = Max(ClInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)
Case 4

ctrl.C4CntSource = src%

ctrl.C4Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreg&)), 1)

ctrl.C4Load = Max(ClInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)
Case 5

ctrl.C5CntSource = src%
ctrl.C5Hold = Max(CInt((srcfreq& * userduty%) / (100 * userfreg&)), 1)
ctrl.C5Load = Max(ClInt((srcfreq& * (100 - userduty%)) / (100 * userfreq&)), 1)
End Select
" Initialize all 5 counters
ctrl.SetCounterMode =i
Next i
' Start all 5 counters
ctrl.LoadArm = True
End Sub

Sub Form_Load ()
' Open the DagBook driver
dbk1.0Open = True
' Set non-changing properties of each counter. These properties are set here and
never change. Alternatively, they could be set in the properties window

ctrl.C1Enable = True ' counter enabled for arm/disarm, save/load commands
ctrl.C1CntDir=0 ' count down

ctrl.C1CntEdge = 1 ' count on positive edge

ctrl.C1CntRepeat = True ' repeat enabled

ctrl.C1CntType =0 " binary counting

ctrl.C1GateCtrl =0 ' no gating

ctrl.C10utputCtrl = 2 ' TC toggled output

ctrl.C1Reload = 1 " reload from load or hold

ctrl.C1SpecialGate = 0 ' special gate disabled

ctrl.C2Enable = True ' counter enabled for arm/disarm, save/load commands
ctrl.C2CntDir=0 ' count down

ctrl.C2CntEdge = 1 ' count on positive edge

ctrl.C2CntRepeat = True ' repeat enabled

ctrl.C2CntType =0 " binary counting

ctrl.C2GateCtrl =0 ' no gating

ctrl.C20utputCtrl = 2 " TC toggled output

ctrl.C2Reload = 1 ' reload from load or hold

ctrl.C2SpecialGate = 0 ' special gate disabled

ctrl.C3Enable = True ' counter enabled for arm/disarm, save/load commands
ctrl.C3CntDir=0 ' count down

ctrl.C3CntEdge = 1 ' count on positive edge

ctrl.C3CntRepeat = True ' repeat enabled

ctrl.C3CntType =0 " binary counting

ctrl.C3GateCtrl =0 ' no gating

ctrl.C30utputCtrl = 2 ' TC toggled output

ctrl.C3Reload = 1 " reload from load or hold

ctrl.C3SpecialGate = 0 ' special gate disabled

ctrl.C4Enable = True ' counter enabled for arm/disarm, save/load commands
ctrl.C4CntDir=0 ' count down

ctrl.C4ACntEdge = 1 ' count on positive edge

ctrl.C4CntRepeat = True ' repeat enabled

ctrl.C4CntType =0 " binary counting

ctrl.C4GateCtrl =0 ' no gating

ctrl.C4QutputCtrl = 2 " TC toggled output

ctrl.C4Reload = 1 ' reload from load or hold

ctrl.C4SpecialGate = 0 ' special gate disabled

ctrl.C5Enable = True ' counter enabled for arm/disarm, save/load commands
ctrl.C5CntDir =0 ' count down

ctrl.C5CntEdge = 1 ' count on positive edge

ctrl.C5CntRepeat = True ' repeat enabled

ctrl.C5CntType =0 " binary counting

ctrl.C5GateCtrl = 0 ' no gating

ctrl.C50utputCtrl = 2 ' TC toggled output

ctrl.C5Reload = 1 " reload from load or hold

ctrl.C5SpecialGate = 0 ' special gate disabled

End Sub

Sub Form_Unload (Cancel As Integer)
dbk1.0Open = False

Programmer’'s Manual 6-61

Visual Basic VBX Support

Chapter 6

End Sub

Sub Freq_KeyPress (Index As Integer, keyascii As Integer)

End Sub

Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select

Function Max (ByVal a As Long, ByVal b As Long) As Long

Ifa b Then

Max = a
Else

Max = b
End If

End Function

CTR2
= CTRZ
[Totalize
Counter 1 Counter 2 Counter 3 Counter 4 Counter 5
Total(0) [0 | [0 | [0 | [0 | [0 ' Total(4)
ResetButton(0) LEEEEEEE_I | Reset I | Reset I | Reset I | Reset ! ResetButton(4)
Execute I
y
II.-'T
LR] ExecuteButton
DBK1 CTR1
CTR2 Form
Begin CTR Ctrl
BufferLength = 1
C1CntDir = 0 "Count Down
CiCntEdge = 0 'Negative Count Edge
ClCntRepeat = 0 'False
Ci1CntSource = 0 "0 - TC toggled output of last ctr
C1CntType = 0 ‘Binary Count
ClEnable = 0 'False
ClGateCtrl = 0 'Gating Disabled
C10OutputCitrl = 0 ‘Inactive -Always low
C1Reload = 0 'Reload from Load
C1SpecialGate = 0 'False
C2CntDir = 0 "Count Down
C2CntEdge = 0 'Negative Count Edge
C2CntRepeat = 0 'False
C2CntSource = 0 "0 - TC toggled output of last ctr
C2CntType = 0 ‘Binary Count
C2Enable = 0 'False
C2GateCtrl = 0 'Gating Disabled
C20utputCitrl = 0 ‘Inactive -Always low
C2Reload = 0 'Reload from Load
C2SpecialGate = 0 'False
C3CntDir = 0 "Count Down
C3CntEdge = 0 'Negative Count Edge
C3CntRepeat = 0 'False
C3CntSource = 0 "0 - TC toggled output of last ctr
C3CntType = 0 ‘Binary Count
C3Enable = 0 'False
C3GateCtrl = 0 'Gating Disabled
C30OutputCitrl = 0 ‘Inactive -Always low
6-62 Programmer’s Manual

Chapter 6

Visual Basic VBX Support

End

Begin DBK Dbkl

End

C3Reload = 0 'Reload from Load
C3SpecialGate = 0 'False

C4CntDir = 0 "Count Down
C4CntEdge = 0 'Negative Count Edge
C4ACntRepeat = 0 'False

C4CntSource = 0 0 - TC toggled output of last ctr
CACntType = 0 ‘Binary Count
C4Enable = 0 'False

C4GateCtrl = 0 'Gating Disabled
C4OutputCitrl = 0 ‘Inactive -Always low
C4Reload = 0 'Reload from Load
C4SpecialGate = 0 'False

C5CntDir = 0 "Count Down
C5CntEdge = 0 'Negative Count Edge
C5CntRepeat = 0 'False

C5CntSource = 0 "0 - TC toggled output of last ctr
C5CntType = 0 ‘Binary Count
C5Enable = 0 'False

C5GateCtrl = 0 'Gating Disabled
C50utputCitrl = 0 ‘Inactive -Always low
C5Reload = 0 'Reload from Load
C5SpecialGate = 0 'False

ComplEnable = 0 'False

Comp2Enable = 0 'False

FoutDivider = 1 ' Divide by 1
FoutSource = 15 100 Hz Clock
FreqCntSource = 1 'Counter 1 Input
Freqlinterval = 1

Left = 600

NumScans = 1

TimeOfDay = 0 'Disabled

Top = 1500

IntLevel = 7

Left = 180

LptPort = 0 'LPT1

Protocol = 1 '4 Bit 1/0

Top = 1500

Sub ExecuteButton_Click ()

End Sub

" enable all counters to execute the save command
ctrl.C1Enable = True
ctrl.C2Enable = True
ctrl.C3Enable = True
ctrl.C4Enable = True
ctrl.C5Enable = True

' save the count value to the hold register
ctrl.Save = True

" print the contents of the hold register
Total(0).Caption = CStr(ctrl.C1Hold)
Total(1).Caption = CStr(ctrl.C2Hold)
Total(2).Caption = CStr(ctrl.C3Hold)
Total(3).Caption = CStr(ctrl.C4Hold)
Total(4).Caption = CStr(ctrl.C5Hold)

Sub Form_Load ()

' Open the DagBook driver
dbk1.0Open = True
" enable all counters to execute the disarm/arm and load commands
ctrl.C1Enable = True
ctrl.C2Enable = True
ctrl.C3Enable = True
ctrl.C4Enable = True
ctrl.C5Enable = True
' Halt all counters
ctrl.Disarm = True
' Set non-changing properties of each counter
" These properties are set here and never change
' Alternatively, they could be set in the properties window
ctrl.C1CntDir=1 ' count up
ctrl.C1CntEdge = 1 ' count on positive edge

Programmer’'s Manual

6-63

Visual Basic VBX Support

Chapter 6

End Sub

ctrl.C1CntRepeat = True
ctrl.C1CntType =0
ctrl.C1GateCtrl =0
ctrl.C10utputCtrl = 3
ctrl.C1Reload =0
ctrl.C1SpecialGate = 0
ctrl.C1CntSource = 1
ctrl.ClLoad =0
ctrl.C2CntDir =1
ctrl.C2CntEdge = 1
ctrl.C2CntRepeat = True
ctrl.C2CntType =0
ctrl.C2GateCtrl =0
ctrl.C20utputCtrl = 3
ctrl.C2Reload = 0
ctrl.C2SpecialGate = 0
ctrl.C2CntSource = 2
ctrl.C2Load =0
ctrl.C3CntDir =1
ctrl.C3CntEdge = 1
ctrl.C3CntRepeat = True
ctrl.C3CntType =0
ctrl.C3GateCtrl = 0
ctrl.C30utputCtrl = 3
ctrl.C3Reload =0
ctrl.C3SpecialGate = 0
ctr1.C3CntSource = 3
ctrl.C3Load =0
ctrl.C4CntDir=1
ctrl.C4CntEdge = 1
ctrl.C4CntRepeat = True
ctrl.C4CntType =0
ctrl.C4GateCtrl =0
ctrl.C40utputCtrl = 3
ctrl.C4Reload =0
ctrl.C4SpecialGate = 0
ctrl.C4CntSource = 4
ctrl.C4Load =0
ctrl.C5CntDir =1
ctrl.C5CntEdge = 1
ctrl.C5CntRepeat = True
ctrl.C5CntType =0
ctrl.C5GateCtrl = 0
ctrl.C50utputCtrl = 3
ctrl.C5Reload = 0
ctrl.C5SpecialGate = 0
ctrl.C5CntSource = 5 ' use counter 1 input as source
ctrl.C5Load =0 "initial load register value is 0

' program the counters with the previous set parameters
ctrl.SetCounterMode = 1
ctrl.SetCounterMode = 2
ctrl.SetCounterMode = 3
ctrl.SetCounterMode = 4
ctrl.SetCounterMode = 5

" initialize the counter values and start the counters
ctrl.LoadArm = True

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

' use counter 1 input as source
"initial load register value is 0

' count up

' count on positive edge

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

' use counter 1 input as source
"initial load register value is 0

' count up

' count on positive edge

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

' use counter 1 input as source
"initial load register value is 0

' count up

' count on positive edge

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

' use counter 1 input as source
"initial load register value is 0

' count up

' count on positive edge

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

Sub Form_Unload (Cancel As Integer)

End Sub

dbk1.0Open = False

Sub ResetButton_Click (Index As Integer)

' Reset the corresponding counter’s load register
ctrl.C1lEnable = False
ctrl.C2Enable = False
ctrl.C3Enable = False
ctrl.C4Enable = False
ctrl.C5Enable = False
Select Case Index
Case 0

ctrl.C1lEnable = True
Case 1l

ctrl.C2Enable = True

6-64

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR3

Case 2

ctrl.C3Enable = True
Case 3

ctrl.C4Enable = True
Case 4

ctrl.C5Enable = True
End Select
ctrl.Load = True

End Sub

= CTR3

" Frequency

Counter 1 Counter 2 Counter 3 Counter 4 Counter b

Freq(0) 0 | [0 | [O | [0

| [o | Freq(4)

THexch

ﬁgﬂ

DBK1

ExecuteButton

CTR1
CTR3 Form

Begin CTR Ctrl
BufferLength
C1CntDir
C1CntEdge
ClCntRepeat
C1CntSource
C1CntType
ClEnable
ClGateCtrl
C1OutputCtrl
Cl1Reload
ClSpecialGate
C2CntDir
C2CntEdge
C2CntRepeat
C2CntSource
C2CntType
C2Enable
C2GateCtrl
C20utputCtrl
C2Reload
C2SpecialGate
C3CntDir
C3CntEdge
C3CntRepeat
C3CntSource
C3CntType
C3Enable
C3GateCtrl
C3OutputCtrl
C3Reload
C3SpecialGate
C4CntDir
C4CntEdge
C4CntRepeat
C4CntSource
C4CntType
C4Enable

eNoloNoNoNeolololoNoloNolololoNolololoNoloNololololeoNoNoNoNoleoNoNoNoNeNal 0l

'Count Down

'Negative Count Edge

'False

0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled

‘Inactive -Always low

'Reload from Load

'False

'Count Down

'Negative Count Edge

'False

"0 - TC toggled output of last ctr
'Binary Count

'False

'Gating Disabled

‘Inactive -Always low

'Reload from Load

'False

'Count Down

'Negative Count Edge

'False

0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled

‘Inactive -Always low

'Reload from Load

'False

'Count Down

'Negative Count Edge

'False

0 - TC toggled output of last ctr
‘Binary Count

'False

Programmer’'s Manual

6-65

Visual Basic VBX Support

End

Begin DBK Dbkl

End

Chapter 6
C4GateCtrl = 0 'Gating Disabled
C4OutputCitrl = 0 ‘Inactive -Always low
C4Reload = 0 'Reload from Load
C4SpecialGate = 0 'False
C5CntDir = 0 "Count Down
C5CntEdge = 0 'Negative Count Edge
C5CntRepeat = 0 'False
C5CntSource = 0 "0 - TC toggled output of last ctr
C5CntType = 0 ‘Binary Count
C5Enable = 0 'False
C5GateCtrl = 0 'Gating Disabled
C50utputCitrl = 0 ‘Inactive -Always low
C5Reload = 0 'Reload from Load
C5SpecialGate = 0 'False
ComplEnable = 0 'False
Comp2Enable = 0 'False
FoutDivider = 0 ' Divide by 16
FoutSource = 0 ' 0 - Fout Disabled
FreqCntSource = 1 "Counter 1 Input
Freqlinterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 'Disabled
Top = 1140
IntLevel = 7
Left = 180
LptPort = 0 'LPT1
Protocol = 1 '4 Bit 1/0
Top = 1140

Sub ExecuteButton_Click ()

End Sub

Dim i As Integer
' Setup counter 1 to read a known source (1MHz) that will be used as a timebase for counter 2.
Counter 2 will read the frequency of all 5 counter inputs. This source can be set to
frequencies slower than 1MHz to read slower frequencies.
ctrl1.C1CntSource = 11
ctrl.SetCounterMode = 1
Fori=1To5
' Halt counters 1 and 2
ctrl.Disarm = True
" Program counter 2 to read the current source
ctrl.C2CntSource =i
ctrl.SetCounterMode = 2
" Reset the counters 1 and 2 to 0 and start counting
ctrl.LoadArm = True
" Wait for counter 1 to accumulate 10000 counts
' At 1MHz, this translates to 0.01 seconds
Do
' Transfer the count value of counters 1 and 2
' to the hold register
ctrl.Save = True
Loop While ctr1.C1Hold 10000
" Now use the known timebase (counter 1) to calculate the frequency of the unknown
timebase (counter 2). If an input other than 1MHz is used for counter 1, change the
constant 1000000 in the following line to the input frequency of counter 1
Freq(i - 1).Caption = CStr(ctr1.C2Hold * 1000000 / ctrl.C1Hold)
Next i

Sub Form_Load ()

' Open the DagBook driver
dbk1.0Open = True
‘enable counters 1 and 2 to execute the disarm/arm and load commands
ctrl.C1lEnable = True
ctrl.C2Enable = True
ctrl.C3Enable = False
ctrl.C4Enable = False
ctrl.C5Enable = False
' Set non-changing properties of each counter
" These properties are set here and never change
' Alternatively, they could be set in the properties window

6-66

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR4

End Sub

Sub Form_Unload (Cancel As Integer)

End Sub

ctrl.C1CntDir=1
ctrl.C1CntEdge = 1
ctrl.C1CntRepeat = False
ctrl.C1CntType =0
ctrl.C1GateCtrl =0
ctrl.C10utputCtrl = 3
ctrl.C1Reload =0
ctrl.C1SpecialGate = 0
ctrl.C1CntSource = 11
ctrl.ClLoad =0
ctrl.C2CntDir=1
ctrl.C2CntEdge = 1
ctrl.C2CntRepeat = False
ctrl.C2CntType =0
ctrl.C2GateCtrl =0
ctrl.C20utputCtrl = 3
ctrl.C2Reload = 0
ctrl.C2SpecialGate = 0
ctrl.C2Load =0

dbk1.0Open = False

Source

Divider

' count up

' count on positive edge

' repeat enabled

' binary counting

' no gating

" output disabled, high impedance
" reload from load

' special gate disabled

" use 1MHz clock as source
"initial load register value is 0

' count up

' count on positive edge

' repeat enabled

" binary counting

' no gating

" output disabled, high impedance
' reload from load

' special gate disabled

" initial load register value is 0

= CTR4

Begin CTR Ctrl

— FOUT [Pin 30] Configuration
q/FOUT Disabled Source
"1 *| Divider
I Hedh
CTR1
CTR4 Form

BufferLength = 1
C1CntDir = 0 'Count Down
C1CntEdge = 0 'Negative Count Edge
Ci1CntRepeat = 0 'False
Cl1CntSource = 0 0 - TC toggled output of last ctr
CiCntType = 0 ‘Binary Count
ClEnable = 0 'False
ClGateCtrl = 0 'Gating Disabled
C1OutputCtrl = 0 ‘Inactive -Always low
Cl1Reload = 0 'Reload from Load
ClSpecialGate = 0 'False
C2CntDir = 0 'Count Down
C2CntEdge = 0 'Negative Count Edge
C2CntRepeat = 0 'False
C2CntSource = 0 0 - TC toggled output of last ctr
C2CntType = 0 ‘Binary Count
C2Enable = 0 'False

Programmer’s Manual

6-67

Visual Basic VBX Support

Chapter 6

End

C2GateCtrl
C20utputCitrl
C2Reload
C2SpecialGate
C3CntDir
C3CntEdge
C3CntRepeat
C3CntSource
C3CntType
C3Enable
C3GateCtrl
C30OutputCitrl
C3Reload
C3SpecialGate
C4CntDir
C4CntEdge
C4CntRepeat
C4CntSource
CA4CntType
C4Enable
CA4GateCtrl
C4OutputCitrl
C4Reload
C4SpecialGate
C5CntDir
C5CntEdge
C5CntRepeat
C5CntSource
C5CntType
C5Enable
C5GateCtrl
C50utputCitrl
C5Reload
C5SpecialGate
ComplEnable
Comp2Enable
FoutDivider
FoutSource
FreqCntSource
Freqlinterval
Left
NumScans
TimeOfDay
Top

ORPROFRPPFPOO0OO0O00000000000000000D0000DO0DO0OO0ODO0O0OO0OO0OO0OO0OO0OO0O0OO

Begin DBK Dbkl

End

IntLevel
Left
LptPort
Protocol
Top

nmimun
o

Sub Divider_Click ()

End Sub

ctrl.FoutDivider = Divider.Listindex

ctrl.SetMasterMode = True

Sub Form_Load ()

' Open the DagBook driver

dbkl.open = True

" initialize the selection lists

Dim i As Integer
Fori=1To 16

Divider.Addltem CStr(i)
Next i

Source.AddItem “FOUT Disabled”
Source.AddItem “Counter 1 Input”
Source.Addltem “Counter 2 Input”
Source.AddItem “Counter 3 Input”
Source.Addltem “Counter 4 Input”
Source.AddItem “Counter 5 Input”

Source.Addltem “Counter 1 Gate”
Source.Addltem “Counter 2 Gate”

o
o

-
N
D
o

180

1260

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

’Count Down
'Negative Count Edge
'False

"0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

’Count Down
'Negative Count Edge
'False

"0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

’Count Down
'Negative Count Edge
'False

"0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'False

'False

' Divide by 16

' 0 - Fout Disabled
‘Counter 1 Input

'Disabled

'LPT1
‘4 Bit /0

6-68

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTRS

Source.Addltem “Counter 3 Gate”
Source.Addltem “Counter 4 Gate”
Source.Addltem “Counter 5 Gate”
Source.Addltem “1MHz”
Source.AddItem “100kHz”
Source.Addltem “10kHz”
Source.AddItem “1kHz”
Source.Addltem “100Hz"

' select initial settings

Divider.Listindex = 0
Source.Listindex =0
End Sub

Sub Form_Unload (Cancel As Integer)

dbkl.open = False
End Sub

Sub Source_Click ()

ctrl.FoutSource = Source.Listindex

ctrl.SetMasterMode = True

End Sub

= CTRS

Elapsed Time —]

[00:00:00.00 |«

iTtech| |1 e

DBK1 CTR1

CTRS5 Form

Begin CTR Ctrl

ElapsedTime

| ‘Execute: |¢7 ExecuteButton

BufferLength = 1

C1CntDir = 0 "Count Down

C1CntEdge = 0 'Negative Count Edge
Ci1CntRepeat = 0 'False

Cl1CntSource = 0 0 - TC toggled output of last ctr
CiCntType = 0 ‘Binary Count

ClEnable = 0 'False

ClGateCtrl = 0 'Gating Disabled

C1OutputCtrl = 0 ‘Inactive -Always low

Cl1Reload = 0 'Reload from Load
ClSpecialGate = 0 'False

C2CntDir = 0 "Count Down

C2CntEdge = 0 'Negative Count Edge
C2CntRepeat = 0 'False

C2CntSource = 0 0 - TC toggled output of last ctr
C2CntType = 0 ‘Binary Count

C2Enable = 0 'False

C2GateCtrl = 0 'Gating Disabled

C20utputCtrl = 0 ‘Inactive -Always low

C2Reload = 0 'Reload from Load
C2SpecialGate = 0 'False

C3CntDir = 0 "Count Down

C3CntEdge = 0 'Negative Count Edge
C3CntRepeat = 0 'False

C3CntSource = 0 0 - TC toggled output of last ctr

Programmer’'s Manual

6-69

Visual Basic VBX Support

Chapter 6

End

Begin DBK Dbkl

C3CntType = 0 ‘Binary Count
C3Enable = 0 'False

C3GateCtrl = 0 'Gating Disabled
C30OutputCitrl = 0 ‘Inactive -Always low
C3Reload = 0 'Reload from Load
C3SpecialGate = 0 'False

C4CntDir = 0 "Count Down
C4CntEdge = 0 'Negative Count Edge
CACntRepeat = 0 'False

C4CntSource = 0 "0 - TC toggled output of last ctr
CACntType = 0 ‘Binary Count
C4Enable = 0 'False

CA4GateCtrl = 0 'Gating Disabled
C4OutputCitrl = 0 ‘Inactive -Always low
C4Reload = 0 'Reload from Load
C4SpecialGate = 0 'False

C5CntDir = 0 "Count Down
C5CntEdge = 0 'Negative Count Edge
C5CntRepeat = 0 'False

C5CntSource = 0 0 - TC toggled output of last ctr
C5CntType = 0 ‘Binary Count
C5Enable = 0 'False

C5GateCtrl = 0 'Gating Disabled
C50utputCitrl = 0 ‘Inactive -Always low
C5Reload = 0 'Reload from Load
C5SpecialGate = 0 'False

ComplEnable = 0 'False

Comp2Enable = 0 'False

FoutDivider = 0 ' Divide by 16
FoutSource = 0 ' 0 - Fout Disabled
FreqCntSource = 1 'Counter 1 Input
Freqinterval = 1

Left = 600

NumScans = 1

TimeOfDay = 0 'Disabled

Top = 1320

IntLevel = 7

Left = 180

LptPort = 0 'LPT1

Protocol = 1 '4 Bit 1/0

Sub ExecuteButton_Click ()

" Transfer count value of counters 1 and 2 to the hold register
ctrl.Save = True

' Display the elapsed time
ElapsedTime.Caption = Format$(Hex$(ctr1.C2Hold), “00:00:") +

Format$(Hex$(ctrl.C1Hold), “00\.00")

End Sub

Sub Form_Load ()

’ Open the DaqBook driver
dbk1.Open = True
‘enable counters 1 and 2 to execute the disarm/arm and load commands
ctrl.C1Enable = True
ctrl.C2Enable = True
ctrl.C3Enable = False
ctrl.C4Enable = False
ctrl.C5Enable = False
" halt counters 1 and 2
ctrl.Disarm = True
" Initialize time of day operation
" Use 100Hz time of day setting and set the input
" of counter 1 (below) to the internal 100Hz clock
ctrl.TimeOfDay = 3
ctrl.SetMasterMode = True
' Set non-changing properties of each counter
" These properties are set here and never change
' Alternatively, they could be set in the properties window
ctrl.C1CntDir=1 ’countup
ctrl.C1CntEdge = 1’ count on positive edge
ctrl.C1CntRepeat = True ' repeat enabled
ctrl.C1CntType = 1 ' BCD counting

6-70

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR6

ctrl.C1GateCtrl =0
ctrl.C10utputCtrl = 3
ctrl.C1Reload =0
ctrl.C1SpecialGate = 0
ctrl.C1CntSource = 15
ctrl.C2CntDir = 1
ctrl.C2CntEdge = 1
ctrl.C2CntRepeat = True
ctrl.C2CntType = 1
ctrl.C2GateCtrl = 0
ctrl.C20utputCtrl = 3
ctrl.C2Reload =0
ctrl.C2SpecialGate = 0
ctrl.C2CntSource = 0

' no gating

" output disabled, high impedance
' reload from load

' special gate disabled

" use 100Hz as source

' count up

' count on positive edge

' repeat enabled

" BCD counting

' no gating

" output disabled, high impedance
' reload from load

' special gate disabled

' use the TC output of the

' previous counter (counter 1) as source

" Program counters 1 and 2

ctrl.SetCounterMode = 1
ctrl.SetCounterMode = 2

" Initialize counters 1 and 2to 0
" This will set counters 1 and 2 to read the elapsed time
’ from the start of this program

ctrl.ClLoad =0

ctrl.C2Load = 0

ctrl.LoadArm = True
End Sub

Sub Form_Unload (Cancel As Integer)

dbk1.0Open = False
End Sub

= CTRGB

[Frequency Source — |

Counter 1 Input (g3 Source
[Gate Interval

[100 <] Gate
" Frequency Value

[0 <+ Freq

DBK1

CTR1
CTR6 Form

Begin CTR Ctrl
BufferLength
C1CntDir
C1CntEdge
ClCntRepeat
C1CntSource
Cl1CntType
ClEnable
ClGateCtrl
C1OutputCtrl
Cl1Reload
ClSpecialGate
C2CntDir
C2CntEdge
C2CntRepeat

| Execute 4—F7 ExecuteButton

'Count Down
'Negative Count Edge
'False

0 - TC toggled output of last ctr
‘Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'Count Down
'Negative Count Edge
'False

[eNeoNeololNoNoNoloNoNoNoNoNal 0l

Programmer’'s Manual

6-71

Visual Basic VBX Support

End

Begin DBK Dbkl

End

Chapter 6
C2CntSource = 0 0 - TC toggled output of last ctr
C2CntType = 0 'Binary Count
C2Enable = 0 'False
C2GateCtrl = 0 'Gating Disabled
C20utputCtrl = 0 ‘Inactive -Always low
C2Reload = 0 'Reload from Load
C2SpecialGate = 0 'False
C3CntDir = 0 "Count Down
C3CntEdge = 0 'Negative Count Edge
C3CntRepeat = 0 'False
C3CntSource = 0 "0 - TC toggled output of last ctr
C3CntType = 0 'Binary Count
C3Enable = 0 'False
C3GateCtrl = 0 'Gating Disabled
C3OutputCtrl = 0 ‘Inactive -Always low
C3Reload = 0 'Reload from Load
C3SpecialGate = 0 'False
C4CntDir = 0 "Count Down
C4CntEdge = 0 'Negative Count Edge
C4CntRepeat = 0 'False
C4CntSource = 0 0 - TC toggled output of last ctr
C4CntType = 0 'Binary Count
C4Enable = 0 'False
CA4GateCtrl = 0 'Gating Disabled
C4O0utputCtrl = 0 ‘Inactive -Always low
C4Reload = 0 'Reload from Load
C4SpecialGate = 0 'False
C5CntDir = 0 'Count Down
C5CntEdge = 0 'Negative Count Edge
C5CntRepeat = 0 'False
C5CntSource = 0 "0 - TC toggled output of last ctr
C5CntType = 0 'Binary Count
C5Enable = 0 'False
C5GateCtrl = 0 'Gating Disabled
C50utputCtrl = 0 ‘Inactive -Always low
C5Reload = 0 'Reload from Load
C5SpecialGate = 0 'False
ComplEnable = 0 'False
Comp2Enable = 0 'False
FoutDivider = 0 ' Divide by 16
FoutSource = 0 "0 - Fout Disabled
FregCntSource = 1 ‘Counter 1 Input
Freginterval = 1
Left = 600
NumScans = 1
TimeOfDay = 0 'Disabled
Top = 2700
IntLevel = 7
Left = 180
LptPort = 0 'LPT1
Protocol = 1 ‘4 Bit 1/10
Top = 2700

Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long

' converts a string to a long integer number
" and makes sure that the number is within bounds

If CvtStr = *" Then

Else

End If
End Function

CvtMinMax = min

Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then

CvtVal = Max
Elself CvtvVal min Then
CvtVal = min

End If
CvtMinMax = CvtVal

Sub ExecuteButton_Click ()

6-72

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

CTR7

End Sub

Dim i As Integer

' Read the user inputs
ctrl.FreqCntSource = Source.Listindex + 1
i = CInt(CvtMinMax(Gate.Text, 1, 32767))
ctrl.Freginterval =i

' Display the frequency
MousePointer = 11
Freq.Caption = CStr(ctrl.FreqCnt * 1000 / i)
MousePointer = 0

Sub Form_Load ()

End Sub

" Open the DaqBook driver
dbk1.0Open = True

" Initialize source selection box
Source.AddItem “Counter 1 Input”
Source.Addltem “Counter 2 Input”
Source.AddItem “Counter 3 Input”
Source.Addltem “Counter 4 Input”
Source.AddItem “Counter 5 Input”
Source.Addltem “Counter 1 Gate”
Source.Addltem “Counter 2 Gate”
Source.Addltem “Counter 3 Gate”
Source.Addltem “Counter 4 Gate”

' select initial settings
Source.Listindex = 0

Sub Form_Unload (Cancel As Integer)

End Sub

dbk1.0Open = False

Sub Gate_KeyPress (keyascii As Integer)

Select Case keyascii

Case &H30 To &H39 "All numbers
Case &H8 '‘Back space
Case Else
keyascii = 0 'Reject all other characters
End Select
End Sub
= CTH7
of Scans
DBK1 |. 1o <] ScansToRead
[CHexch
| Execute 4—F7 ExecuteButton
CTR1 - Scanz Buffered
||] < i ScansRead
[~ Status
Timert ||l:||E] I Status
VERSION 2.00
Begin CTR Ctrl
BufferLength = 1
C1CntDir = 0 "Count Down
C1CntEdge = 0 'Negative Count Edge
Ci1CntRepeat = 0 'False

Programmer’'s Manual

6-73

Visual Basic VBX Support

Chapter 6

C1CntSource
C1CntType
ClEnable
ClGateCtrl
C1OutputCtrl
Cl1Reload
ClSpecialGate
C2CntDir
C2CntEdge
C2CntRepeat
C2CntSource
C2CntType
C2Enable
C2GateCtrl
C20utputCtrl
C2Reload
C2SpecialGate
C3CntDir
C3CntEdge
C3CntRepeat
C3CntSource
C3CntType
C3Enable
C3GateCtrl
C3OutputCtrl
C3Reload
C3SpecialGate
C4CntDir
C4CntEdge
C4CntRepeat
C4CntSource
C4CntType
C4Enable
C4GateCtrl
C40utputCtrl
C4Reload
C4SpecialGate
C5CntDir
C5CntEdge
C5CntRepeat
C5CntSource
C5CntType
C5Enable
C5GateCtrl
C50utputCtrl
C5Reload
C5SpecialGate
ComplEnable
Comp2Enable
FoutDivider
FoutSource
FregCntSource
Freginterval
Left
NumScans
TimeOfDay
Top

End

Begin DBK Dbk1
IntLevel
Left
LptPort
Protocol
Top

End
Const MAXBUF = 160

Dim dataBufferl(MAXBUF) As Integer
Dim dataBuffer2(MAXBUF) As Integer
Dim dataBuffer3(MAXBUF) As Integer
Dim dataBuffer4(MAXBUF) As Integer
Dim dataBuffer5(MAXBUF) As Integer

0 - TC toggled output of last ctr
'Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

‘Count Down
'Negative Count Edge
'False

"0 - TC toggled output of last ctr
'Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'’Count Down
'Negative Count Edge
'False

0 - TC toggled output of last ctr
'Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'Count Down
'Negative Count Edge
'False

"0 - TC toggled output of last ctr
'Binary Count

'False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'Count Down
'Negative Count Edge
'False

0 - TC toggled output of last ctr
'Binary Count

‘False

'Gating Disabled
‘Inactive -Always low
'Reload from Load
'False

'False

'False

' Divide by 16

"0 - Fout Disabled
‘Counter 1 Input

OFRPOFRPFPOO0OO0OO000000000000000000000D000DO0O0DO0O0O0DO0ODO0DO0DO0ODO0DO0OO0DO0OO0OO0OO0OO0OO0OO0OOO0OOOO

00
'Disabled

2820
7
180
0 'LPT1
1 '4 Bit I/0
2820

" The data buffer for counter 1
' The data buffer for counter 1
' The data buffer for counter 1
' The data buffer for counter 1
" The data buffer for counter 1

Dim scansProcessed As Long’ Keeps track of how many scans

6-74

Programmer’s Manual

Chapter 6

Visual Basic VBX Support

" read have been sent to disk
Dim totalScansToRead As Long ' The total number of scans to read
Dim readindex As Integer " The array index from which to read the next value

Sub Ctrl_Triggered ()
' Update the status box
Status.Caption = “Triggered”
' Enable the timer that checks for new data
Timerl.Enabled = True
End Sub

Function CvtMinMax (ByVal CvtStr As String, ByVal min As Long, ByVal Max As Long) As Long

' converts a string to a long integer number
" and makes sure that the number is within bounds
If CvtStr = “” Then
CvtMinMax = min
Else
Dim CvtVal As Long
CvtVal = CLng(CvtStr)
If CvtVal Max Then
CvtVal = Max
Elself Cvtval min Then
CvtVal = min
End If
CvtMinMax = CvtVal
End If
End Function

Sub disarmAcq ()

Close #1
‘ctrl.ReadCounters = false

ctrl.Stop = True
Status.Caption = “Idle”
ExecuteButton.Caption = “Execute”
Timerl.Enabled = False
ScansToRead.Enabled = True

End Sub

Sub ExecuteButton_Click ()
' Disarm the acquisition if the acquisition is already in process
If ExecuteButton.Caption = “Abort” Then
disarmAcq
Exit Sub
End If
" halt the counters
ctrl.Disarm = True
" Update the user interface
Status.Caption = “Waiting for trigger”
ScansToRead.Enabled = False
" Initialize the acquisition variables
ExecuteButton.Caption = “Abort”
readindex =0
scansProcessed = 0
totalScansToRead = CvtMinMax(ScansToRead.Text, 1, 1000000)
If totalScansToRead MAXBUF Then
ctrl.NumScans = -1
Else
ctrl.NumScans = totalScansToRead
End If
' Open the data file
Open “ctr7.txt” For Output As #1
' start the counters
ctrl.LoadArm = True
' Start the acquisition
ctrl.ReadCounters = True

End Sub

Sub Form_Load ()
' Open the DagBook driver
dbk1.0Open = True
" enable all counters to execute the disarm/arm and load commands
ctrl.C1Enable = True
ctrl.C2Enable = True

Programmer’'s Manual

6-75

Visual Basic VBX Support

Chapter 6

End Sub

ctrl.C3Enable = True
ctrl.C4Enable = True
ctrl.C5Enable = True
' Halt all counters
ctrl.Disarm = True
' Set non-changing properties of each counter
’ These properties are set here and never change
' Alternatively, they could be set in the properties window
ctrl.BufferLength = MAXBUF

ctrl.C1CntDir=1 ' count up

ctrl.C1CntEdge = 1 ' count on positive edge
ctrl.C1CntRepeat = True ' repeat enabled
ctrl.C1CntType =0 " binary counting
ctrl.C1lGateCtrl =0 ' no gating

ctrl.C1OutputCtrl = 3 " output disabled, high impedance
ctrl.C1Reload =0 ' reload from load
ctrl.C1lSpecialGate = 0 ' special gate disabled
ctrl.C1CntSource = 1 ' use counter 1 input as source
ctrl.ClLoad =0 " initial load register value is 0
ctrl.C1Buffer = addressOf(dataBuffer1(0))

ctrl.C2CntDir=1 ' count up

ctrl.C2CntEdge = 1 ‘count on positive edge
ctrl.C2CntRepeat = True ' repeat enabled
ctrl.C2CntType =0 " binary counting
ctrl.C2GateCtrl =0 ' no gating

ctrl.C20utputCtrl = 3 " output disabled, high impedance
ctrl.C2Reload = 0 " reload from load
ctrl.C2SpecialGate = 0 ' special gate disabled
ctr1.C2CntSource = 2 ' use counter 2 input as source
ctrl.C2Load =0 "initial load register value is 0
ctrl.C2Buffer = addressOf(dataBuffer2(0))

ctrl.C3CntDir=1 ' count up

ctrl.C3CntEdge = 1 ' count on positive edge
ctrl.C3CntRepeat = True ' repeat enabled
ctrl.C3CntType =0 " binary counting
ctrl.C3GateCtrl =0 ' no gating

ctrl.C30utputCtrl = 3 " output disabled, high impedance
ctrl.C3Reload =0 ' reload from load
ctrl.C3SpecialGate = 0 ' special gate disabled
ctrl.C3CntSource = 3 ' use counter 3 input as source
ctrl.C3Load =0 " initial load register value is 0
ctrl.C3Buffer = addressOf(dataBuffer3(0))

ctrl.C4CntDir=1 ' count up

ctrl.C4CntEdge = 1 ' count on positive edge
ctrl.C4CntRepeat = True ' repeat enabled
ctrl.C4CntType =0 " binary counting
ctrl.C4GateCtrl =0 ' no gating

ctrl.C40utputCtrl = 3 " output disabled, high impedance
ctrl.C4Reload =0 " reload from load
ctrl.C4SpecialGate = 0 ' special gate disabled
ctrl.C4CntSource = 4 ' use counter 4 input as source
ctrl.C4Load =0 "initial load register value is 0
ctrl.C4Buffer = addressOf(dataBuffer4(0))

ctrl.C5CntDir = 1 ' count up

ctrl.C5CntEdge = 1 ' count on positive edge
ctrl.C5CntRepeat = True ' repeat enabled
ctrl.C5CntType =0 " binary counting
ctrl.C5GateCtrl =0 ' no gating

ctrl.C50utputCtrl = 3 " output disabled, high impedance
ctrl.C5Reload =0 ' reload from load
ctrl.C5SpecialGate = 0 ' special gate disabled
ctrl.C5CntSource =5 ' use counter 5 input as source
ctrl.C5Load =0 " initial load register value is 0

ctrl.C5Buffer = addressOf(dataBuffer5(0))
' program the counters with the previous set parameters
ctrl.SetCounterMode = 1
ctrl.SetCounterMode = 2
ctrl.SetCounterMode = 3
ctrl.SetCounterMode = 4
ctrl.SetCounterMode = 5

Sub Form_Unload (Cancel As Integer)

6-76

Programmer’s Manual

Chapter 6 Visual Basic VBX Support

disarmAcq
dbk1.0Open = False
End Sub

Function IntToUlnt (ByVal i As Integer) As Long
Dim | As Long
=i
If1 0 Thenl| =1+ 65536
IntToUInt =1
End Function

Sub ScansToRead_KeyPress (keyascii As Integer)
Select Case keyascii

Case &H30 To &H39 'All numbers
Case &H8 'Back space
Case Else
keyascii =0 'Reject all other characters
End Select

End Sub

Sub Timerl_Timer ()
Dim cnt As Long
Dim ctrStr As String
Dim unprocessed As Long
Dim i As Integer
Dim active As Integer
' check if the transfer has stopped
active = ctrl.Active
" get the number of scans collected
cnt = ctrl.Buffered

" limit cnt to the number of requested scans
If cnt totalScansToRead Then
cnt = totalScansToRead
End If
' process any new scans
unprocessed = cnt - scansProcessed
If unprocessed 0 Then
" Check to see if the buffers are overflowed
If unprocessed MAXBUF Then
disarmAcq
MsgBox “Internal buffer overrun”
Exit Sub
End If
Fori=0 To unprocessed - 1
ctrStr = CStr(IntToUInt(dataBufferl(readindex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer2(readindex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer3(readindex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer4(readindex))) + Chr$(9)
ctrStr = ctrStr + CStr(IntToUInt(dataBuffer5(readindex)))
Print #1, ctrStr
readindex = readindex + 1
If readindex = MAXBUF Then
readindex =0
End If
Next i
End If
' update the number of scans processed
scansProcessed = cnt
ScansRead.Caption = CStr(cnt)
' stop the acquisition if necessary
If (scansProcessed = totalScansToRead) Or Not active Then
disarmAcq
End If
End Sub

Programmer’'s Manual 6-77

Visual Basic VBX Support Chapter 6

,@ED Notes

6-78 Programmer’s Manual

Porting Applications

Overview

This appendix outlines methods for porting applications written to the 16-bit Standard API from the
original Dag* Windows 3.1 driver to either a 32-bit version of the Standard API or to the new 32-hit

Enhanced API. The Dag* Windows 95/NT driver provides 3 modes of operation:

16-bit standard AP
(16STD)
(Windows 95 Only)

32-hit standard API
(32STD)

32-hit enhanced API
(32ENH)

Identical to the Windows 3.1 driver APl and documented in
chapters4 and 5. Users that have written programs using
the Windows 3.1 driver that want to port their application to
Windows 95 in 16-bit mode should use thisAPI. This
standard API can also be used by new developers for 16-hit
applications. Can process up to 32,767 samples at atime.

Identical to the Windows 3.1 driver APl and documented in
chapters4 and 5. Users that have written programs using
the Windows 3.1 driver that want to port their application to
Windows 95/NT 32-bit mode should use this API. This
API can also be used by new developers for 32-bit
applications. Can process up to 2 billion samples at atime.

Provides enhanced features for applications running under
Windows 95 and Windows NT. This enhanced API (in
chapters 2 and 3) is not code-compatible with the
standard API (in chapters 4 and 5). Legacy applications
reguire modifications to use this API. 32-bit operation only.
Can process up to 2 hillion samples at atime.

Note: Dag* systems ordered for Windows 95/NT include a Win32 driver capable of
native 32-bit mode operation for both Windows NT and Windows 95 systems.
Additionally, 16-bit operation (through a thunking layer) is supported under

Windows 95.

The enhanced API is device-handle based and allows applications to run in a multi-device/multi-tasked
environment. To successfully port existing Windows 3.1 API applications to the new Windows 95/NT

enhanced API requires coding changes. In addition to the required device handles, other coding
changes may be necessary (refer to the appendix for more information on porting applications).
Applications written for this APl must use these new API header files. Support files (under the
Langs\C\32ENH and Langs\VB\32ENH sub-directories of the installation directory) include,

respectively:

For C, the DagX.h header file should be used with the DagX.lib import library.
For Visual Basic, the DagX.bas file should be used.

Programmer’'s Manual

A-1

Porting Applications

Appendix A

Porting Daq* Applications Written for Windows 3.1

The following sections provide information needed to support applications written for the 16-bit
standard APl under the Windows 3.1 Dag* drivers. Windows 3.1 applications of the driver may be
binary compatible with the 16-bit Windows 95 version of the driver. Binary compatible means that
applications already written and compiled for the Windows 3.1 version of the driver may not require
re-compilation at all. If it isdesirable or necessary to change the application in any way, Visual Basic
and C language support has been provided so that an application may be built in either 16-bit or 32-bit
modes. Compatibility and porting issues for Visual Basic and C are described in the following
sections. (Since previous driver versions did not support Delphi, there is no need to review Delphi
porting issues here.)

Windows 3.1 Binary Compatibility (16-bit)

This section refers to Windows 95 Only.

In some cases, it may be possible to run Windows applications written for the Windows 3.1 version of
the driver without re-compiling the application. It does not matter which language the application was
written in, as long as the application is a Windows application written to use DagBook.dll. To do this,
the 16-bit Windows 3.1 version of the driver (DaqBook.dll) needs to be replaced by the 16-bit
Windows 95 binary-compatible version of the driver. To attempt this, perform the following steps:

1. Gotothe Windows\System directory.

2. Copy the DagBook.dll to abackup file outside of Windows\System.

3. Delete DaqBook.dll and make sure that there are no othersin your path.

4. Copy <installation path>\Utils\DagBookX.dll t0 Windows\System\DaqBook.dIl.

5. Runthe application.

The application should run as before. If there are problems, it may be necessary to recompile the
application as described below.

To switch back to the Windows 3.1 version of the driver:
1. Go tothe Windows\System directory.
2. Delete DaqBook.dll from the Windows\System directory.
3. Copy the origina DagBook.dll to the Windows\System directory. Until thisis done, the
Windows 95 version of the driver will be used by the application.
Note: Problems are likely to occur if both DagBookX.dll and DagqBook.dll are in the
Windows\System directory at the same time.

Unsupported Windows 3.1 API Functions

The following functions have become obsolete for the 16-bit and 32-bit standard API release. The
functions are present; however, they perform no action.

dagAdcRdFore Use the dagAdcRd API function to acquire one sample from a selected
channel at a selected gain. This function aways returns
"DerrNotCapable".

dagCtrRdNFore

dagCtrRdNBack

dagCtrGetBackStat

dagSetProtocol The protocol must be set through the Dag* Configuration utility. This

function always returns "DerrNoError".

A-2

Programmer’'s Manual

Appendix A

Porting Applications

Porting Visual Basic Programs

16-bit Mode

32-bit Mode

This section refers to Windows 95 Only.

To convert existing Visual Basic applications requires very little effort. Perform the following steps,

and then run or re-compile your application. The new Dag Windows 95 Visual Basic header file,

DagX16.bas, is compatible with Visual Basic versions 2.0 through 4.0 (16-bit).
1. Removethe DaqBook.bas file from the project, and add the DaqX16.bas file (that resides in the
<installation path>\Langs\vb\16std directory).

2. Remove or replace obsolete function cals (see Unsupported Windows 3.1 API Functions).

To convert existing Visual Basic applications requires more work. The majority of changesinvolve
converting integer sample or scan countsto long. Perform the following steps, and then run or re-

compile your application using the 32-bit version of Visual Basic 4.0.
1. Removethe DagBook.bas file from the project, and add the DaqComp.bas file (that residesin
the <installation path>\Langs\vb\32std directory).

2. Remove or replace all obsolete function calls (see Unsupported Windows 3.1 API Functions).

3. Change function parameters as specified in the following table:

Function Prototype

Previous Parameter Definition

Change Parameter Definition To ...

VBdaq200SetScan count% count&
VBdagAdcRdN count% count&
VBdagAdcRdScanN count% count&
VBdagAdcRdNFore count% count&
VBdagAdcRdNForePreT count% count&
retCount% retCount&
VBdagAdcRdNForePreTWait count% counté&
retCount% retCount&
VBdagAdcRdNBack count% count&
VBdagAdcRdNBackPreT count% count&
VBdagAdcConvertTagged count% count&
VBdagAdcSetScan count% count&
VBdagAdcSetTrigPreT preCount% preCounté&
postCount% postCount&
VBdagBrdDacPredefWave samples% samples&
VBdagBrdDacUserWave samples% samples&
VBdagBrdDacWriteFIFO samples% samples&
VBdaqCalConvert scans% scans&
VBdaqCalSetupConvert scans% scans&
VBdaqCtrRdNFore count% count&
VBdaqCtrRdNBack count% count&
VBdagL inearConvert scans% scans&
nValues% nValuesé&
VBdagL inearSetupConvert scans% scans&
nValues% nValuesé&
VBdagRtdConvert scans% scans&
ntemp% ntemp&
VBdagRtdSetupConvert scans% scans&
ntemp% ntemp&
VBdaqTCConvert scans% scansé&
ntemp% ntemp&
VBdaqTCSetupConvert scans% scansé&
ntemp% ntemp&
VBdagZeroConvert scans% scans&
VBdagZeroSetupConvert scans% scansé&

Programmer’'s Manual

A-3

Porting Applications Appendix A

Porting C Programs

16-bit Mode
This section refers to Windows 95 Only.

To convert existing C applications requires very little effort. Perform the following steps and then re-
compile your application with a 16-bit C compiler. The DagX16.h and DagX16.1ib files reside in the
<installation path>\Langs\C\16std directory.

1. Replacedl #include “DaqBook.h” lineswith #include “DagX16.h”.

2. Replace DagBook. lib in your project file or makefile with DagX16. l'ib.

3. Remove or replace obsolete function cals (see Unsupported Windows 3.1 API Functions).

32-bit Mode

To convert existing C applications requires more work. The majority of changes involve converting
integer data buffersto short data buffers. Integers are 16 bitsin 16-bit C compilers, but are 32 bitsin
32-bit C compilers. Short integers are 16 bits for both. Perform the following steps and then re-
compile your application with a 32-bit C compiler. The DaqgComp.h and Dagcomp.lib filesresidein
the <installation path>\Langs\C\32std directory.

1. Replaceal #include “DaqBook.h” lineswith #include “DaqComp.h”.

2. Replace DagBook. lib inyour project file or makefile with DagComp. l'ib.

3. Remove or replace obsolete function calls (see Unsupported Windows 3.1 API Functions).

4. Change function parameters as specified in the following table:

Function Prototype Previous Parameter Definition | Change Parameter Definition To ...
dagAdcConvertTagged unsigned int *taggedData unsigned short *taggedData
unsigned int *buf unsigned short *buf
dagAdcRd unsigned int *sample unsigned short *sample
dagAdcRdFore unsigned int *sample unsigned short *sample
dagAdcRdN unsigned int *buf unsigned short *buf
dagAdcRdNBack unsigned int *buf unsigned short *buf
dagAdcRdNBackPreT unsigned int *buf unsigned short *buf
dagAdcRdNFore unsigned int *buf unsigned short *buf
dagAdcRdNForePreT unsigned int *buf unsigned short *buf
dagAdcRdNForePreTWait unsigned int *buf unsigned short *buf
dagAdcRdScan unsigned int *buf unsigned short *buf
dagAdcRdScanN unsigned int *buf unsigned short *buf
dagAdcStopBack_LV unsigned int *bufP unsigned short *bufP
dagBrdDacUserWave unsigned int *buf unsigned short *buf
dagBrdDacWriteFIFO unsigned int *storage unsigned short *storage
dagCalConvert unsigned int *counts unsigned short *counts
dagCalSetupConvert unsigned int *counts unsigned short *counts
daqCtrGetHold unsigned int *ctrVal unsigned short *ctrVal
daqCtrRdFreq unsigned int *count unsigned short *count
daqCtrRdNBack unsigned int *ctrilBuf unsigned short *ctriBuf
unsigned int *ctr2Buf unsigned short *ctr2Buf
unsigned int *ctr3Buf unsigned short *ctr3Buf
unsigned int *ctr4Buf unsigned short *ctr4Buf
unsigned int *ctr5Buf unsigned short *ctr5Buf
daqCtrRdNFore unsigned int *ctriBuf unsigned short *ctriBuf
unsigned int *ctr2Buf unsigned short *ctr2Buf
unsigned int *ctr3Buf unsigned short *ctr3Buf
unsigned int *ctr4Buf unsigned short *ctr4Buf
unsigned int *ctr5Buf unsigned short *ctr5Buf
dagDacWtMany unsigned int *dataVals unsigned short *dataVals
dagDbkSetChanOption double optionValue float optionValue
dagLinearConvert unsigned *counts unsigned short *counts
dagLinearSetupConvert unsigned *counts unsigned short *counts
dagRtdConvert unsigned *counts unsigned short *counts
int *temp short *temp
dagRtdSetupConvert unsigned *counts unsigned short *counts
int *temp short *temp
dagTCConvert unsigned *counts unsigned short *counts
int *temp short *temp
dagTCSetupConvert unsigned *counts unsigned short *counts
int *temp short *temp
dagZeroConvert unsigned int *counts unsigned short *counts
dagZeroSetupConvert unsigned int *counts unsigned short *counts

A-4 Programmer’s Manual

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace
period to the normal one (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.

If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer
Service Department will issue an Authorized Return (AR) number immediately upon phone or written
request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at
no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not Ilimited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or
current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components which wear are not warranted, including but not
limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However,
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic
Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.

FOR WARRANTY RETURNS, please have the FOR NON-WARRANTY REPAIRS, consult OMEGA
following information available BEFORE for current repair charges. Have the following
contacting OMEGA: information available BEFORE contacting OMEGA:
1. P.O. number under which the product was 1. P.O. number to cover the COST
PURCHASED, of the repair,
2. Model and serial number of the product under 2. Model and serial number of the product, and
warranty, and 3. Repair instructions and/or specific problems
3. Repair instructions and/or specific problems relative to the product.
relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 1996 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior
written consent of OMEGA ENGINEERING, INC.

Where Do | Find Everything | Need for
Process Measurement and Control?
OMEGA...Of Course!

TEMPERATURE

Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
Wire: Thermocouple, RTD & Thermistor

Calibrators & Ice Point References

Recorders, Controllers & Process Monitors

Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
M Transducers & Strain Gauges

M Load Cells & Pressure Gauges

M Displacement Transducers

M Instrumentation & Accessories

FLOW/LEVEL

M Rotameters, Gas Mass Flowmeters & Flow Computers
M Air Velocity Indicators

M Turbine/Paddlewhedl Systems

M Totalizers & Batch Controllers

pH/CONDUCTIVITY

M pH Electrodes, Testers & Accessories

M Benchtop/Laboratory Meters

M Controllers, Calibrators, Simulators & Pumps
M Industrial pH & Conductivity Equipment

DATA ACQUISITION

Data Acquisition & Engineering Software
Communications-Based Acquisition Systems
Plug-in Cards for Apple, IBM & Compatibles
Datalogging Systems

Recorders, Printers & Plotters

EATERS
Heating Cable
Cartridge & Strip Heaters
Immersion & Band Heaters
Flexible Heaters
Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL

Metering & Control Instrumentation
Refractometers

Pumps & Tubing

Air, Soil & Water Monitors

Industrial Water & Wastewater Treatment

pH, Conductivity & Dissolved Oxygen Instruments

NEAREA

RRARRNR X IRRRRN

NERERAF

M1855

